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Antioxidant procyanidin B2 protects oocytes 
against cryoinjuries via mitochondria regulated 
cortical tension
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Abstract 

Background: Irreversible cryodamage caused by oocyte vitrification limited its wild application in female fertil-
ity preservation. Antioxidants were always used to antagonist the oxidative stress caused by vitrification. However, 
the comprehensive mechanism underlying the protective role of antioxidants has not been studied. Procyanidin B2 
(PCB2) is a potent natural antioxidant and its functions in response to vitrification are still unknown. In this study, the 
effects of PCB2 on vitrified-thawed oocytes and subsequent embryo development were explored, and the mecha-
nisms underlying the protective role of PCB2 were systematically elucidated.

Results: Vitrification induced a marked decline in oocyte quality, while PCB2 could improve oocyte viability and 
further development after parthenogenetic activation. A subsequent study indicated that PCB2 effectively attenuated 
vitrification-induced oxidative stress, rescued mitochondrial dysfunction, and improved cell viability. Moreover, PCB2 
also acts as a cortical tension regulator apart from strong antioxidant properties. Increased cortical tension caused by 
PCB2 would maintain normal spindle morphology and promote migration, ensure correct meiosis progression and 
finally reduce the aneuploidy rate in vitrified oocytes. Further study reveals that ATP biosynthesis plays a crucial role 
in cortical tension regulation, and PCB2 effectively increased the cortical tension through the electron transfer chain 
pathway. Additionally, PCB2 would elevate the cortical tension in embryo cells at morula and blastocyst stages and 
further improve blastocyst quality. What’s more, targeted metabolomics shows that PCB2 has a beneficial effect on 
blastocyst formation by mediating saccharides and amino acids metabolism.

Conclusions: Antioxidant PCB2 exhibits multi-protective roles in response to vitrification stimuli through mitochon-
dria-mediated cortical tension regulation.
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Introduction
Oocyte cryopreservation could prolong, protect and 
secure female fertility [1], which has lead to a worldwide 
interest in oocyte cryopreservation [2]. Vitrification is 
an ultrafast cooling method performed with a very high 
concentration cryoprotectant for dehydration to avoid 
the formation of ice crystals during oocyte cryopreser-
vation, which ultimately leads to higher cell survival, 
fertilization, embryo development and pregnancy rates 
compared with traditional slow-freezing [3–6]. However, 
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studies reveal that impaired oolemma permeability [5], 
oxidative stress [7] and the toxicity of cryoprotectants 
during vitrification [8] can still cause damages to the 
oocytes [9, 10], especially deteriorating cytoskeleton 
[11] and mitochondrial function [12, 13], which eventu-
ally obstruct subsequent embryo development and need 
further study [14–16]. It is reported that mechanical 
properties play a pivotal role in oocyte development [17]. 
Since vitrified oocyte experiences dramatic shrinking and 
swelling during dehydration and rehydration, it is imper-
ative to explore the mechanical variations.

Generally, the layer beneath the cell surface is consid-
ered to be the cortex, and the thickness of cell cortex var-
ies depending on the cell type [18]. Oocyte cortex behaves 
as a function unit, not only in regulating the mechanical 
properties [18–20], but also in modulating polar body 
formation, cellular asymmetry creation and the egg-to-
embryo transition [21–23]. Cortical tension reflects long 
time-scale mechanics, therefore can be considered as 
a sensitive readout of cortical cytoskeleton contractil-
ity [19]. In oocytes, non-muscle myosin II and Ezrin/
Radixin/Moesin (ERM) protein family have a great contri-
bution to oocyte cortical tension regulation [24–26]. ERM 
functions in the active phosphorylated-ERMs (pERM) 
form [26]. Active pERMs are localized in the oocyte cor-
tical, declined during meiotic maturation to MII and 
then increased after fertilization, reflecting the dynamic 
changes in tension during these developmental transitions 
[24]. Similarly, myosin-II mediated cortical tension is 
regulated by phosphorylation of its regulatory light chain 
(pMRLC) [27]. It was reported that exclusion of myosin-II 
from the cortex induced a decline in the cortical tension, 
and the subsequent increased concentration of myosin-II 
in the cytoplasm would eventurally lead to meiosis defects 
[28]. Thus, the level of pERM and cortical pMRLC is con-
sistent with the change of cortical tension, while cytoplas-
mic pMRLC is negatively corrlerated with cortical tension 
[24, 28, 29]. Up to now, the changes of cortical tension in 
vitrified oocytes are still unclear.

