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Abstract 

Background:  Mastitis caused by different pathogens including Streptococcus uberis (S. uberis) is responsible for huge 
economic losses to the dairy industry. In order to investigate the potential genetic and epigenetic regulatory mecha‑
nisms of subclinical mastitis due to S. uberis, the DNA methylome (whole genome DNA methylation sequencing) and 
transcriptome (RNA sequencing) of milk somatic cells from cows with naturally occurring S. uberis subclinical mastitis 
and healthy control cows (n = 3/group) were studied.

Results:  Globally, the DNA methylation levels of CpG sites were low in the promoters and first exons but high in 
inner exons and introns. The DNA methylation levels at the promoter, first exon and first intron regions were nega‑
tively correlated with the expression level of genes at a whole-genome-wide scale. In general, DNA methylation level 
was lower in S. uberis-positive group (SUG) than in the control group (CTG). A total of 174,342 differentially methylated 
cytosines (DMCs) (FDR < 0.05) were identified between SUG and CTG, including 132,237, 7412 and 34,693 DMCs in the 
context of CpG, CHG and CHH (H = A or T or C), respectively. Besides, 101,612 methylation haplotype blocks (MHBs) 
were identified, including 451 MHBs that were significantly different (dMHB) between the two groups. A total of 2130 
differentially expressed (DE) genes (1378 with up-regulated and 752 with down-regulated expression) were found 
in SUG. Integration of methylome and transcriptome data with MethGET program revealed 1623 genes with signifi‑
cant changes in their methylation levels and/or gene expression changes (MetGDE genes, MethGET P-value < 0.001). 
Functional enrichment of genes harboring ≥ 15 DMCs, DE genes and MetGDE genes suggest significant involvement 
of DNA methylation changes in the regulation of the host immune response to S. uberis infection, especially cytokine 
activities. Furthermore, discriminant correlation analysis with DIABLO method identified 26 candidate biomarkers, 
including 6 DE genes, 15 CpG-DMCs and 5 dMHBs that discriminated between SUG and CTG.

Conclusion:  The integration of methylome and transcriptome of milk somatic cells suggests the possible involve‑
ment of DNA methylation changes in the regulation of the host immune response to subclinical mastitis due to S. 
uberis. The presented genetic and epigenetic biomarkers could contribute to the design of management strategies of 
subclinical mastitis and breeding for mastitis resistance.
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Background
Bovine mastitis, defined as an inflammation of the mam-
mary gland, is one of the most prevalent diseases in the 
dairy industry [1]. Mastitis is considered a serious prob-
lem because it not only  causes huge economic losses 
(through reduced milk yield and quality, early culling and 
corresponding treatment costs), but also threatens public 
health [1, 2]. Streptococcus uberis (S. uberis) is a bacteria 
classified as a major environmental pathogen associated 
with subclinical and clinical mastitis in lactating cows, 
non-lactating cows and heifers [3, 4]. Because it is ubiq-
uitous in the cow’s environment (e.g., present in water, 
feces, barn environment, bedding material, etc.), on dif-
ferent parts of the cow (skin, lips, teat canal, oral cavity, 
infected mammary gland and gut) and milking machine 
[5–7], the mammary glands are continually exposed to 
S. uberis during the lactating and non-lactating periods. 
Moreover, S. uberis originating from infected cows con-
tribute to a fecal-oral transmission cycle that could help 
S. uberis to persist on pasture [8, 9].

The invasion of mastitis pathogen into the mammary 
gland induces local inflammatory reactions and the pro-
tective responses of the systemic immune system directly 
attracts/leads to an increase in milk somatic cell count 
(SCC), composed mainly of immune-related cells and 
exfoliated mammary gland epithelial cells. As such, the 
SCC has been generally regarded as an indirect measure 
of mammary gland health, whereby greater than 200,000 
cells/mL is regarded as an indicator of an inflamma-
tory response of the mammary gland in dairy cows (i.e. 
mastitis) [10–13]. According to the National Mastitis 
Council [14], SCC of normal milk is nearly always less 
than 200,000 cells/mL. Upon detecting the presence of 
mastitis pathogens, the immune system response which 
is according to pathogen type is under the regulation of 
genetic and epigenetic factors [15, 16].

DNA methylation, a well characterized epigenetic 
mechanism involved in the regulation of various biologi-
cal processes, is reported to participate in the regulation 
of mammary gland health, including the occurrence and 
progression of mastitis [17–19]. DNA methylation altera-
tion in response to mastitis caused by Staphylococcus 
aureus has been reported in peripheral blood lympho-
cytes [20] and mammary gland tissues [21]. Furthermore, 
the effect of DNA methylation on the transcription of 
genes in blood neutrophils and altered miRNA expres-
sion in response to Escherichia coli (E. coli)-induced mas-
titis has been reported [22]. In the liver of cows with E. 

coli-induced mastitis, demethylation of toll-like receptor 
4 (TLR4) gene was observed [23].

These reports of altered DNA methylation patterns 
acknowledge the crucial roles of DNA methylation dur-
ing an infection, and in particular during mastitis. At 
the same time, more questions abound about the under-
lying mechanisms, which are less evident, pointing to 
the importance of integrative investigations between 
the methylome and transcriptome as a creditable way 
to explore these open questions. According to the lit-
erature, no study has explored the potential regulatory 
roles of DNA methylation during mastitis caused by 
S. uberis. Therefore, this study aimed to construct the 
whole-genome-wide DNA methylation and gene expres-
sion patterns of milk somatic cells from cows with natu-
rally occurring S. uberis subclinical mastitis as a way of 
uncovering the underlying DNA methylation regula-
tory mechanisms, and to identify candidate biomarkers 
with ability to discriminate S. uberis-infected cows from 
healthy cows.

Methods
Animal selection and sample collection
Holstein cows recruited for this study were from two 
commercial farms in Quebec, Canada, with a history of 
intramammary infections. The study period was from 
August 2020 to March, 2021. Cows were managed in 
a tie-stall system with saw dust as bedding. The milk 
SCC (an indirect measure of cow health) of 68 and 134 
lactating cows in herd one and two, respectively, were 
monitored during the period of the experiment. The milk 
somatic cell counts of samples (10 mL/cow) collected 
once monthly from each cow were determined with Fos-
somatic flow cytometric cell counter (Foss, Hilleroed, 
Denmark) by Lactanet [24]. Thirty-four cows (9 from 
herd one and 25 from herd two) with ≥ 350,000 cells/mL 
(HSCC group) and twenty cows (10 from each herd) with 
≤ 100,000 cells/mL (LSCC group) in their milk for three 
consecutive months were selected to test for the presence 
or absence of pathogens. Approximately 10 mL of milk 
per quarter was aseptically collected from each cow in 
the HSCC group or a composite milk sample (equal vol-
ume of milk from all four quarters) from each cow in the 
LSCC group, placed on ice and immediately (same day) 
sent to Biovet laboratories [25] for bacteriological exami-
nation. Bacteriological examination was for all non-fas-
tidious bacteria and mesophilic microbes known to cause 
mastitis such as Streptococcus species, Staphylococcus 

Keywords:  Discriminant biomarkers, Gene expression, Genome-wide DNA methylation pattern, Immune processes 
and pathways, Methylation haplotype block, Milk somatic cell, Streptococcus uberis, Subclinical mastitis



Page 3 of 21Wang et al. Journal of Animal Science and Biotechnology          (2022) 13:136 	

species, Nocardia species, yeast species, Klebsiella spe-
cies, Escherichia species, Aerococcus species, Micrococcus 
species, and many others. HSCC cows only positive to S. 
uberis (n = 5) were selected to constitute the test group 
while LSCC cows negative for all mastitis pathogens 
(n = 9) tested constituted the control group. Note that, 
cows positive to more than one pathogen were excluded. 
During a second visit, about 200 mL of milk was sampled 
from one infected quarter/cow in the HSCC group (only 
one quarter was sampled even if more than one quar-
ter was positive to S. uberis) while a composite sample 
(200 mL milk, 50 mL/quarter) was obtained from each 
cow in the LSCC group. Since about 3 to 5 days elapsed 
between testing cows for the presence of pathogens and 
the second sampling visit, another bacteriological test 
was performed on the day of the second sampling to con-
firm the first bacteriological results. Only samples with 
consistent results and being in parity 1 to 3 and in middle 
to late lactation stage were kept for this study, including 
three S. uberis-positive quarters from three cows as test 
group and three S. uberis-negative cows as control group.

Following collection, milk samples were immediately 
transported to the laboratory on ice and milk somatic 
cells were isolated immediately upon getting to the labo-
ratory. The milk somatic cells were isolated by low speed 
centrifuge (1500 × g for 15 min at 4 °C) followed by two 
times washing with phosphate buffered saline (PBS) 
(40 mL 1 × PBS added and centrifugation at 1500  ×  g 
for 15 min at 4 °C). Milk somatic cells were separated 
into two parts and stored at − 20 °C (for DNA isolation) 
or − 80 °C (for RNA isolation). The portion for RNA iso-
lation was placed in TriZol reagent before storage.

