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Abstract 

Background: As one of the most utilized commercial composite boar lines, Duroc pigs have been introduced to 
China and undergone strongly human-induced selection over the past decades. However, the efficiencies and limita-
tions of previous breeding of Chinese Duroc pigs are largely understudied. The objective of this study was to uncover 
directional polygenic selection in the Duroc pig genome, and investigate points overlooked in the past breeding 
process.

Results: Here, we utilized the Generation Proxy Selection Mapping (GPSM) on a dataset of 1067 Duroc pigs with 
8,766,074 imputed SNPs. GPSM detected a total of 5649 putative SNPs actively under selection in the Chinese Duroc 
pig population, and the potential functions of the selection regions were mainly related to production, meat and 
carcass traits. Meanwhile, we observed that the allele frequency of variants related to teat number (NT) relevant traits 
was also changed, which might be influenced by genes that had pleiotropic effects. First, we identified the direction 
of selection on NT traits by Ĝ , and further pinpointed large-effect genomic regions associated with NT relevant traits 
by selection signature and GWAS. Combining results of NT relevant traits-specific selection signatures and GWAS, we 
found three common genome regions, which were overlapped with QTLs related to production, meat and carcass 
traits besides “teat number” QTLs. This implied that there were some pleiotropic variants underlying NT and economic 
traits. We further found that rs346331089 has pleiotropic effects on NT and economic traits, e.g., litter size at weaning 
(LSW), litter weight at weaning (LWW), days to 100 kg (D100), backfat thickness at 100 kg (B100), and loin muscle area 
at 100 kg (L100) traits.

Conclusions: The selected loci that we identified across methods displayed the past breeding process of Chinese 
Duroc pigs, and our findings could be used to inform future breeding decision.
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Introduction
About 10,000 years ago, pigs were domesticated in mul-
tiple locations around the world [1]. And then, high-
intensity artificial selection has been applied to the 
genetic improvement of agriculturally important traits 
[2]. As selection at favorable mutations have played an 
essential role in the domestication and genetic improve-
ment of animals, the frequency of favorable mutations 
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will increase rapidly and this process is called selective 
sweep. Different approaches have been proposed for the 
identification of selective sweep, e.g., the genetic diver-
sity ratio (θπ) and Wright’s fixation index (FST) [3]. Most 
approaches are designed to identify genomic regions with 
large-effect and have successfully identified large-effect 
quantitative trait loci (QTL) under selection that controls 
pig traits, e.g., coat color, meat quality, and fertility [4]. 
Indeed, agriculturally important traits are usually con-
trolled by many mutations of small effect.

Recently, some methods have been developed to detect 
polygenic selection, e.g., the Generation Proxy Selec-
tion Mapping (GPSM) allows us to observe how com-
plex polygenic selection alters the genome over short 
timescales in a trait-agnostic manner [5] and Ĝ can be 
used to powerfully identify selection on highly polygenic 
traits [6]. The GPSM method uses a proxy for generation 
number, e.g., birth date, as the dependent variable in a 
genome-wide linear mixed model to detect associations 
between generation and allele frequency caused by ongo-
ing selection. Meanwhile, Ĝ uses pre- and post-selection 
genotypic data with a single time point with phenotypic 
information to identify selection on traits that are con-
trolled by many genes.

Duroc pig, as an older breed of domestic pig, was 
developed in America and formed after a long period 
of artificial selection. In modern pig industry, Duroc pig 
is one of the most utilized commercial composite boar 
lines, and well-known for its growth, feed conversion effi-
ciency, carcass and meat quality traits [7]. Because pleio-
tropic function exerts, high-intensity artificial selection 
on production traits potentially causes the weakening 
of other traits. For instance, the average teat number of 
Duroc pig breed was lower than that of the Large White 
[8] and Landrace pig breeds [9].

Herein, we first used two methods (GPSM and Ĝ ) to 
detect ongoing polygenic selection in a factory-farmed 
Duroc pigs. Further, runs of homozygosity (ROH) was 
complementally detected to explore the selection land-
scape. Then, we performed genome-wide association 
studies (GWAS) and selection-mapping protocols (FST 
and θπ ratio) to identify the potential large-effect NT 
trait-related genomic regions. Further, we conducted a 
comprehensive analysis to identify the putative pleio-
tropic genomic regions. The results of this study uncover 
the genetic improvement of Chinese Duroc pig popula-
tion over the past decade and will be used to inform 
future breeding decision.