As an important organelle in developmental regulation 
during oogenesis and early embryogenesis, mitochondria 
can influence redox-sensitive biological activities and 
redox-dependent signaling pathways [30, 31]. The mor-
phology, distribution and ultrastructure of mitochondria 
were impaired after vitrification [32, 33]. Although mito-
chondrial oxidative phosphorylation (OXPHOS) provides 
a special metabolic chamber to produce ATP, it can cause 
collateral cell damage by releasing reactive oxygen spe-
cies (ROS) [34]. It is acknowledged that oxidative stress 
is one of the main factors attributed to the decreased 
quality of vitrified oocytes. Increased ROS levels arising 
from the vitrification procedure are the major sources of 
oxidative stress [35–37]. ROS can attack proteins, DNA, 

cell membrane, and also microtubules, thereby disrupt-
ing oocyte structure and function [36, 38]. Since vitri-
fied oocytes are under oxidative stress, antioxidants are 
introduced in conventional cryo-solutions to protect 
oocytes from cryoinjuries [5, 39–42]. N-acetylcysteine 
[40] can improve the quality of mature mouse oocytes 
after vitrification, melatonin [5] can enhance the effi-
ciency of human oocytes’ cryopreservation and resvera-
trol [39] improves the development of vitrified bovine 
embryos. Procyanidins, a class of naturally occurring 
plant polyphenols with strong antioxidant properties, 
play beneficial roles in metabolic diseases and inflamma-
tory response [43–46]. The dimer procyanidin B2 [4,8′-
BI- [( +)-epicatechin]] (PCB2) is a member of oligomeric 
anthocyanins precursors and its anti-oxidative effect is 
more potent than other oligomers [47–52]. The effect of 
PCB2 on the oocytes viability under vitrification-induced 
oxidative stress and the mechanism underlying is not 
determined yet.

In this study, the effect of PCB2 on mitochondrial 
function (membrane potential, ATP,  Ca2+ homeostasis) 
and the relationship between mitochondrial production 
and cortical tension regulation were first studied in vit-
rified oocytes. The dramatic changes brought by vitri-
fication resulted in meiosis defects and mitochondrial 
dysfunction and ultimately led to the quality decline in 
vitrified oocytes. Apart from antioxidant properties, 
PCB2 induced elevated cortical tension via improv-
ing mitochondrial function. Those results may provide 
a new angle to understand the effect of vitrification on 
oocytes and give hints to improving current vitrification 
techniques.

Materials and methods
Animals and housing
Studies were performed using 8-week-old female mice 
(CD-1® (ICR)) (Vital River Laboratory Animal Technol-
ogy Co., Ltd. Beijing, China). Mice were housed in venti-
lated cages on a 12 h light/12 h dark cycle (lights on from 
08: 00 to 20: 00) under controlled temperature (22 ± 2 °C) 
with food and water freely available.

Chemicals and antibodies
All chemicals and drugs were purchased from Sigma 
(St. Louis, MO, USA) unless otherwise indicated. The 
anti-H2A.X antibody, anti-LC3 antibody, anti-rabbit IgG 
(H + L), F (ab’)2 Fragment (Alexa Fluor® 594 Conjugate) 
antibody, anti-pERM antibody, anti-pMRLC antibody 
were purchased from Cell Signaling Technology (Dan-
vers, MA, USA). The anti-CDX2 antibody was purchased 
from BioGenex (San Francisco, USA). The anti-Nanog 
antibody was purchased from Abcam (Cambridge, 
United Kingdom). The anti-alpha Tubulin antibody was 
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purchased from Thermo Fisher (Shanghai, China). The 
Fluorescein (FITC)–conjugated Affinipure Goat Anti-
Rabbit IgG (H + L) secondary antibody was purchased 
from Proteintech (Beijing, China).

Oocyte collection and parthenogenesis activation
Germinal vesicle (GV) stage oocytes were collected after 
superovulated by 10 IU pregnant mare serum gonadotro-
pin (PMSG, Ningbo Shusheng Veterinary Drug Co., Ltd., 
Ningbo, China). After 48  h, cumulus-oocyte complexes 
(COCs) were obtained and cumulus cells were removed 
by repeatedly mouth pipetting, then oocytes were cul-
tured in M16 medium at 37  °C with 5%  CO2. Germinal 
vesicle breakdown (GVBD) and polar body extrusion 
(PBE) rate were recorded at 2 h and 12 h, respectively.