DNA isolation, library construction and DNA methylation 
sequencing
Genomic DNA was isolated using the DNeasy Blood 
and Tissue Kit (Qiagen Inc., Toronto, ON, Canada), and 
quantified using the Quant-iT™ PicoGreen® dsDNA 
Assay Kit (Life Technologies, Burlington, ON, Canada). 
Genomic DNA was used for whole genome DNA meth-
ylation sequencing library construction using the NEB-
Next® Enzymatic Methyl-seq Kit (New England BioLabs 
Ltd., Whitby, ON, Canada) [26], and quantified using the 
Kapa Illumina GA with Revised Primers-SYBR Fast Uni-
versal Kit (Kapa Biosystems Inc., Wilmington, MA, US). 
Average size fragment was determined using a LabChip 
GX (PerkinElmer Inc., Waltham, MA, US) instrument. 
The libraries were normalized and pooled in equimolar 
concentrations and then denatured in 0.05 mol/L NaOH 
and neutralized using HT1 buffer. The pool was loaded 
at 225 pmol/L on an Illumina NovaSeq S4 lane using Xp 
protocol as per the manufacturer’s recommendations. 
The run was performed for 2 × 100 cycles (paired-end 

mode). Library construction and sequencing were per-
formed by Centre d’expertise et de services Génome 
Québec [27].

RNA isolation, library preparation and sequencing
Total RNA was isolated from milk somatic cells with the 
RNeasy Mini Kit (Qiagen Inc., Toronto, ON, Canada) 
according to manufacturer’s protocol. Total RNA was 
quantified using Agilent Bioanalyzed 2100 (Agilent Tech-
nologies, Saint-Laurent, QC, Canada) and its integrity 
assessed on a LabChip GXII (PerkinElmer Inc., Waltham, 
MA, US) instrument. All RNA samples analyzed had RIN 
(RNA integrity number) values greater than 7. Riboso-
mal RNA was depleted from 125 ng of total RNA using 
QIAseq FastSelect Kit (Qiagen Inc.). cDNA synthesis 
was achieved with the NEBNext RNA First Strand Syn-
thesis and NEBNext Ultra Directional RNA Second 
Strand Synthesis Modules (New England BioLabs). The 
remaining steps of library preparation were done using 
the NEBNext Ultra II DNA Library Prep Kit for Illumina 
(New England BioLabs). Adapters and PCR primers were 
purchased from New England BioLabs. Libraries were 
quantified using Kapa Illumina GA with Revised Prim-
ers-SYBR Fast Universal kit (Kapa Biosystems). Average 
size fragment was determined using a LabChip GXII 
(PerkinElmer) instrument.

The libraries were normalized and pooled in equimolar 
proportions and then denatured in 0.05 mol/L NaOH and 
neutralized using HT1 buffer. The pool was loaded at 200 
pmol/L on an Illumina NovaSeq S4 lane using Xp proto-
col as per the manufacturer’s recommendations. The run 
was performed for 2 × 100 cycles (paired-end mode). A 
phiX library was used as a control and mixed with librar-
ies at 1% level. Base calling was performed with RTA 
v3.4.4. Program bcl2fastq2 v2.20 was then used to demul-
tiplex samples and generate fastq reads.

Methylome data processing and global methylome 
comparison between S. uberis‑positive and control groups
The raw DNA methylation sequencing data was pro-
cessed using nf-core methylseq analysis pipeline [28]. 
The “EM Seq” trimming profile was selected to avoid 
potential bias towards non-methylation at the end of 
reads (8 bp) caused by end repairing. Sequence qual-
ity report was generated using FastQC (version 0.11.9) 
while adapter sequences and low-quality reads were 
trimmed with Trim Galore! (Version 0.6.5). The high-
quality trimmed reads were merged and mapped to the 
bovine reference genome (ARS-UCD1.2) using bow-
tie2 under Bismark (version 0.22.3). Following align-
ment, Samtools (version 1.11) was used to merge, sort 
and remove duplicates, and generate BAM files for 
next-step analysis. Methylation calling was performed 
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with bismark_methylation_extractor under Bismark. 
The methylation sites identified in all samples and with 
greater than 7 × coverage depth were retained for further 
processing.

The R package, Methylkit (version 3.12) [29] was used 
to detect differentially methylated cytosines (DMCs) 
and differentially methylated regions (DMRs) between 
S. uberis-positive and healthy control groups. Parity and 
lactation stage were set as batch factors to eliminate 
batch effects and to decrease random noise. DMC was 
defined as methylation sites with greater than 20% dif-
ference in methylation level between the two groups and 
q value < 0.05. DMR was scanned by a 1000-bp window 
size with 1000 bp step and filtered based on 20% methyla-
tion difference and having a q value < 0.05 and harboring 
≥ 3 DMCs.

Methylation haplotype block identification 
and comparison
Methylation haplotype blocks (MHBs) were detected 
using MONOD2 and following authors’ guidelines [30]. 
In brief, the clean DNA methylation sequencing reads of 
all samples were pulled together and then used to split 
the bovine reference genome (ARS-UCD1.2) into non-
overlapping segments that were sequenceable and map-
pable. The methylation haplotypes were identified from 
mapped reads in each segment. The MHBs were identi-
fied based on methylation linkage disequilibrium which 
was calculated on the combined methylation haplotypes. 
MHBs were defined as the regions in which r2 value of 
any two adjacent CpG sites was ≥  0.5, and MHBs con-
taining at least 3 CpG sites were retained.

Next, methylated haplotype load (MHL), which is the 
normalized methylation level of methylated haplotypes 
at different lengths, was calculated for all MHBs in each 
sample. Differential MHBs were firstly filtered by selecting 
those having more that 20% difference in MHL between 
groups. Then, two-tailed Student’s t-test was used for dif-
ferential MHL analysis between S. uberis-positive and 
healthy control groups, to detect significant differential 
MHBs (dMHBs). Benjamini and Hochberg false discovery 
rate (FDR) correction [31] was used to adjust P values and 
FDR < 0.05 was considered significant.

Identification of differentially expressed (DE) genes
The nf-core bioinformatics pipeline for RNA-Seq data 
[28] was used to analyze RNA sequencing reads. Briefly, 
adapters and low-quality reads (quality score < 30) were 
removed using Trim Galoire! [32]. Clean reads were 
aligned to ARS-UCD1.2 (cow reference genome) using 
STAR [33] and then the downstream BAM-level quan-
tification was performed with Salmon [34], followed 
by deduplication with UMI-tools [35]. Differential 

expression of genes between S. uberis-positive and 
healthy control groups was analyzed with DESeq2 (ver-
sion 1.34.0) [36]. Parity and lactation stages of cows were 
included as batch factors during analysis. Significant dif-
ferentially expressed (DE) genes were defined as having a 
Benjaminin and Hockberg corrected FDR < 0.05 [31] and 
|log2 fold change| (|log2FC|) ≥ 1.

DNA methylation and gene expression integration analysis
The global correlations between DNA methylation altera-
tions and gene expression changes were determined 
with MethGET program [37]. Briefly, the CGmap file of 
CpG sites converted from methylation coverage report 
files generated by Bismark, normalized gene expres-
sion file generated by DESeq2, and gene annotation GTF 
file converted from the latest RefSeq assembly acces-
sion (GCF_002263795.1) were used as the input files 
for MethGET. Firstly, the annotation GTF file was used 
to identify different genomic regions (promoters, gene 
bodies, exons and introns) followed by calculation of 
the methylation levels of each gene at different genomic 
regions, by averaging the methylation levels of all CpG 
sites in the corresponding regions. “Single-methylome 
analyses” option in MetGet was used to correlate the 
methylome and transcriptome of individual samples. 
This was done for each sample separately to investigate 
the possible association between the DNA methylation 
status and gene expression level. Besides, the correla-
tion between the DNA methylation alterations and the 
changes in gene expression between S. uberis-positive 
and healthy control groups was measured by genome 
wide Person’s correlation analysis. Moreover, Gauss-
ian Mixture Model (GMM) from the scikit-learn pack-
age in python was used to identify genes with significant 
changes in DNA methylation levels and/or gene expres-
sion levels (P-value < 0.001), and here referred to as Met-
GDE genes [38]. GMM was also used to obtain MetGDE 
genes based on the methylation status of the promoter, 
gene body, exons and introns, separately, to understand 
their possible effects on the expression of genes.