Materials and methods
Ethical statement
All experiments in this study were approved by the 
Animal Care Committee of South China Agricultural 

University (Guangzhou, People’s Republic of China) with 
approval number SCAU#2013-10, and the experiments 
were performed according to the regulations and guide-
lines established by this committee.

Sample preparation and sequencing
A total of 1067 animals consisted of 984 females and 83 
uncastrated males from a Duroc pig population man-
aged in Fujian, China, were used in this study. These ani-
mals were born between 2009 and 2017. All phenotypic 
records were extracted from the Herdsman swine man-
agement platform (S&S Programming, Lafayette, IN, 
USA). The number of left teats, right teats were recorded 
by simple counting. The number of teats was the sum 
of the teat number at both sides. In addition, the num-
ber of left teats, right teats, and teats of each individual 
was counted at birth and the malformed teats were not 
recorded. Furthermore, we obtained the phenotypic 
(litter size at weaning (LSW), litter weight at wean-
ing (LWW), days to 100 kg (D100), backfat thickness at 
100 kg (B100), and loin muscle area at 100 kg (L100)) data 
from our previous studies [10, 11].

In this study, we extracted genomic DNA from the 
ear tissue of 1067 Duroc pigs using the TaKaRa Min-
iBEST Universal Genomic DNA Extraction Kit (Version 
4.0), then checked using agarose gel electrophoresis and 
quantified with a NanoDrop 2000 (Thermo Scientific, 
Waltham, MA, USA). Either the Illumina PorcineSNP60 
BeadChip (Illumina, San Diego, CA, USA) comprising 
63,480 SNPs or the GeneSeek GGP-Porcine chip (Neo-
gen Corporation, Lansing, MI, USA) comprising 51,558 
SNPs were used to genotype the individuals. The com-
mon SNPs contained 33,359 SNPs between two chips 
were retained. Among the Duroc pigs used in the current 
study, we selected 50 key individuals using the marker-
based genetic relationship matrix to maximize the 
expected genetic relationship between the key individuals 
and the remaining population, as in Ye et al.  [12]. These 
individuals were re-sequenced with 150 bp paired-end 
reads using the Illumina HiSeq 3000 platform. In the raw 
reads, the adaptor polluted reads and multiple N reads 
(where N > 10% of one read) were removed using Trim 
Galore version 0.6.1 to produce the clean reads. Further, 
the clean data were aligned to the Sus scrofa 11.1 refer-
ence genome using Burrows-Wheeler Aligner (BWA) 
version 0.7.15 [13]. The genome analysis toolkit GATK 
version 4.1.2.0 [14] was used to detect the SNPs using a 
Bayesian model, a total of 19,754,293 SNPs was found. 
Subsequently, genotype imputation was performed, 
treating 50 key individuals with sequencing data as refer-
ence panel, and the remaining 1017 individuals with SNP 
arrays data were imputed to whole genome sequencing 
(WGS) data using Beagle version 5.0 [15]. Quality control 
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of SNPs was implemented using VCFtools version 0.1.14 
[16], following the below criteria: retaining (1) the SNPs 
with a  DR2 ≥ 0.8; (2) the SNPs with a call rate ≥ 0.9 or 
MAF ≥ 0.01 or significant deviations from Hardy-Wein-
berg equilibrium (P-value ≥ 0.00001); (3) retaining sites 
with a mean depth < 3. Hence, a total of 1067 individuals 
with 8,766,074 independent SNPs were eligible for inclu-
sion in the following analyses (Fig. S1). The genotype 
concordance rate, defined as the proportion of identical 
genotypes between the imputed variants and the whole-
genome sequence variants, was 0.96 ± 0.13 across the 
autosomes. PLINK version 1.09 [17] was utilized to con-
vert file formats of the independent SNPs from variant 
call format (VCF) to PLINK binary format.

Detecting of polygenic selection
An animal’s age as of December 21, 2017 was used as 
the generation proxy in GPSM, and we fit a univariate 
genome-wide linear mixed model as follows:

Where Y is an individual’s generation proxy; β is the 
estimated effect size for each SNPs; u is polygenic term 
and is set as u ∼ N 0,Gσ 2

a  , where G is the genomic rela-
tionship matrix. X and Z are incidence matrices for β and 
u; e is the random residuals and is set as e ∼ N

(

0, Iσ 2
e

)

 , 
where I is an identity matrix. We used FDR corrected 
q-values to control for multiple-testing and SNPs with 
q-value < 0.1 was deemed to be significant variants [5].