To collect in  vivo matured MII oocytes, mice were 
superovulated using 10  IU PMSG, followed by injec-
tion with 10  IU human chorionic gonadotrophin (hCG, 
Ningbo Shusheng Veterinary Drug Co., Ltd., Ningbo, 
China) 48  h later to induce superovulation. At 13–14  h 
post-hCG injection, ovulated oocytes were retrieved 
from the ampulla and collected in M2 medium, the 
cumulus cells were removed enzymatically using 0.1% 
(w/v) hyaluronidase. PCB2 (5  μg/mL), concanavalin A 
(ConA, 10  μg/mL) and ML-7 (30  μmol/L) were added 
according to the purpose of the experiment. For parthe-
nogenesis activation, denuded oocytes were transferred 
first into  (Ca2+)-free human tubal fluid (HTF) medium 
supplemented with 10  mmol/L strontium chloride and 
5  μg/mL cytochalasin B (Merck, Darmstadt, Germany), 
incubated at 37 °C with 5%  CO2 for 2.5 h. Then oocytes 
were transferred into HTF with 5  μg/mL cytochalasin 
B, incubated at 37  °C with 5%  CO2 for 3.5  h. Activated 
oocytes were then cultured in KSOM medium at 37  °C 
with 5%  CO2 for early embryo development. Cleav-
age and blastocyst rates were recorded at 24 h and 96 h, 
respectively.

Oocyte vitrification and thawing
For vitrification, pretreatment solution was PBS medium 
contained 10% (v/v) dimethylsulfoxide (DMSO) and 10% 
(v/v) ethylene glycol (EG) while vitrification solution 
was PBS medium contained 30% Ficoll (w/v), 15% EG 
(v/v) and 15% DMSO (v/v) in 0.5 mol/L sucrose. GV and 
in  vivo matured MII oocytes were vitrified by the open 
pulled straws method, respectively. Vitrified oocytes 
were stored in  LN2 for at least 1 week. For thawing, the 
oocytes were rinsed in 0.5 mol/L sucrose for 5 min, then 
rinsed three times in M2 medium. After thawing, GV 
oocytes were in vitro matured as mentioned above, MII 
oocytes were further recovered for 1 h and then used for 
subsequent experiment.

Immunofluorescence (IF) staining and confocal microscopy
Oocytes/embryos were fixed with 4% (w/v) paraformal-
dehyde (PFA) for 40 min at room temperature, followed 
by permeabilization with 0.5% Triton X-100 at room tem-
perature for 1 h. After being blocked in 3% BSA for 1 h 
at room temperature, oocytes/embryos were incubated 
with different primary antibodies (anti-CDX2, 1:500; 
anti-Nanog, 1:1000; anti-γH2A.X, 1:100; anti-LC3, 1:100; 
anti-α-tubulin, 1:8000; anti-pERM, 1:600; anti-pMRLC, 
1:300) overnight at 4 °C. The oocytes/embryos were fur-
ther incubated with an appropriate secondary antibody 
for 1 h at room temperature. Finally, all oocytes/embryos 
were stained with 4′,6-diamidino-2-phenylindole (DAPI, 
Vector Laboratories, Burlingame, CA, USA) for 5  min 
and the fluorescent images were taken with laser scan-
ning confocal microscopy (A1 Cell Imaging System; 
Nikon, Tokyo, Japan) under the same staining procedure 
and confocal microscopy parameters.

For F-actin staining, oocytes/embryos were fixed with 
4% (w/v) paraformaldehyde (PFA) for 40  min at room 
temperature, followed by permeabilization with 1% Tri-
ton X-100 at room temperature for 1  h. After being 
blocked in 3% BSA for 1 h at room temperature, oocytes/
embryos were incubated with Phalloidin-Teramethyl-
rhodamine B overnight at 4  °C. After washing three 
times, all oocytes/embryos were stained with DAPI for 
5 min and the fluorescent images were taken with laser 
scanning confocal microscopy (A1 Cell Imaging System; 
Nikon, Tokyo, Japan) under the same staining procedure 
and confocal microscopy parameters.

To conduct chromosome spread, the zona pellucida 
was removed by 0.5% pronase. Then oocytes were fixed in 
a medium of 1% paraformaldehyde in distilled  H2O con-
taining 0.15% Triton X-100 and 3 mmol/L dithiothreitol. 
After air drying, the chromosome was stained with DAPI 
for 10 min. Samples were examined under a laser scan-
ning confocal microscope.