Identification of biomarkers discriminating S. uberis 
infected cows from healthy cows
The core DIABLO method from R package, mixOmics 
[39], was used to identify highly correlated DNA methy-
lome and transcriptome changes capable of discriminat-
ing S. uberis-infected cows from healthy cows. DIABLO is 
an improved extension of the multivariate methodology, 
Generalised Canonical Correlation Analysis (GCCA), 
but it generalizes Projection to Latent Structure (PLS) 
for matching multiple datasets and the sparse GCCA 
method [40]. For this study, the input data included: (1) 
the top 25% most variable DE genes, (2) the top 25% most 
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variable DMCs located in DE genes and their 2000 bp up- 
and down-stream regions, and (3) all identified dMHBs. 
The key parameters of DIABLO implemented were cho-
sen according to the authors’ recommendations [39]. 
The full weighted design was used to get the trade-off 
between maximizing correlation between input datasets 
and the discrimination of selected biomarkers. The num-
ber of components was set as 1 (one less than number of 
groups, which is 2 groups − 1 = 1) in this study, which 
is sufficient to get the best discriminable performance 
according to the authors’ recommendation [39]. The first-
rank number of candidate biomarkers were determined 
to achieve the minimum number of signatures with best 
performance by 3-fold cross-validation repeated 10 times 
from a grid of 5 to 50.

Functional enrichment of select genes and other 
information
The functional enrichment analysis of select genes (genes 
harboring DMCs, genes overlapping with dMHBs, DE 
genes, and MetGDE genes), was performed with DAVID 
Bioinformatics Resources v6.8 [41] and visualized with R 
packages ggplot2 [42] and GO plot [43]. FDR < 0.05 was 
used as threshold to define significantly enriched Gene 
Ontology (GO) terms and KEGG (Kyoto Encyclopedia of 
Genes and Genomes) pathways.

The genome structure annotation files for genes, repeats 
and CpG island (CGI) of the bovine reference genome 
(ARS-UCD1.2) were download from UCSC Table browser 
[44]. The promoter (upstream) was defined as the 2 kb 
region upstream of the transcription start site (TSS). 
“RepeatMasker” was chosen as the track for repeats. 
According to genomic location and relative to CGI, 
CGI shores left and right were defined as the 2 kb region 
upstream of the CGI or the 2 kb region downstream of 
the CGI, respectively, and CGI shelves left and right were 
defined as the 2 kb region upstream of the left CGI shore 
or the 2 kb region downstream of the right CGI shore, 
respectively. Meanwhile, CpG desserts (left or right) were 
the regions more than 4 kb upstream or downstream of 
CGIs, respectively. The R package, annotatr (version 3.12), 
was used to detect the enrichment categories of DMCs, 
DMRs and MHBs in these genomic regions.

Validation of RNA‑sequencing by real‑time qPCR
The expression levels of 9 genes, including 6 DE and 3 
non-DE genes, were evaluated by real-time qPCR as a 
validation of the RNA-sequencing data (Table S1). Prim-
ers for selected genes were designed with Primer-BLAST 
[45]. Firstly, 1 μg total RNA (per sample) of the same 
RNA used for RNA-sequencing was reverse transcribed 
into cDNA using SuperScript™ IV VILO™ Master Mix 
(Invitrogen, Waltham, Massachusetts, USA). The cDNA 

was then diluted 1:15, and used for gene specific qPCR 
amplification. The 10 μL qPCR reaction mix consisted 
of 1 μL (80 ng) cDNA, 5 μL PowerTrack™ SYBP™ Green 
Master Mix (Applied Biosystems, Waltham, Massachu-
setts, USA), 0.25 μL Yellow sample buffer, 0.5 μL each 
of forward and reverse primers (500 nmol/L each) and 
2.75 μL nuclease-free water. The real-time amplification 
was performed on a StepOnePlus™ instrument (Applied 
Biosystems) using a fast cycling mode. The fast cycling 
mode started with 2 min enzyme activation at 95 °C, fol-
lowed by 40 cycles of denaturation at 95 °C for 5 s and 
extension at 60 °C for 30 s. ACTB (β-action) was used as 
the reference gene to normalize the gene expression, and 
the relative expression value of genes were calculated by 
using 2-∆∆Ct method [46].

Results
Global DNA methylation level trends of milk somatic cells
On average, 11.7 billion cytosine sites (based on an aver-
age of ≥  20.2 reads coverage per site) per sample were 
detected in the context of CpG, CHG and CHH to build 
up the genome-wide DNA methylation pattern of bovine 
milk somatic cells (Table S2a-b). To ensure good quality 
of the data and high confidence methylation levels, only 
cytosines with at least 7 reads coverage in all samples 
were kept for further processing. In addition, cytosines 
with extremely high coverage (top 0.1%) were removed 
to eliminate possible bias. The methylation levels of milk 
somatic cells from S. uberis-infected and healthy cows 
showed relatively consistent distribution trends (Fig. 
S1A). Similar with other mammals, CpG sites was the 
main form of methylation detected. The methylation lev-
els of the abundant CpG sites were higher than 76% (Fig. 
S1A and Table S2a). Meanwhile, the CHG and CHH sites 
rarely underwent methylation, with mean methylation 
levels of 0.20% and 0.12%, respectively (Fig. S1A and Table 
S2a). The methylation level trends among gene features 
are shown in Fig. 1A and Fig. S1B. The methylation level 
of CpG sites showed a sharp decrease from approximately 
70% to 10% in the promoter region, remained extremely 
low in the first exon (~ 20%), then increased in the first 
intron up to > 75% and remained at high levels (higher 
than 80%) in inner exons and introns, but decreased 
slightly in the last exon and decreased further in down-
stream region (Fig.  1A). CHG and CHH sites had very 
low methylation levels, around 0.1%–0.2% in the differ-
ent gene features without big volatility (Fig.  1A and Fig. 
S1B). The methylation level of CHG sites were higher 
in exons, showing small peaks in the first, inner and last 
exons. While the CHH sites only showed higher methyla-
tion in the first exon. Considering the relative position to 
CGIs, the methylation level of CpG sites were low in CGIs 
(~ 25%), increased gradually until ~ 80% in CGI shores and 
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remained high in CGI shelves (Fig. 1B, Fig. S1C). Interest-
ingly, the methylation levels of CHG and CHH sites were 
higher in CGIs (about 0.25% and 0.18%, respectively) but 
remained low (~ 0.14%) in CGI shores and shelves, which 
is an opposite trend compared with CpG site (Fig. 1B, Fig. 
S1C).

DNA methylation comparison between S. uberis‑positive 
and healthy groups
A total of 132,237, 7412 and 34,693 DMCs in the con-
text of CpG, CHG and CHH were identified between S. 
uberis-positive and control groups, accounting for 0.60%, 
0.0069% and 0.0095% of total CpG, CHG and CHH 
sites, respectively (Fig. 2A, Fig. S2A-B, Table S3a-c). The 
hypo-DMCs (CpG: 72,992, CHG: 3822, CHH: 18,464) 
accounted for 55.20%, 51.57% and 53.22% of the total 
DMCs in the CpG, CHG and CHH contexts, respectively 
and were slightly higher than the number of hyper-DMCs 
(CpG: 59,245, CHG: 3590, CHH: 16,229), respectively. 
The methylation level differences in majority of sites in 
CpG context were between 20% and 60% (Fig. S2C).

The annotation to functional genic features revealed 
that most DMCs were located in intergenic regions, fol-
lowed by repeat elements and genes (Table S4a). DMCs 
in the three contexts (CpG, CHG and CHH) were simi-
larly distributed in these genomic regions (intergenic 
regions, repeat elements and genes). Within genes 
and related regulatory features, approximately 90% of 
DMCs in the three contexts were located in introns 
followed by exons while the 3’UTR and downstream 
regions had more DMCs than 5’UTRs and promoters, 
respectively (Fig.  2B). Most DMCs in repeat elements 
were in non-long terminal repeats (non-LTRs), includ-
ing long interspersed nuclear element (LINE) and 
short interspersed nuclear element (SINE), followed 
by endogenous retrovirus (ERV) and DNA transposons 

(Fig.  2C). Approximately 80% of DMCs in repeat ele-
ments were located in intergenic regions while the 
remaining 20% were mostly located in intronic regions 
of genes (Fig. S3A-C). The annotation in relation to 
CGIs indicated that most DMCs were located in CGI 
deserts (Fig. S3D). CGI-shores had more DMCs than 
CGI shelves, while CGIs had the lest DMCs. Besides, 
the majority of DMCs in these genic features had 20%–
60% difference in methylation levels between S. uberis-
positive and control group (Fig. S3E-F).

A total of 316 DMRs were identified based on CpG 
sites, including 129 hyper-DMRs and 187 hypo-DMRs 
(Table S5a), while no DMR was found in CHG or CHH 
contexts. The annotation of DMRs revealed that the 
majority of DMRs were located in CpG deserts and in 
intronic regions of genes (Fig. 2D, Table S5c). In addition, 
most DMRs were found within transposons, including 
SINE, LINE and ERV, and more than half of these DMRs 
in repeat elements were hypo-methylated (Fig. 2E).