We estimated a composite statistic Ĝ on left teats, 
right teats, and total teats traits to test for the direc-
tion of selection of NT relevant traits. Ĝ was generated 
from the relationship between additive effect estimates 
and allele frequency changes over time. We fit a ridge 
regression best linear unbiased prediction (RRBLUP) 
model with NT traits as the response. In RRBLUP model, 
the fixed effects included year-season of individuals at 
birth, in which the measured seasons contained four 
levels (1st = December to February; 2nd = March to 
May; 3rd = June to August; 4th = September to Novem-
ber). We extracted its estimated effect from the RRBLUP 
model and changing in allele frequency from 2009 to 
2017. Then, Ĝ was calculated as follows:

where Δj is the change in allele frequency of SNP j from 
2009 to 2017, αj is the allele effect of SNP j, and m is the 
total number of SNPs. Later, we permuted SNP allele 
effects with 1000 times to generate Ĝperm , and compared 
Ĝ with Ĝperm to test whether the observed composite 
statistic was the result of selection rather than drift.

Y = Xβ + Zu+ e

Ĝ =
∑m

j=1
�jαj

Selection‑mapping protocols
We conducted ROH detection to identify regions of 
homozygosity using PLINK version 1.09 [17] by a slid-
ing window method with the following parameters: (1) a 
sliding window of 50 SNPs and one heterozygous geno-
type was allowed in a window; (2) the minimum length 
for an ROH was set to 1 Mb; (3) the required minimum 
SNP density was set as 1 SNP per 50 kb; and (4) each 
ROH contained at least 65 consecutive SNPs. The per-
centage of SNP occurrences in ROHs was calculated to 
characterize the genomic regions of ROH hotspots, and 
the threshold of ROH hotspots was set as the top 0.5% of 
the SNP occurrences.

The pairwise difference between the individuals born 
on each year were tested using a Welch Two Sample 
t-test and listed in Table S1. There were significant dif-
ferences in the number of teats between sows born on 
2009–2011 and born after 2011. To further detect NT 
relevant traits-specific selection signatures, a pheno-
typic differential population pair, (1) larger teat number 
(LT) group: 45 sows born before 2011 with larger num-
ber of teats (14.16 ± 0.01) and (2) smaller teat number 
(ST) group: 45 sows born on 2017 with smaller number 
of teats (12.00 ± 0.00), was created. The θπ ratio and FST 
were used to detect signatures of selection in this pheno-
typic differential population pair with the use of a slid-
ing window method (50 kb window and 10 kb step). The 
θπ ratio between LT group and ST group was calculated 
as ln(θπ|LT/θπ|ST). In addition, the 1% of windows with 
the highest θπ ratio and FST values was considered as the 
potential selection regions.

Association analyses
GWAS was performed using a mixed linear model, as 
follows:

where Y is the number of left teats, right teats, and total 
teats of the individuals; α is a vector of fixed effect, 
including the year and season of individuals at birth; 
β is the substitution effect of the SNPs; u is the ran-
dom effect and is set as u ∼ N

(

0,Gσ 2
a

)

 , where G is the 
genomic relationship matrix; W, X, and Z are incidence 
matrices for α, β, and u; e is the random residuals and is 
set as e ∼ N

(

0, Iσ 2
e

)

 , where I is an identity matrix. The 
analyses were performed using GEMMA software [18]. 
The Bonferroni correction was applied to filter the poten-
tial SNPs: SNPs with permuted P-values lower or equal 
than 0.05/N (N is the number of the independent mark-
ers defined as a set of SNPs with pairwise r square value 
higher than 0.4), were regarded as genome-wide signifi-
cant SNPs. SNPs with a P-value higher than 0.05/N but 

Y=Wα+Xβ+Zu+e



Page 4 of 12Chen et al. Journal of Animal Science and Biotechnology           (2022) 13:99 

lower than 1/N were considered as genome-wide sugges-
tive significant SNPs. Then, quantile-quantile (Q-Q) plots 
were drawn and the inflation factors (λ) were calculated 
to check the population stratification.