For mitochondrial membrane potential (MMP) quan-
tification, oocytes were measured with JC-1 assay kit 
(Beyotime, Shanghai, China). Briefly, denuded oocytes 
were incubated with 10  mmol/L JC-1 at 37  °C with 5% 
 CO2 for 20  min. Then, oocytes were washed with M2 
three times and observed under a laser scanning confocal 
microscope or fluorescence microscope (IX73, Olympus, 
Tokyo, Japan). The MMP was calculated as the ratio of 
red fluorescence, corresponding to activated mitochon-
dria (J-aggregates), to green fluorescence, corresponding 
to less activated mitochondria (J-monomers).

For active mitochondrial distribution assay, oocytes 
were incubated in M2 medium containing 5  μmol/L 
Mito-Tracker (Beyotime, Shanghai, China) for 20  min. 
Then oocytes were washed with M2 medium three times 
and analyzed using a confocal laser scanning microscope.
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The active mitochondrial temperature assay was deter-
mined using the thermosensitive mitochondrial‐targeted 
fluorescent dye Mito Thermo Yellow (MTY), as described 
previously [53]. MTY was first added to the prewarmed 
culture medium and incubated at 37  °C in 5%  CO2 
for 15  min. Then, oocytes were added to the medium 
and the samples were incubated at 37  °C in 5%  CO2 for 
another 15 min. Oocytes were washed with M2 medium 
three times and analyzed using a confocal laser scanning 
microscope.

Subcellular  Ca2+ was evaluated using Fluo 3-AM, Rhod 
2-AM and Fluo 4-AM to indicate the intracellular cal-
cium, mitochondrial calcium  ([Ca2+]m) and endoplas-
mic reticulum calcium  ([Ca2+]ER), respectively. The zona 
pellucida of oocytes was removed by 0.5% pronase and 
then oocytes were incubated with dye for 20 min at 37 °C 
with 5%  CO2. Oocytes were washed with M2 medium 
three times and analyzed using a confocal laser scanning 
microscope.

Mean fluorescence intensity per unit area within the 
region of interest was used to quantify the fluorescence of 
each oocyte/embryo. Fluorescence intensity was assessed 
using NIS-Elements AR software (Nikon Instruments, 
Tokyo, Japan).

Determination of ATP levels
Cellular ATP content was measured using an Enhanced 
ATP Assay Kit (Beyotime, Shanghai, China). The ATP 
detection method was optimized according to previ-
ous reports [54, 55]. Briefly, serial dilutions of ATP were 
prepared (from 0 to 40 pmol). A total of three biological 
replicates were performed with 10 oocytes per replicate. 
Denuded oocytes for each group were collected in a cen-
trifuge tube containing 20 μL lysis buffer and homog-
enized by vortexing until lysis. ATP assay buffer, standard 
solutions and ATP detection diluent were injected into 
each well, and luminescence activity was measured 
immediately using a luminometer (Infinite F200; Tecan 
Austria GmbH, Austria). ATP content was calculated 
using a standard curve. The total amount of ATP was 
divided by the number of oocytes in each sample to 
obtain the mean content per oocyte (pmol/oocyte).

Intracellular ROS and GSH level assay
Denuded oocytes were added to the medium which 
contains 1  mmol/L 2′,7′-dichlorofluorescin diacetate 
(2’,7’-DCFHDA) for measuring ROS or 10  μmol/L Cell 
Tracker Blue (Invitrogen, Carlsbad, CA, USA) for meas-
uring GSH at 37 °C in 5%  CO2 for 20 min. Then oocytes 
were washed by M2 three times. The fluorescence was 
examined under a fluorescence microscope (IX73, Olym-
pus, Tokyo, Japan) with a filter at 460-nm excitation for 
ROS and 370-nm excitation for GSH. The fluorescence of 

each oocyte was analyzed by EZ-C1Free-Viewer (Nikon, 
Tokyo, Japan).

Annexin‑V staining of oocytes
Oocytes were stained with an Annexin-V staining kit 
(Vazyme, Nanjing, China) according to the manufactur-
er’s instructions. Briefly, oocytes were stained for 10 min 
with 100 μL of binding buffer containing 5 μL Annexin-
V-FITC at 37 °C. Samples from each group were mounted 
on glass slides and fluorescent signals were analyzed by a 
fluorescence microscope (IX73, Olympus, Tokyo, Japan).