Chromosomal distribution of DNA methylation 
changes indicated that about 99% of DMCs and DMRs 
were annotated to chromosomes while 1% were anno-
tated to unplaced genomic scaffolds (Table S4b, Table 
S5b). Chromosome 1 (Chr1) had the most DMCs 
(n = 9637, including 7221 CpG-DMCs, 344 CHG-DMCs 
and 2072 CHH-DMCs), followed by Chr5 (n = 9393; 
7746 CpG-DMCs, 320 CHG-DMCs and 1327 CHH-
DMCs) and Chr14 (n = 8855; 6543 CpG-DMCs, 425 
CHG-DMCs and 1887 CHH-DMCs) (Table S4b, Fig. 
S4A). Manhattan plots of chromosomal distribution of 
DMCs showed higher density of CpG-DMCs on all chro-
mosomes (Fig. S4B) when compared to lower densities 
of CHG-DMCs (Fig. S4C) and CHH-DMCs (Fig. S4D). 
Furthermore, chromosomal ends where characterized by 
a high density of genes, CpG-DMCs and CGIs (Fig. 2G, 
Fig. S4B), suggesting important regulatory roles of DNA 

Fig. 1  DNA methylation level trends among gene features (A) and in CpG island (CGI) (B). The promoter is the 2 kb region upstream of the 
transcription start site. A and B plots are exampled by one sample (ME58q3SU). The downstream is the 2 kb region downstream of the transcription 
termination site. CGI shores are the 2 kb regions flanking the CGI. CGI shelf left is the 2 kb region upstream of CGI shore left while CGI shore right is 
the 2 kb region downstream of CGI shore right. The plots of all samples are shown in additional Fig. S1
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methylation at the ends of chromosome. Overall, the 
average methylation level of S. uberis-positive group was 
lower than that of the healthy control group (Fig.  2G, 
Fig. S4E).

A total of 7114 genes were found to harbor DMCs 
(CpG, CHG or CHH) in their gene body and/or pro-
moter regions, while 76 genes were found to overlapped 
with at least one DMR (Table S6). Approximately 34.66% 

(n = 2466) of genes harboring ≥  5 DMCs and the top 
10% of genes (n = 765) harboring ≥  15 DMCs in their 
gene body and promoter (Table S6a) were submitted 
for functional annotation analysis by DAVID, to inves-
tigate the potential biological roles of DNA methylation 
changes. Two cellular component (CC) GO terms, two 
molecular function (MF) GO terms and 35 KEGG path-
ways were significantly enriched (Table S7a). As shown 

Fig. 2  DNA methylation alterations between S. uberis-positive and healthy control groups. A Volcano plot showing DMCs in the context of CpG. 
Annotation of DMCs in gene features (B) and repeat elements (C). The annotation of DMRs in gene features (D) and repeat elements (E). F KEGG 
pathways significantly enriched by genes harboring ≥ 15 DMCs. G Landscape showing the DNA methylation status of chromosome 5. A window of 
50 kb was used to count the information per track
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by the enriched KEGG pathways (Fig.  2F), DNA meth-
ylation changes affected biological functions reflected 
by pathways such as glutamatergic synapse (bta04724, 
FDR = 4.92 × 10−6), dopaminergic synapse (bta04728, 
FDR = 1.94 × 10−5) and cholinergic synapse (bta04725, 
FDR = 3.79 × 10−5), as well as disease and immune 
pathways (inflammatory mediator regulation of TRP 
channels (bta04750, FDR = 0.005), long-term depres-
sion (bta04730, FDR = 0.01), and pathways in cancer 
(bta05200, FDR = 0.005), etc.). Since promoter region 
DMC is of particular interest, we also submitted genes 
harboring ≥ 3 DMCs in their promoter regions (n = 278), 
but no GO term or pathway were enriched.

DNA methylation haplotype blocks (MHBs) responding 
to S. uberis subclinical mastitis
Using the methylome data of all samples, the bovine 
genome was partitioned into blocks of tightly coupled 
CpG methylation sites (r2 cutoff of 0.5), referred to as 

MHBs. A total of 101,612 MHBs were identified with 
a minimum of 3 CpG sites per block and average CpG 
density of 0.13 CpG sites/bp (Fig.  3A-B). The average 
size of MHBs was 35 bp (range from 5 to 164 bps). A 
greater number of CpG sites inside MHBs were nearly, 
perfectly coupled (r2 ~ 1.0). The MHBs partially or per-
fectly overlapped with different types of known genomic 
elements (Fig. 3C). For example, 77,407 (76.18%) MHBs 
are located in intergenic regions, while 8379 (30.53%) 
are located within transcripts. Out of the 30,325 MHBs 
located within genes, 27,843 are found within introns, 
which is about 10-fold more than in exons (12,921). 
Moreover, 1579 MHBs were overlapped with promoter 
regions, including 32 MHBs spanning TSSs. Interest-
ingly, 74,250 MHBs were located in repeat elements. 
Further annotation of MHBs according to genomic CpG 
density revealed a majority of MHBs in CpG deserts 
(94,436), followed by CGI shores (6771), CGIs (1599) 
and CGI shelves (5020).

Fig. 3  Methylation haplotype blocks (MHBs). A length distribution of MHBs. B CpG density distribution of MHBs. C Annotation of MHBs in different 
genetic features. D Heatmap showing the methylation status of the most variable MHBs with more than 40% difference in methylation haplotype 
load (MHL) between S. uberis-positive and healthy control groups
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Methylation haplotype load (MHL) was calculated for 
all MHBs in each sample to enable quantitative analysis 
of MHB methylation patterns across samples. A total 
of 2379 MHBs had more than 20% difference in MHL 
between S. uberis-positive and control group. Among 
them, the MHL of 451 MHBs were significantly dif-
ferent between the two groups (FDR < 0.05), and were 
referred to as differential MHBs (dMHBs) (Table S8a). 
The dMHBs with the most significant difference in MHL 
(> 40%) were used to plot a heatmap, which showed 
clear segregation between S. uberis-positive and con-
trol groups (Fig. 3D). More than 80% of all dMHBs had 
higher methylation levels in S. uberis-positive group 
(n = 367), and were enriched in two CC-GO terms (cyto-
sol (GO:0005829) and cytoplasm (GO:0005737)) (Table 
S8b). The methylation levels of dMHBs in some cases 
were very high in S. uberis-positive group while being 
very low or absent in control group and vice versa. For 
example, a dMHB in Chr5 (chr5:115877805–115877881) 
had very high methylation level in S. uberis-positive 
group (average MHL = 0.74) but unmethylated in healthy 
control group (MHL = 0). On the contrary, a dMHB in 
the intron of CRIM1 (chr11:18837854–18837864) was 
nearly completely methylated in the control group (aver-
age MHL = 0.91) but unmethylated in S. uberis-positive 
group (MHL = 0). In addition, 182 dMHBs were found 
within genes, and 9 dMHBs within the promoter regions 
of ATP6V1E2, CBX6, ARHGAP15, CRYGS, CELA2A, 
RFTN2, TFEB, DOK3 and CCDC115. A dMHB in Chr2 
(chr2:86177974–86178029) with a higher MHL in S. 

uberis-positive group was found in the promoter region 
of RFTN2, a gene detected as DE with a 9.6 times higher 
expression level in S. uberis-positive group (Table S8a, 
Table S9a). Interestingly, a dMHB (chr7:39010791–
39010831) harboring 3 DMCs is overlapped with the 
promoter of DOK3 as well as the downstream region 
of DDX41. Similarly, a dMHB on Chr2 (chr2:1320056–
1320082) is overlapped with the promoter region of 
CCDC115 and the intron of IMP4.

Differentially expressed (DE) genes in response to S. uberis
RNA-seq technology was used to detect the genome-
wide gene expression in milk somatic cells in response 
to S. uberis subclinical mastitis. A total of 2130 DE genes 
were identified (FDR < 0.05 and |log2FC| > 1) (Table S9a, 
Fig.  4A), including 1378 up-regulated and 752 down-
regulated DE genes in response to S. uberis subclinical 
mastitis. Functional annotation analysis of the DE genes 
resulted in 22 enriched GO terms, including 6 biologi-
cal process (BP) terms, 13 CC terms and 3 MF terms 
(Table S9b). It is worthy to note that, half of the enriched 
BP terms were related to immune responses, includ-
ing regulation of inflammatory response (GO:0050727, 
FDR = 0.01), cellular response to lipopolysaccharide 
(GO:0071222, FDR = 0.01) and inflammatory response 
(GO:0006954, FDR = 0.02) (Fig.  4B). In addition, 19 
KEGG pathways were enriched (Table S9b), including 
8 pathways related to disease or the immune response, 
such as leukocyte transendothelial migration (bta04670, 
FDR = 0.03), chemokine signaling pathway (bta04062, 

Fig. 4  Differentially expressed (DE) genes between S. uberis-positive and healthy control groups. A Volcano plot showing expression changes of DE 
genes. B Biological process gene ontology terms significantly enriched by DE genes
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FDR = 0.038) and biosynthesis of antibiotics (bta01130, 
FDR = 0.038). Ribosome (bta0301, FDR = 2.09 × 10−19) 
was the most significantly enriched pathway, followed by 
lysosome (bta04142, FDR = 1.67 × 10−13) and osteoclast 
differentiation (bta04380, FDR = 1.32 × 10−8).