In order to uncover pleiotropic effects of the intron 
mutation (rs346331089) and its potential effect on 
the phenotype in Duroc pigs, we utilized our previous 
reported data sets of economic traits, followed by imple-
menting the association analyses between rs346331089 
and economic traits using PLINK with “-linear” 
parameter.

Tissue‑specific genes and pCADD scores annotation
We downloaded a gene expression matrix of Duroc pig 
tissues (i.e., fat, heart, liver, muscle, spleen, cerebellum, 
cerebrum, duodenum, kidney, lung, thymus) from pub-
licly available datasets [19]. As in Zhao et al. [19], genes 
with an expression level at least three times higher in a 
given tissue than in any other tissue were considered 
to be tissue-specific. Meanwhile, we selected human-
pig homologous genes from Ensembl release 105 and 
used the human protein atlas [20] to further explore the 
expression of human-pig homologous genes with high 
confidence. Furthermore, pCADD scores were retrieved 
from public databases [21] to prioritize variants.

Functional enrichment analysis
The Animal QTL Database [22] was used to annotate the 
potential functions of the selection regions. QTL enrich-
ment analyses based on a bootstrap simulation for each 
QTL were conducted to annotate selection signatures, 
and the adjusted P-value based on multiple tests less than 
0.05 were retained. Furthermore, the genes located in 
putative selection regions were identified using R pack-
age GALLO [23]. Then, the positional candidate genes 
overlapped with the genomic regions for NT traits were 
extracted based on Sus scrofa 11.1 reference genome 
assembly. We used R package clusterProfiler [24] to con-
duct enrichment analyses, then the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways and GO terms 
with Benjamini-Hochberg method adjusted P-value 
< 0.05 were selected.

Results
Whole‑genome sequencing and imputation
The genomic DNA extracted from key individuals 
(n = 50) of a factory-farmed Duroc pig population was 
re-sequenced with 150 bp paired-end reads using the 
Illumina HiSeq 3000 platform. A total of 19,754,293 
SNPs was found, of which 6.13% were novel in compari-
son with the latest pig SNP database (European vari-
ant archive; updated time: 24-Feb-2022). In addition, 
transition-to-transversion (TS/TV) ratios of SNPs was 

2.33. With the use of Variant Effect Predictor (VEP) to 
determine the effect of the variants, we obtained loca-
tion of the variants and the most severe consequence 
of the variants on the protein sequence. The most SNPs 
(59.55% of all SNPs) were located in intron regions, fol-
lowed by intergenic (19.94%), downstream genic (8.71%), 
and upstream genic regions (8.37%). Moreover, the plot 
showed that SNPs were evenly distributed across porcine 
autosomes (Fig. S1).

After imputation with key individuals as reference 
panel, we obtained a large-scale genotyping dataset 
contained 8,766,074 high-quality SNPs with dosage 
R-squared  (DR2) > 0.8. The proportion of each conse-
quence types was broadly similar with reference panel, 
and the distribution of SNPs was shown in Fig. S2. There-
fore, a total of 1067 Duroc pigs with 8,766,074 SNPs were 
available for further analyses.

Identification of human‑induced polygenic selection
Based on results from the GPSM analyses (Fig. 1A), 5649 
SNPs (q-values < 0.1) were significantly associated with 
birth date in the Chinese Duroc pig population (Table 
S2). We explored the potentially biological function of 
detected GPSM signals with genome annotation, e.g., tis-
sue-specific genes and publicly available QTLs.

Twenty-two out of 24 tissue-specific genes covered by 
GPSM signals were homologous between pig and human 
with high confidence, and a majority of these genes had 
similar expression patterns with tissue specificity in 
human (Table  1). Further, we found that the expression 
levels of cerebellum, cerebrum, and fat tissue-specific 
genes covered by GPSM signals were the most conserved 
between pig and human. The strongest association sig-
nals were located in Sus scrofa chromosome (SSC) 3 (Fig. 
S3A) and 8 (Fig. S3B), we observed high LD between the 
“lead” SNP and SNPs around the “lead” SNP. QTL enrich-
ment analyses with the signals showed that production, 
meat and carcass traits were mostly significantly enriched 
(Fig.  1B). Interestingly, we noticed that “Teat number” 
QTL was also significantly enriched.