The real time qPCR expression results of two up-regu-
lated, four down-regulated DE genes and three non-DE 
genes randomly selected for verifying RNA-seq data, 
were similar with the expression results obtained by 
RNA-sequencing. The three non-DE genes identified by 
RNA-sequencing were also non-DE by real-time qPCR 
(Fig. 5). The relative expression value (log2FC) of all DE 
genes were similar by both RNA-sequencing and real-
time qPCR methods (Fig. 5).

Relationship between DNA methylation and gene 
expression during S. uberis mastitis
Overall, the DNA methylation at promoter regions and 
first exons showed significant negative correlations with 
gene expression (P < 5 × 10−8), and as the DNA methyla-
tion level decreases, the gene expression level increases 
(Table S10a, Fig.  6A-B, Fig. S5A-C). DNA methyla-
tion level at first intron showed negative but weaker 
correlation with gene expression level (Fig.  6C, Table 
S10a). No significant correlation was found between 
gene expression and methylation in gene body, introns 
or exons (R: ~ 0, P > 5 × 10−8) (Table S10a). In addition, 

the methylation level in promoter regions were gener-
ally lower than in gene body, where methylation level 
was relatively stable and fluctuated between 70% and 
80% with increasing gene expression (Fig. S5D-F). The 
DNA methylation was then profiled across different gene 
expression groups (n = 5), revealing similar general meth-
ylation trends (Fig.  1A, Fig.  6D). Moreover, downward 
trends in methylation levels (steeper downward trend 
for highly expressed genes (4th and 5th quantiles)) were 
observed at the upstream regions of genes, with a reverse 
trend (gradual increase) from the TSS and reaching 
about 80% methylation levels at the first intron (Fig. 1A, 
Fig.  6D). The methylation at gene body of genes with 
higher expression levels (3–5th quantile) were higher than 
in genes with lower expression levels (1–2nd quantiles) 
(Fig. 6D).

The changes in gene expression and alterations of DNA 
methylation at the region of promoter, gene body, introns 
or exons were next compared between S. uberis-positive 
and control groups, respectively. The correlation between 
methylation level alterations and gene expression changes 
were significant but weak at the promoter (R = 0.055, 
P = 1.93 × 10−14), gene body (R = 0.053, P = 8.84 × 10−14), 
introns (R = 0.062, P = 3.3210−17) and exons (R = 0.036, 
P = 5.03 × 10−7). A total of 834 genes, defined as pro-
moter-MetGDE genes, were identified by GMM as show-
ing significant changes in DNA methylation at their 

Fig. 5  Expression results of select genes by real-time qPCR compared with results of RNA sequencing
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promoter regions and/or gene expression levels (P < 0.001) 
(Fig. 6E). Meanwhile, 577 gene body-, 597 introns- and 816 
exons-MetGDE genes were identified showing significant 
gene expression changes and/or altered methylation lev-
els (P < 0.001) (Fig. S5G-I). Taken together, a total of 1623 
MetGDE genes were found showing significant changes in 
gene expression and/or DNA methylation status at one or 
more regions (promoter, gene body, introns and/or exons) 
(Table S10b). In addition, 234 MetGDE genes with sig-
nificant changes in gene expression had significant DNA 
methylation changes in all four studied gene features (pro-
moter, gene body, introns and exons) (Fig. S5J). Besides, 
339 MetGDE genes were found to harbor DMCs, includ-
ing 56 MetGDE genes with ≥ 10 DMCs. PRKG1 harbored 
the most DMCs (n = 101), followed by AP3B1(n = 81), 
WDFY4 (n = 68), SAMD12 (n = 68), DPP10 (n = 63) and 
SLC25A21 (n = 52), etc. (Table S10c). Six DMCs at the 
promoter region of SLC25A21 showed decreased meth-
ylation levels (methylation difference = − 28.59%) and 
higher SLC25A21 expression level (log2FC = 1.69) in S. 
uberis-positive group. Similarly, PLCL1 with − 22.064% 
difference in promoter methylation level and changed 

expression level (log2FC = 1.60) harbored 31 DMCs in its 
gene body.

Functional annotation of MetGDE genes
The possible biological effects of all the differential or 
MetGDE genes (n = 1623) selected by MethGET were 
investigated with DAVID bioinformatics resources 
resulting in significant enriched disease- and immune-
related biological processes GO terms and pathways (one 
BP-GO term, 2 CC-GO terms and 14 KEGG pathways, 
FDR < 0.05) (Table S11a). Then, promoter-, gene body-, 
introns- and exons-MetGDE genes (n = 834, 577, 597 
and 816, respectively) were each submitted to DAVID, 
resulting in 20, 36, 19 and 37 significant functional 
annotations, respectively (Table S11b-e). As shown in 
Fig.  7A, the five lists of MetGDE genes were enriched 
in similar biological processes, including 8 and 2 com-
monly enriched pathways and GO terms, respectively, 
with immune related functions (Table S11f, Fig. 7B). For 
example, extracellular space (GO:0005615) and immune 
response (GO:0006955) BP-GO terms, and TNF signal-
ing pathway (bta04668) and Cytokine-cytokine receptor 

Fig. 6  Association between DNA methylation changes and gene expression levels. The scatterplot and fitting curves of DNA methylation 
and relative gene expression: A promoter methylation, B first exon methylation and C first intron methylation. D The methylation level trends 
according to gene group with differential expression level around gene body regions. Up-region represents the upstream region half the length 
of corresponding gene body, same for down-region. E Scatter plot showing changes of DNA methylation levels in promoter regions and gene 
expression changes. Red dots signify promoter-MetGDE genes
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interaction (bta04060) pathways were more likely to be 
increased/activated (positive Z-score) while intestinal 
immune network for IgA production pathway was likely 
decreased (negative Z-score) during the host response 
to S. uberis subclinical mastitis (Fig. 7B). In addition, the 
significantly enriched annotations were clustered by sim-
ilar biological effects, further suggesting possible roles of 
MetGDE genes on immune related processes (Table S12). 
For instance, a group of annotations related to cytokine 
processes and activities were clustered together, includ-
ing Cytokine-cytokine receptor interaction (bta040600), 

chemokine activity (GO:0008009), chemokine-mediated 
signaling pathways (GO:0070098), cellular response to 
interleukin-1 (GO:0071347) and Chemokine signal-
ing pathway (bta04062), etc., and most likely to have 
increased activities (positive Z-score) during S. uberis 
infection (Table S12b-e and Fig.  7C-D). Interestingly, 
some genes were commonly enriched in multiple path-
ways in this cluster, such as CXCL12, CXCL8, CCL20, 
PPBP, CXCL2, CCL3, CCL4 and CCL5 (Fig.  7C). These 
genes are related to each other and play key roles in 
the biological processes related to chemokine activities 

Fig. 7  Functional enrichment of methylated and differentially expressed (MetGDE) genes. A The numbers of shared and unique functional 
annotations (GO terms and KEGG pathways) all MetGDE genes, promoter-, gene body-, intron- and exon- MetGDE genes. B Ten functional 
annotations commonly enriched by all five list of MetGDE gens. C and D A cluster of functional annotations related to cytokine activities. E 
The correlation between genes enriched in multiple GO terms and KEGG pathways related to cytokine activities. F A cluster of immune-related 
functional annotations and the enriched MetGDE genes
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(Fig.  7E). Moreover, another cluster of annotations was 
related to diseases, such as Primary immunodeficiency 
(bta05340), Allograft rejection (bta05330) and Autoim-
mune thyroid disease (bta05320), and immune response 
pathways, represented by Nuclear factor-kappa B (NF-
κB) signaling pathway (bta04064), Antigen processing 
and presentation (bta04612) and Intestinal immune net-
work for IgA production (bta04672) (Fig. 7F). This clus-
ter of annotation also revealed some commonly enriched 
MetGDE genes, including CD40LG, LOC524810, BOLA-
DQA2, LOC100300716, MGC126945, IFNG and ICAM1.

Candidate biomarkers distinguishing S. uberis‑positive 
cows from healthy cows
Application of DIABLO method to dMHBs, most variable 
DE genes and DMCs in the context of CpG, revealed a total 
of 26 candidate biomarkers of S. uberis subclinical mastitis, 
including 6 DE genes, 15 DMCs and 5 dMHBs (Tables  1 
and 2). The 26 candidate biomarkers showed strong cor-
relations with each other (|cor| > 0.7, Fig.  8A, Table S13). 
A heatmap of the biomarkers revealed a significant dif-
ference between S. uberis-positive and control group, by 
clustering into two groups and showing different direc-
tions in their expression or methylation changes (Fig. 8B). 

Table 1  Candidate biomarkers distinguishing S. uberis positive cows from control (healthy) cows: six DE genes and five dMHBs

a DE gene: differentially expressed genes between S. uberis-positive and negative groups; bchr: chromosome, clog2FC: log2 transformed fold change in gene 
expression between the two groups; dFDR: False discovery rate correction according to Benjaminin and Hockberg; eImportance: loading weights calculated by DIABLO 
method indicates the importance of corresponding selected DE gene or dMHB. The negative value indicates higher DE gene expression or dMHB methylation levels 
in S. uberis-positive group, while the positive value represents lower DE gene expression or dMHB methylation levels in S. uberis-positive group; fdMHB: differential 
methylation haplotype block; gMHL-diff: the difference of MHL (methylation haplotype load) between two groups; hrepeat element

DE genesa Chrb log2FCc FDRd Importancee dMHBsf MHL-diffg FDR Importance Overlapping 
elements

LOC104972351 Chr5 5.76 3.45E-08 − 0.02 chr2:27911955:27911972 0.21 1.08E-02 −0.39 STK39

LOC107131803 Scaffold 3.09 2.78E-07 −0.15 chr8:112623075:112623120 0.22 1.37E-02 −0.25 Intergenic

SLC40A1 Chr2 −2.28 9.82E-07 0.97 chr5:32984279:32984330 0.26 1.37E-02 −0.80 ALTR2C_BTh

SMPD3 Chr18 −2.75 1.15E-06 0.16 chr19:7781358:7781427 0.22 2.02E-02 −0.20 COIL

TCF7L2 Chr26 2.49 2.74E-06 −0.04 chr24:7353387:7353442 0.35 2.09E-02 −0.32 CD226

LOC112447173 Chr1 6.84 6.34E-06 −0.11

Table 2  Candidate biomarkers distinguishing S. uberis positive cows from control (healthy) cows: fifteen DMCs

a DMC: differentially methylated cytosines in the context of CpG; bhypo and hyper represents hypomethylated and hypermethylated, respectively, in S. uberis-positive 
group; cmeth-diff: difference in the methylation level of DMC between groups. The negative value indicates lower expression and positive value indicates higher 
expression in S. uberis-positive group; dq value: adjusted p value for the false discovery rate; eImportance: loading weight calculated by DIABLO method indicates the 
importance of corresponding selected DE gene or dMHB. The negative value indicates higher DE gene expression or dMHB methylation levels in S. uberis-positive 
group, while the positive value represents lower DE gene expression or dMHB methylation levels in S. uberis-positive group; flog2FC: log2 transformed fold change in 
gene expression between the two groups; gFDR: False discovery rate correction according to Benjaminin and Hockberg; hindicates repeat elements

DMCsa Degree of 
methylationb

meth.diffc q valued Importancee Gene symbol log2FCf FDRg Other overlapping 
elementsh

chr1_116798477 hypo −41.94 3.06E-04 0.29 MED12L 2.03 2.72E-02 downstream of GPR87

chr1_116798702 hypo −47.50 1.60E-05 0.01 MED12L 2.03 2.72E-02

chr1_81755303 hypo −22.22 3.61E-02 0.09 MAP3K13 2.00 2.49E-02

chr2_36910011 hypo −52.63 5.56E-06 0.11 BAZ2B 2.40 1.21E-05 BovBh

chr5_113635313 hypo −28.00 4.20E-02 0.21 ARFGAP3 1.32 3.11E-02

chr5_9029509 hypo −47.37 2.20E-04 0.29 SYT1 −4.62 9.72E-03

chr7_26444558 hyper 65.00 1.55E-06 −0.10 PRRC1 1.44 2.68E-02

chr14_67946960 hyper 35.90 1.03E-02 −0.39 PTDSS1 −1.50 4.02E-03 Bov-tA1h

chr15_28521852 hypo −50.00 1.08E-04 0.21 FXYD6 1.89 8.01E-03

chr19_22014105 hyper 27.27 4.42E-02 −0.16 NXN 2.34 5.96E-03

chr19_33218275 hypo −27.50 2.08E-02 0.28 TRPV2 −2.46 1.39E-07 L2ah

chr20_56637267 hypo −30.00 4.92E-02 0.13 RETREG1 2.38 1.84E-06

chr21_61174672 hyper 54.55 1.32E-05 −0.28 ATG2B 1.93 8.14E-04 L1ME3Ch

chr26_7684695 hyper 43.59 1.48E-03 −0.40 PRKG1 3.77 3.41E-04

chrX_123509578 hypo −26.32 3.49E-02 0.44 SH3KBP1 −1.90 1.84E-04
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Fig. 8  Candidate discriminant biomarkers of S. uberis-positive cows and healthy cows. (A) A circus plot showing the correlation between candidate 
biomarkers, including 6 DE genes (blue), 5 dMHBs (red), and 15 DMCs (in CpG context) (green). The external lines display the relative expression/
methylation levels of selected candidates with respect to each outcome category. The yellow and blue lines represent the gene expression/
methylation levels of S. uberis-positive and health control groups respectively, and the outer line represents the higher level. (B) Cluster of candidate 
biomarkers. Samples are represented in rows, while candidate biomarkers are represented in columns. (C-E) The loading plots of DE genes (C), 
dMHBs (D), and DMCs (CpG context) (E). The color of bar represents the group where the mean expression/methylation level is maximal. Orange 
and blue represent S. uberis-positive and healthy groups, respectively. The x-axis represents the loading weights, the negative value (orange bar) 
means the corresponding biomarker had higher expression/methylation level in S. uberis-positive group, while the positive value with blue bar 
means higher expression/methylation level in healthy control group
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SMPD3, SLC40A1 and 10 DMCs had higher expression or 
methylation levels in healthy control group, while all the 
dMHBs, 4 DE genes and 5 DMCs were highly methylated 
or expressed in S. uberis-positive group (Fig. 8A). The load-
ing weight of each discriminant biomarker indicates its 
discrimination importance (Fig. 8C). Among the 6 genetic 
biomarkers (DE genes), SLC40A1 is of highest impor-
tance (loading weight = 0.97) and its expression is about 5 
times higher in the healthy control group (log2FC = − 2.28, 
FDR = 9.82 × 10−7). For epigenetic biomarkers, all 5 
dMHBs show higher methylation levels in the S. uberis-
positive group. A dMHB in Chr5 (chr5:32984279:32984330) 
was the most important dMHB biomarker (load-
ing weight = − 0.80), followed by dMHBs on Chr2 
(chr2:27911955:27911972, loading weight = − 0.39) and 
Chr24 (chr24:7353387:7353442, loading weight = − 0.32). 
A dMHB on Chr5 (chr5:32984279:32984330) overlapped 
with repeat element ALTR2_BT, and the expression level 
of PCED1B gene in its downstream (+ 35,429 bp) was 
3.32 times higher in the healthy control group, but not sig-
nificantly different (log2FC = − 1.73, FDR = 0.39). dHMBs 
chr2:27911955:27911972 and chr24:7353387:7353442 
are located in the intron regions of STK39 and CD226, 
respectively. Two-thirds of all selected DMCs showed 
higher methylation levels in healthy control group, with 
DMC chrX_123509578 being the most important (loading 
weight = 0.44). The second and third most important DMC 
biomarkers were located on Chr26 (chr26_7684695) and 
Chr14 (chr14_67946960), and within PRKG1 and PTDSS1 
genes, respectively and having higher methylation levels in 
S. uberis-positive group. Interestingly, two hypomethylated 
DMC biomarkers (chr1_116798477 and chr1_116798702) 
were located in the same gene, MED12L, which was also up-
regulated (log2FC = 2.03, FDR = 0.027) in S. uberis-positive 
group. In addition, these two DMCs were also located in the 
downstream region of GPR87.

Discussion
Subclinical mastitis caused by different pathogens includ-
ing S. uberis has no visible symptoms making detection 
harder, and causing significant economic losses. The milk 
somatic cells indirectly capture the host response to an 
insult and constitute an effective sample for investing the 
genetic and epigenetic changes associated with S. uberis 
subclinical mastitis. Moreover, compared with mammary 
gland tissue or blood, milk somatic cells are easier to col-
lect without causing extra harm or discomfort to milking 
cows, thus respecting animal welfare and also easier and 
cheaper to apply in a larger population. However, milk 
somatic cells are composed of multiple cell types, each of 
which may contribute differently to the genetic or epige-
netic alterations between S. uberis-positive and healthy 
groups. Moreover, the small sample size (3 cows per 

group), although adequate for the types of sequencing 
technologies used [47], may cause relatively lower statis-
tical power. Therefore, use of single cell sequencing tech-
nology and a higher sample size are necessary to validate 
our findings and the discriminant biomarkers detected 
in this study. As far as the authors know, this is the first 
study to profile the whole genome wide DNA methyla-
tion patterns of milk somatic cells from cows with natu-
rally occurring S. uberis subclinical mastitis.