To further estimate the direction of selection on NT 
relevant traits, we summarized the phenotypic records 
and found that there were significant differences in 
the number of teats between pigs born on 2009 and 
2017 (a Welch Two Sample t-test P-value = 0.0039). 
Moreover, we conducted Ĝ analyses with phenotypic 
records, and observed significant evidence of selection 
for decreased total teat number (P-value = 0.0002, Fig. 
S4A), left teat (P-value = 0.0003, Fig. S4B), and right teat 
(P-value = 0.0009, Fig. S4C). These results uncovered that 
NT relevant traits had been sufficiently human-induced 
selected in the past few years in the Chinese Duroc pig 
population.
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The genome-wide ROH were assessed on autosomes, and 
a sum of 152,961 ROH were detected in the studied popu-
lation (Fig. S5A). In addition, a total of 69 candidate genes 
were overlapped with ROH hotspots (Table S3). Although 

we did not identify the common candidate genes between 
the GPSM analyses and ROH hotspots detection, the QTL 
enrichment results showed that ROH hotspots were also 
mostly enriched in meat and carcass traits (Fig. S5B).

Fig. 1 GPSM detects signatures of ongoing polygenic selection in the Chinese Duroc pigs. A GPSM Manhattan plots for the Chinese Duroc pigs. 
The Y-axis displayed the -log10(q) of SNP according to their chromosomal position (X-axis). The horizontal dashed line depicts the genome-wide 
significance level (q-value < 0.1). The significant variants were annotated using tissue-specific genes. B QTL enrichment analyses with GPSM signals. 
The richness factor was obtained by the ratio of the number of QTLs annotated in the candidate regions and the total number of each QTL
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Teat number relevant traits‑specific selection signature 
detection
We conducted detection of traits-specific selection 
signatures based on the constructed population pairs 
with extreme differences in total teat number. Here, we 
detected 401 positive selection signatures (Fig.  2A), of 
which 209 loci reflected the loss of nucleotide diversity 
in LT group relative to ST group, while 192 loci were 
opposite. QTLs enrichment analyses showed that “teat 
number” QTL was indeed enriched, meanwhile, we 
noticed that the selection signatures significantly over-
lapped with several QTLs related to production, meat 
and carcass traits (Fig. 2B).

A total of 78 candidate genes were overlapped with 
NT relevant traits-specific selection signatures, and 
13 out of these genes showed tissue-specific expres-
sion levels. Here, we found that ASPH, CCDC85C, 
CYP46A1, ASGR2, PNLIP, PNLIPRP1, DPP10, EPHA4, 
and PLCB4 had similar RNA tissue specificity in pig and 
human (Table  2). Functional annotations were signifi-
cantly enriched in lipid metabolism related pathways 
and terms, e.g., “pancreatic secretion”, “fat digestion 
and absorption”, “glycerolipid metabolism”, and “lipid 
catabolic process”. These results proved that the trait-
specific selection signatures were mainly caused by 
phenotypic difference and uncovered that NT relevant 
traits-related candidate genes played potential roles in 
lipid metabolism.

Imputed sequence‑based GWAS for teat number relevant 
traits
Using the number of left teats, right teats, and total teats 
as phenotypic records, a total of 1387 putative loci were 
significantly associated with NT relevant traits, of which 
4, 71, and 165 putative loci were uniquely detected in 
imputed sequence-based GWAS for the number of left 
teats (Fig. S6A), right teats (Fig. S6B), and total teats 
(Fig. 3A), respectively. Meanwhile, 773 of all putative loci 
were shared by GWAS for these three NT relevant traits 
(Fig. 3B). SPATA6, VRTN, FOXN3, KCNK10, RND3, and 
RIF1 were covered and identified as the promising candi-
date underlying NT relevant traits. We found that some 
of the promising candidate genes were also associated 
with fat-related traits, e.g., KCNK10 and RND3, which 
was consistent with the results of QTL enrichment analy-
ses (Fig. S6C).