The genome-wide DNA methylation pattern of milk 
somatic cells detected in this study is consistent with 
other mammals, in that DNA methylation mainly exists 
in the context of CpG [48] and with methylation levels 
greater than 70%. This study investigated the DNA meth-
ylation patterns in all three contexts (CpG, CHG and 
CHH) and found significant differences between CpG 
sites and CHG/CHH sites. CHG and CHH sites did not 
show a downward trend of methylation levels at the pro-
moter region typical for CpG sites, but displayed higher 
methylation levels in exons, especially first exons. CHG 
and CHH sites also showed higher methylation levels 
in CGI, where CpG sites are usually unmethylated. This 
opposite trend in methylation level distribution of CHG 
and CHH sites from CpG sites suggests that the mecha-
nisms of CHG and CHH methylation involvement in 
mastitis may be different from CpG methylation, deserv-
ing further exploration. At a genome wide scale, the 
methylation level of the promoter region showed signifi-
cant negative correlation with gene expression level, thus 
supporting a repression role of DNA methylation at the 
promoter region on transcriptional activities [49–51]. 
Additionally, this study further found that, the higher the 
expression level of a gene, the lower its methylation level 
is at the TSS, and the more intense the decrease in meth-
ylation level is at the promoter region (Fig. 6D). This fur-
ther proved the importance of a low level of methylation 
at the promoter region for normal gene expression.

The methylation status of milk somatic cells was then 
compared between S. uberis-positive and healthy control 
group. Firstly, the CpG methylation landscape among 
chromosomes indicates globally a lower methylation 
level in S. uberis-positive group. Specifically, more than 
half of the identified DMCs had lower methylation levels 
in S. uberis-positive group when compared to the con-
trol group. In support of our data, a lower DNA meth-
ylation level was also reported in blood neutrophils of 
cows with E. coli-induced mastitis [22] and mammary 
epithelial cells challenged with bacterial lipopolysaccha-
ride [52], as well as in cow ileum tissue positive for Myco-
bacterium avium spp. paratuberculosis infection [53]. As 
expected, more DMCs were in the CpG context, further 
supporting the important regulatory roles of CpG meth-
ylation during disease processes. It is worthy of note that 
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about half the identified DMCs were located in repeat 
elements, represented by SINE, LINE and ERV, which 
is reasonable because repeats account for about half the 
bovine genome. DNA methylation performs very impor-
tant roles in the transcriptional silencing of repeats to 
restrict their genotoxic potentials and thereby contribute 
to genome stability [54]. It has been suggested that the 
changes in DNA methylation status in diseases may ena-
ble the activation of repeat elements, especially cancers 
[55]. Thus, the enrichment of DMCs in repeat elements 
in this study suggests a possible regulatory mechanism 
of DNA methylation by affecting the activities of repeat 
elements in response to S. uberis infection. In this study 
more hypomethylated DMCs were observed in CGI 
shores, which is opposite to results in humans whereby 
CGI shores hypermethylation has been widely identified 
in cancer and tumor development [56] and also reported 
to regulate the expression of key genes in human breast 
cancer [57, 58].

In this study, the DNA methylation changes during 
S. uberis subclinical mastitis were not only identified at 
single cytosine sites but also at cytosine regions to avoid 
the possible technical noise resulting from measuring 
the methylation levels of single cytosines. Firstly, 316 
DMRs were found by scanning the whole genome with 
fixed-width windows, leading to the identification of 
important regions with greater methylation differences. 
However, this method does not consider the interac-
tion between adjacent methylation sites, prompting us 
to explore additional methods. The DNA methylation 
changes in response to environmental stressors, espe-
cially disease pathogens, are mediated by changes in 
implicated enzyme activities (DNMT1, DNMT3A/B and 
TET proteins) [59]. The change in enzyme activities is 
locally coordinated, leading to similar methylation sta-
tus of adjacent sites, which contributes to form methyla-
tion haplotypes [30]. Therefore, we used the method of 
MHB (methylation haplotype block) to investigate the 
co-methylation status of adjacent CpG sites and to iden-
tify biologically relevant linked regions of DNA meth-
ylation sites known as MHBs. A total of 451 dMHBs 
showed significant differences in the co-methylation sta-
tus of adjacent sites between S. uberis-positive and con-
trol groups, revealing possibly more direct epigenetic 
changes in response to S. uberis infection. For example, 
a dMHB on Chr5 (chr5:115877805–115,877,881) over-
lapped with SINE2–1 and harbored three CpG sites that 
were highly correlated with each other (r2 > 0.7). The 
three CpG sites were all unmethylated in the healthy con-
trol group but presented methylation levels of about 70% 
in S. uberis-positive group. Another dMHB on Chr11 
(chr11:18837854–18,837,864) was very short, being 
only 10 bp length and harbored 4 fully correlated DMCs 

(r2 = 1). Meanwhile, dMHB chr11:18837854–18837864 
was unmethylated in S. uberis-positive group, but 
showed mean methylation level of ~ 91.33% in the control 
group. It is worthy of note that dMHB chr11:18837854–
18837864 located in the intron of CRIM1 has been 
reported to be involved in the regulation of mammary 
gland morphology [60] and milk protein concentra-
tion [61]. Besides, a CRIM1 variant has been associated 
with neutropenia during pediatric acute lymphoblastic 
leukemia [62], suggesting its possible effects on neu-
trophil activity, which is important for mastitis patho-
genesis. This further highlights the potential of dMHB 
chr11:18837854–18837864 as a candidate biomarker 
of S. uberis subclinical mastitis. As shown by these two 
examples, MHBs represents the co-methylation status 
of a number of adjacent CpG sites, which could help to 
reduce the possible technical bias that is the main limi-
tation of quantifying single DMC sites. Although DMR 
profiling is an improvement over single DMC quantifi-
cation, it also has the limitation of choosing the length 
of windows and sliding step during identification. These 
limitations are overcome with the technique of MHB 
which relies on the relationship between adjacent DMCs 
and the bias of specifying sequence length is removed. In 
addition, MHBs are much shorter than DMR making it 
easier to profile in a larger population. Therefore, MHBs 
are relatively more reliable to be used as candidate bio-
markers than DMC or DMR.

To further investigate the regulatory roles and mecha-
nisms of DNA methylation changes in response to S. 
uberis mastitis, the DNA methylation and gene expres-
sion data were integrated. Based on MethGET results, 
a total of 1623 MetGDE genes were identified with sig-
nificant changes (MethGET P-value < 0.001) in their 
gene expression levels and/or DNA methylation levels 
at promoter regions, gene bodies, introns or exons. The 
DNA methylation alterations of the MetGDE genes pos-
sibly regulated the expression changes of corresponding 
genes, prompting further analyses to understand their 
potential roles. For instance, the MetGDE gene TTC9 
had 19% higher promoter methylation level and about 3.5 
times lower expression level in S. uberis-positive group, 
suggesting its expression was more likely repressed by its 
increased promoter methylation. Interestingly, a bunch 
of MetGDE genes are well-known immune-related genes, 
such as 10 genes of the interleukin family (IL6, IL9, IL12B, 
IL17A, IL17F, IL17RB, IL1RN, IL27RA, IL36B and IL36G) 
and 24 genes of the solute carrier family (e.g. SLC2A6, 
SLC24A1  and SLC25A21, etc.). Interleukin genes play 
important roles in inflammation and the immune system, 
and some of them, such as IL6 has been found to regulate 
the immune response to bovine mastitis and also identi-
fied as a candidate biomarker of subclinical mastitis [63, 
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64]. It is worth mentioning that MetGDE gene SLC25A21 
harbored 46 DMCs in its gene body and 6 DMCs at its 
promoter region, and 80% of them were hypo-meth-
ylated. SLC25A21 has been reported as differentially 
expressed in mammary gland tissue following infection 
by E. coli and S. aureus [65]. The hypomethylation and 
up-regulated expression of SLC25A21 in S. uberis-posi-
tive group in this study suggest that its altered expression 
during S. uberis mastitis may be regulated by DNA meth-
ylation changes.