Comparison between traits‑specific selection signature 
and GWAS
Combining results of NT relevant traits-specific selec-
tion signatures and GWAS, we found three common 
genome regions, located in SSC 6, 7, and 15, respectively. 
In these regions, rs346331089 (Fig. 4), rs322980623 (Fig. 
S7), and rs324534752 (Fig. S8) got the highest pCADD 
score. The regions located in SSC6 significantly enriched 
in the QTLs related to litter size, rump width, oleic acid 
content, and top line conformation traits (Fig. S9A), the 

Table 1 Tissue-specific genes that overlapped with the genome-wide significant GPSM signals

a Sus scrofa chromosome
b The promising candidate genes
c Specific expression tissues
d A type of orthologue assigned for sus scrofa and homo sapiens

Chra Position SNP P‑value Geneb Description Tissuec Type of  orthologued

1 68,477,634 rs343429147 4.99 ×  10−5 GRIK2 Glutamate ionotropic receptor kainate type subunit 2 Cerebellum 1-to-1*

5 17,275,197 rs325589813 2.22 ×  10−5 ACVRL1 Activin A receptor like type 1 Lung 1-to-1*

6 44,902,082 rs333577047 9.06 ×  10−6 FFAR2 Free fatty acid receptor 2 Spleen 1-to-1*

6 45,249,022 6_45249022 1.34 ×  10−5 NPHS1 NPHS1 adhesion molecule, nephrin Kidney 1-to-1*

8 4,497,067 rs325024132 2.96 ×  10−6 JAKMIP1 Janus kinase and microtubule interacting protein 1 Cerebrum 1-to-1*

8 126,046,420 rs325782763 3.11 ×  10−5 GRID2 Glutamate ionotropic receptor delta type subunit 2 Cerebellum 1-to-1*

12 921,691 rs321539153 5.40 ×  10−5 FASN Fatty acid synthase Fat 1-to-1

12 1,136,822 12_1136822 5.40 ×  10−5 PPP1R27 Protein phosphatase 1 regulatory subunit 27 Muscle 1-to-1*

12 44,658,312 rs694026589 5.71 ×  10−5 VTN Vitronectin Liver 1-to-many*

12 44,734,028 rs328927732 1.99 ×  10−5 SLC13A2 Solute carrier family 13 member 2 Duodenum 1-to-1*

12 54,906,956 rs329254243 2.18 ×  10−5 GAS7 Growth arrest specific 7 Cerebrum 1-to-1*

15 17,161,987 rs322661315 6.29 ×  10−5 ACMSD Aminocarboxymuconate semialdehyde decarboxy-
lase

Kidney 1-to-1*

16 27,537,893 rs335570719 6.74 ×  10−6 SELENOP Selenoprotein P Liver 1-to-1*

17 2,034,960 17_2034960 2.72 ×  10−5 SGCZ Sarcoglycan zeta Cerebrum 1-to-1*

17 9,824,048 rs331351838 4.92 ×  10−5 ZMAT4 Zinc finger matrin-type 4 Cerebrum 1-to-1*
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Fig. 2 Teat number relevant traits-specific selection signature detection. A Detection of traits-specific selection signatures based on the 
constructed population pairs with extreme differences in total teat number. The Y-axis displayed the θπ ratio and the X-axis showed the FST value. 
The 1% of windows with the highest θπ ratio and FST values was considered the potential selection regions. B QTL enrichment analyses with teat 
number relevant traits-specific selection signature detection. The richness factor was obtained by the ratio of the number of QTLs annotated in the 
candidate regions and the total number of each QTL

Table 2 Tissue-specific genes that overlapped with teat number relevant traits-specific selection signature

a Sus scrofa chromosome
b The start of the potential selection regions
c The end of the potential selection regions
d The promising candidate genes
e Specific expression tissues
f A type of orthologue assigned for sus scrofa and homo sapiens

Chra Startb Endc Gened Description Tissuee Type of 
 orthologuef

4 71,960,001 72,010,000 ASPH Aspartate beta-hydroxylase Fat 1-to-1*

7 120,550,001 120,600,000 CCDC85C Coiled-coil domain containing 85C Cerebellum 1-to-1*

7 120,650,001 120,700,000 CYP46A1 Cytochrome P450 family 46 subfamily A 
member 1

Cerebrum 1-to-1*

12 52,430,001 52,480,000 ASGR2 Asialoglycoprotein receptor 2 Liver 1-to-1*

14 126,740,001 126,820,000 PNLIP Pancreatic lipase Duodenum 1-to-1*

14 126,740,001 126,820,000 PNLIPRP1 Pancreatic lipase related protein 1 Duodenum 1-to-1*