Functional enrichment of MetGDE genes in GO terms 
and KEGG pathways with immune and disease related 
functions, further supports the potential regulatory roles 
of DNA methylation of these genes and their involvement 
in the immune response during S. uberis mastitis. In par-
ticular, a cluster of annotations related to cytokine process 
and activities were enriched with potentially up-regulated 
activities (positive Z-score), including Cytokine-cytokine 
receptor interaction, Chemokine activity, Chemokine-
mediated signaling pathways, Cellular response to inter-
leukin-1 and Chemokine signaling pathway. Chemokines, 
such as interleukins, interferons and chemokines, play key 
roles in the regulation of intensity and duration of inflam-
matory, and immune responses to mastitis infection by 
regulating the activities of immune-related cells [15, 16]. 
The significant enrichment of these cytokine-related path-
ways strongly suggest that DNA methylation changes are 
potentially involved in the regulation of cytokine activities 
by mediating the expression of related genes, and the host 
immune response to S. uberis infection. Interestingly, a 
cluster of highly related MetGDE genes with chemokine 
activities, including CXCL2, CXCL8, CXCL12, CCL3, 
CCL4, CCL5 and CCL20, were enriched in multiple path-
ways mentioned above. These genes are highly related 
to each other and involved in similar immune processes 
[66, 67], and their altered activities have been associated 
with the host response to mastitis. For example, CXCL2 
and CXCL8 have been identified as the most informative 
genes and as candidate biomarkers of bovine mastitis, 
suggesting their possible effects on cow’s ability to resist 
mastitis [65, 68–70]. Besides, CCL3, CCL4, CCL5 and 
CCL20 have also been reported as differentially expressed 
in response to mastitis by other investigators [71–73]. 
The CCL5 gene has been found to be up-regulated in 
bovine mammary epithelial cells stimulated by E. coli, 
but down-regulated in mammary glands with S. aureus-
induced mastitis [66, 74]. Moreover, CCL5 has also been 
reported to be closely associated with the pathogenesis 
of chronic mammary inflammation and mastitis [67, 75]. 
These reports highlight the important association of these 
genes with mastitis; however, the underlying regulatory 
mechanisms are not well understood. The DNA meth-
ylation changes in these genes during S. uberis infection 

observed in this study and during mastitis caused by other 
pathogens [17, 20, 21, 76], suggest DNA methylation 
changes as one of the underlying regulatory mechanisms. 
An in  vitro challenge of immortalized bovine mammary 
epithelial cells with peptidoglycan and lipoteichoic acid 
induced global hypomethylation by regulating DNMT 
activity and causing inflammation [19]. In agreement, the 
DNA methylation of S. uberis-positive group was glob-
ally lower than of the control group in this study. Further-
more, the expressions of CXCL2, CXCL8, CXCL12, CCL3, 
CCL4, CCL5 and CCL20 were up-regulated in S. uberis-
positive group, while hypomethylation was detected in 
the promoter and gene body regions of most of them 
(except CXCL2). This indicates that DNA methylation 
changes may be one possible mechanism that modu-
lated the differential expression of these key genes lead-
ing to the activation of the activities of chemokines and 
heightened host immune response to S. uberis infection. 
Another cluster of significantly enriched GO term and 
KEGG pathways related to diseases and immune response 
pathways was represented by NF-κB signaling pathway 
and Antigen processing and presentation pathway. The 
NF-κB pathway plays roles as the upstream signal that 
controls the transcription of the inflammatory factors 
mentioned above [77, 78]. Besides, the activity of the anti-
gen processing and presentation pathway tended to be 
increased (positive Z-score), suggesting that the enriched 
MetGDE genes (e.g. CD40LG, LOC524810, BOLA-DQA2, 
LOC100300716 and MGC126945) may be involved in the 
regulation of the adaptive immune response by affecting 
antigen processing. For example, the interaction between 
CD40LG and CD40 is very important for immune 
responses dependent on T cells, and they have been found 
to participate in bovine inflammatory responses [79]. 
LOC524810 (IgM) and LOC100300716 (immunoglobulin 
heavy variable 4–38-2) are immunoglobulins performing 
critical functions of recognizing and binding antigens, 
such as S. uberis. Genetic variations in BOLA-DQA2, a 
Bovine Leukocyte Antigen (BOLA) class II gene, have 
been associated with resistance to dairy cow mastitis [80]. 
MGC126945, an uncharacterized protein, was found as 
highly variable in bovine respiratory disease [81].

DNA methylation mediates genomic adaption 
to environmental influences without changing the 
underlying DNA sequence and consequently contrib-
uting to phenotypic expression, and throwing more 
light on explaining the “black box” between the phe-
notype and the genotype [82]. Including epigenetic 
biomarkers to current livestock breeding programs 
may improve the prediction accuracy of genetic 
breeding values and thereby increased genetic gain 
[82–84]. Furthermore, it could contribute to com-
plement genomic information and provide a better 
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understanding of the factors that shape livestock phe-
notypes and directional application in breed improve-
ment and management practices [85]. A large body 
of evidence from human studies reveals DNA meth-
ylation changes as promising biomarkers for disease 
diagnosis or risk assessment [86, 87]. Therefore, this 
study utilized the discriminant analysis of DIABLO 
that allows integration of DNA methylation and gene 
expression data [39], to identify candidate biomark-
ers (DE genes, DMCs and dMHBs) of S. uberis mas-
titis. The candidate biomarkers delineated clearly the 
two groups, suggesting their ability to discriminate S. 
uberis-positive cows from the control group. The can-
didate biomarkers consisted of genetic biomarkers (6 
DE genes), and epigenetic biomarkers (15 DMCs and 
5 dMHBs). The epigenetic biomarkers were highly 
correlated with genetic biomarkers (cor > |0.80|), sug-
gesting that DNA methylation changes (epigenetic 
biomarkers) are more likely involved in the expression 
changes of the genetic biomarkers. Looking at the epi-
genetic candidates, all 5 dMHBs showed higher meth-
ylation levels in S. uberis-positive group. The most 
important dMHBs (chr5:32984279:32984330 and 
chr24:7353387:7353442) and four DMC candidates 
were overlapped with repeat elements, suggesting 
that epigenetic candidate biomarkers may be involved 
in the regulation of the host response to S. uberis 
infection by mediating transposition activities. For 
instance, dMHB chr5:32984279:32984330 overlapped 
with repeat element ALTR2C_BT, belonging to ERV1 
family. Endogenous retroviruses (ERV) are ubiquitous 
in mammalian genomes, and some have been found 
to play roles as enhancers for immune-related genes 
in both human and mice [88]. In addition, dMHB 
chr24:7353387:7353442 overlapped with transposon 
L1MA9, a member of L1 family, as well as CD226 
gene which functions by mediating cytotoxicity and 
is associated with immunologic diseases [89, 90]. 
The function of repeat elements in bovine diseases, 
including mastitis is ill-defined. Our data suggest 
involvement in epigenetic processes, which requires 
further exploration. Among the candidate DE genes, 
SLC40A1 has the greatest loading weight and its cor-
relation with epigenetic biomarkers was extremely 
high (cor > |0.99|). SLC40A1 was significantly down-
regulated in S. uberis-positive group and harbored 
three hypermethylated DMCs in its gene body, sug-
gesting that gene body methylation may be involved 
in the regulation of its expression. On the contrary, 
the SLC40A1 promoter was identified as hypomethyl-
ated with associated up-regulated mRNA expression 
in blood neutrophils, and consequently considered 
a candidate biomarker for improving resistance to 

bovine mastitis induced by E. coli, [22]. These con-
trasting effects of SLC40A1 DNA methylation on its 
gene expression may be caused by the differences in 
tissue or the pathogenic bacteria between the two 
studies. Differential immune responses and related 
genetic or microRNA regulation has been reported 
during infections by Staphylococcus aureus and E. coli 
[69, 74, 91]. This suggests that the DNA methylation 
status and expression of SLC40A1 may change in dif-
ferent directions during mastitis caused by S. uberis 
compared with E. coli.

Conclusion
The whole genome DNA methylation landscape and tran-
scriptomes of bovine milk somatic cells indicated global 
negative correlations between CpG methylation level 
and gene expression at not only the promoter regions 
but also first exon and first intron regions. Methylation 
haplotype blocks that considers the co-methylation sta-
tus of adjacent CpG sites were also identified through the 
whole genome to enrich the DNA methylation patterns. 
The DNA methylation alterations explored at different 
layers between cows with S. uberis subclinical mastitis 
and healthy control indicated that: (1) globaly, the DNA 
methylation level of S. uberis-positive group was lower 
than healthy control; (2) the DNA methylation changes 
identified included 174,342 DMCs (in the context of CpG, 
CHG and CHH), 316 DMRs, and 415 dMHBs; and (3) the 
DNA methylation changes of 1623 MetGDE genes were 
related to their gene expression changes, as well as sig-
nificantly enriched in biological processes and pathways 
related to the immune response and disease processes, 
especially cytokine activities, indicative of regulatory 
roles in the host immune response to S. uberis infection. 
Finally, a total of 26 candidate biomarkers (6 DE genes, 
15 DMCs and 5 dMHBs) were identified by discriminant 
and correlation analyses to clearly distinguish S. uberis-
infected cows from healthy controls. These candidate 
genetic and epigenetic biomarkers may serve as reference 
materials for designing mastitis control, management 
and breeding strategies.
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