15 20,730,001 20,780,000 DPP10 Dipeptidyl peptidase like 10 Cerebrum 1-to-1*

15 123,440,001 123,490,000 EPHA4 EPH receptor A4 Cerebrum 1-to-1*

17 18,010,001 18,060,000 PLCB4 Phospholipase C beta 4 Cerebellum 1-to-1*
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Fig. 3 The Manhattan plots of GWAS for the number of total teats (NT) traits. A The Y-axis of Manhattan plots displayed the -log10(P) of each SNP 
in the genome wide association analysis for NT traits, the X-axis represented the position of SNPs for chromosomes. B The Venn diagram of the 
putative loci that associated with the number of left teats, right teats, and total teats

Fig. 4 The pleiotropic variant rs346331089 and its effects on economic traits. A Regional association plots around rs346331089. Genotype effect 
plots of rs346331089 among three types for teat number (B), litter size at weaning (C), litter weight at weaning (D), days to 100 kg (E), backfat 
thickness at 100 kg (F), and loin muscle area at 100 kg (G)
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regions located in SSC7 were associated with obesity 
index, head weight, mean corpuscular volume, mean cor-
puscular hemoglobin concentration, and cannon bone 
circumference traits (Fig. S9B), and the regions located in 
SSC 15 overlapped with QTLs related to backfat between 
3nd and 4th last ribs and hematocrit traits (Fig. S9C). 
These results suggested that there were a few pleiotropic 
genes in these genome regions, influencing both NT and 
economic traits.

Identification of pleiotropic variants underlying teat 
number and economic traits
As one of the most utilized commercial composite boar 
lines, it is well known that Duroc pigs had been under 
selection for production and meat quality traits. Nev-
ertheless, as mentioned above, NT relevant traits have 
experienced human-induced selection in the Chinese 
Duroc pig population. We assumed that a few pleiotropic 
variants were putative contradictive loci that played an 
opposite directional role in teat number and economic 
traits, leading to decreased left teat, right teat, and total 
teat number.

We further found that rs346331089 has pleiotropic 
gene action on NT and economic traits, e.g., LSW, LWW, 
D100, B100, and L100 traits (Fig. 4). Genotype effects of 
rs346331089 on NT traits showed similar trends in its 
effects on D100 and B100 traits, whereas its effects had 
opposite patterns for LSW, LWW, and L100 traits. Over-
all, human-induced selection for the genetic improve-
ment (e.g., faster growth rates, thinner backfat thickness, 
and larger loin muscle area) at the genome regions might 
lead to the decreasing number of teats.

Discussion
In this study, we detected polygenic selection in a factory-
farmed Duroc pigs. Genes related to teat relevant traits 
were then dissected by combined analyses of selection 
signatures and GWAS. Pleiotropic variants underlying 
teat number and economic traits were further confirmed.

Human‑induced polygenic selection in Duroc pigs
Based on the results of the GPSM analyses, we infer 
that the Chinese Duroc pig population was mainly sub-
jected to high-intensity artificial selection on production 
and meat quality traits, in line with the breeding goals 
of Duroc pigs [25]. Further gene annotations showed 
a set of candidate genes involved in artificial selection, 
e.g., GRIK2, JAKMIP1, GRID2, FASN, GAS7, SELENOP, 
and SGCZ. GRIK2 belongs to the kainate family of glu-
tamate receptors. Previous study suggested that GRIK2 
played a role in affecting intermuscular fat level [26]. We 
observed the frequencies of GRIK2 mutations were obvi-
ously different between the population in 2009 and 2017, 

these mutations might affect the normal transcription 
and expression of GRIK2 and further have impacts on 
intermuscular fat level, which is an important meat qual-
ity parameter. Also, JAKMIP1 involved in the actions of 
neurons, which are central regulators in maintaining the 
balance between food intake and energy expenditure, and 
further regulated fat deposition in muscle [27]. FASN is 
related to lipogenesis and has been found to have poten-
tial roles in the determination of feed conversion and 
meat color in pigs [28]. GAS7 was implicated in influenc-
ing the fatty acid composition of the longissimus dorsi 
muscle in pigs [29]. Moreover, SGCZ has potential func-
tions in fat deposition in chicken [30]. In addition, a few 
genes (e.g., GRID2 and SELENOP) were reported to be 
associated with reproduction traits [31, 32].

In addition, we detected ROH hotspots to explore the 
selection landscape of the studied population. A set of 
candidate genes (e.g., MAD2L1 and SEC24D) that were 
putatively under selection in American and Canadian 
Duroc pigs have been previously reported [33]. Likewise, 
we found that the candidate genes were vastly different 
between the GPSM analyses and ROH hotspots detec-
tion. This might be caused by the different approaches: 
the GPSM analyses detected ongoing selection in terms 
of heterozygosity, and ROH hotspots detection identified 
selection in terms of regions of homozygosity. Therefore, 
the findings would be more comprehensive by combin-
ing the results of the GPSM analyses with ROH hotspots 
detection. Interestingly, we observed that the GPSM sig-
nals and ROH hotspots were both mostly significantly 
enriched in production, meat and carcass traits, as other 
traits were rarely enriched. Altogether, genetic improve-
ment of Duroc pigs in China through selection on genes 
that are correlated with economic characters (e.g., pro-
duction and meat quality) has been mainly considered 
during artificial selection.

Traits‑specific selection signature and GWAS for teat 
number relevant traits
During the rapid improvement of the performance of eco-
nomic traits, the number of teats has decreased in the Chi-
nese Duroc pig population. We hypothesized that genetic 
correlations between NT and economic traits. Traits-spe-
cific selection signatures were high enriched in both teat 
number relevant traits and fat-related traits, which con-
firmed that the hypothesis was correct. Moreover, several 
candidate genes (e.g., ASPH, CYP46A1, PNLIP, PNLIPRP1, 
DPP10, EPHA4, and PLCB4) overlapped with traits-spe-
cific selection signatures have underlying correlations with 
economically significant traits. ASPH are involved with tis-
sue morphology, skeletal and muscle development, and fat 
deposition [34]. Also, CYP46A1, PNLIP, and DPP10 have 
been identified as regulators of lipid metabolism [35–37]. 
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EPHA4, which was detected in the endometrium during 
embryo implantation in pigs, was found to have relation-
ships with reproduction traits [38]. Moreover, PLCB4 was 
implicated in growth and stature traits, and has been iden-
tified as genes under directional selection between Duroc 
and Duroc synthetic pig populations [39]. Further, we 
focused on detection of candidate genes that related to NT 
relevant traits. Interestingly, several genes located on the 
region ranged from 110.13 Mb to 110.47 Mb on chromo-
some 7 were found, and also reported in previous GWAS 
for NT trait in pigs [40]. Among these positional candi-
date genes, KCNK10, as a member of tandem pore domain 
potassium channel family, involves in stabilizing the nega-
tive resting membrane potential and counterbalancing 
depolarization. KCNK10 has been reported that it is a 
regulator of mitotic clonal expansion during the adipocyte 
differentiation [41]. FOXN3 could be considered as a can-
didate gene for the hairless phenotype in pigs [42]. In addi-
tion, RND3 was identified as a candidate gene for residual 
feed intake in pigs [43] and RIF1 was one of putative regula-
tory factors that contribute to the molecular mechanisms 
that underlie fat content and energy balance in muscle [44]. 
Overall, these results implied that there were a few pleio-
tropic variants underlying teat number and economic traits 
(e.g., growth, fatness, and reproduction traits).

Pleiotropic variants underlying teat number and economic 
traits
In addition, we found that genotype effects of rs346331089 
on NT reflected similar trends with D100 and B100 traits, 
whereas had opposite trends with LSW, LWW, and L100 
traits. The variant rs346331089 located in the intron of 
SPATA6, which is one of sperm-specific genes. Previous 
studies suggested the regulation of the expression pattern 
of SPATA6 linked to spermatogenesis in Hu sheep [45] and 
inactivation of SPATA6 leaded to acephalic spermatozoa 
and male sterility in mice [46]. These results above mani-
fested high-intensity directional selection on certain eco-
nomic traits might influenced the number of teats in pigs.

Conclusions
In this study, we detected polygenic selection in a fac-
tory-farmed Duroc pigs and dissected the candidate 
genes related to teat number relevant traits by combined 
analyses of selection signatures and GWAS. The variant 
rs346331089 has pleiotropic effects on teat number rele-
vant traits and economic traits. Our findings showed that 
genetic improvement through human-induced selection 
on genes that are correlated with economically important 
traits may lead to the decreasing number of teats, and 
contributed to guide the further breeding of Duroc pigs.
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