Real‑time quantitative PCR (qRT‑PCR)
After thawing and further recovery for 1  h, 50 MII 
oocytes per repelicate were collected from different 
groups and stored in the -80 ℃. Total RNA was extracted 
using an RNeasy micro-RNA isolation kit (Qiagen, Valen-
cia, CA, USA) and then it was reversed to cDNA using 
a QuantiTect Reverse Transcription Kit (Qiagen). Prim-
ers for the published reference RNA sequences for real-
time quantitative polymerase chain reaction (qPCR) were 
listed in Table  1. Primers were tested for efficiency to 
ensure their specificity. qPCR was performed by adding 1 
μL cDNA to a mixture of SYBR premix qPCR SuperMix 
(Qiagen), forward and reverse primers (10 μmol/L), and 
RNase-free water to a final volume of 20 μL. The cycling 
conditions were 94  °C for 30 s, followed by 42 cycles of 
94  °C for 5  s and 60  °C for 34  s. Relative mRNA levels 
of target genes were calculated using the  2–ΔΔCt method 
with Ppia and Rpl7 as the reference genes according to 
previous reports [56, 57].

Targeted metabolomics analysis
The amino acids and sugar in blastocyst culture were 
measured using ultra-performance liquid chromatogra-
phy (UPLC). Samples were analyzed on AB SCIEX 5500 
QQQ-MS system (SCIEX, Framingham, MA, USA) 
equipped with a Waters UPLC (Milford, MA, USA).

For the quantification of amino acids and sugar metab-
olites, 200 μL blastocyst culture supernatant for each 
group were collected and stored at -80 ℃ before deter-
mination. After slow thawing at 4  °C, 50 μL sample was 
removed and reconstituted with 450 μL of ice ethanol 
containing 100  ng/mL of internal standard. The mix-
ture was allowed to stand at 4 °C for 30 min and centri-
fuged at 12,000  r/min for 10  min. The sample extracts 
were injected onto an Xbridge BEH Amide Column 
(4.6 mm × 150 mm, 3.5 μm), and the column temperature 
was maintained at 40  °C. The UPLC system employed a 
gradient elution program consisting of water with 0.1% 
formic acid (mobile phase A) and acetonitrile (mobile 
phase B). The gradient elution conditions were 0–2 min, 
85% B; 2–7  min, 65% B; 7–10  min, 30% B; 10–12  min, 
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85% B, with a 0.45 mL/min flow rate. The retention times 
were shown in Additional file  1:  Table S1. The relative 
amount of target metabolites were normalized to the 
peak area of the IS. Data were analyzed using MultiQuant 
software (SCIEX, Abingdon, United Kindom).

Experimental design
This study mainly consisted of Exp. 1, 2, and 3. In each 
of the experiments, all the fresh oocytes were randomly 
divided into three groups: fresh group (control), vitri-
fied without (vitrified group), or with PCB2 treatment 
(V + PCB2 group). V + PCB2 stands for PCB2 addition 
in both vitrification/warming and the recovery medium, 
and the concentration was 5  μg/mL. In terms of GV 
oocytes, three groups were assigned as mentioned 
above. PCB2 were supplemented with the same con-
centration of 5  μg/mL in the maturation medium. GV 
oocytes were cultured for 2 h to count GVBD and 12 h 
to count PBE.

In Exp. 1, vitrified-thawed MII oocytes were in  vitro 
recovered for 1  h. After thawing, redox status, orga-
nelle distribution, mitochondrial function,  Ca2+ level, 
DNA damage, early apoptosis and autophagy, changes 
of cortical tension (pERM and pMRLC) and underly-
ing mechanisms were explored. Besides, genes related 
to mitochondrial fusion/fission (Mfn1, Mfn2, Opa1 and 
Drp1) and autophagy (Beclin1, Mpa1lc3a, Ulk1, Atg14, 
Lamp1, Lamp2) were quantified by qPCR.

In Exp. 2, vitrified-thawed GV oocytes were transferred 
into M16 medium with/without PCB2 for in  vitro mat-
uration. The effect of PCB2 on oocyte meiosis progres-
sion during vitrification and the underlying mechanism 
was explored. GVBD and PBE rates were recorded in the 

three groups. Next, spindle morphology, aneuploidy rate 
and spindle positioning were detected.

In Exp. 3, the lasting effect of PCB2 on embryo devel-
opment was studied. In this experiment, parthenogenesis 
activation was performed on vitrified-thawed in vivo MII 
oocytes. Firstly, the blastocyst quality was determined by 
CDX2 and Nanog staining. Next, cortical tension regula-
tory protein pERM was evaluated in different developmen-
tal stages (2-cell, 4-cell, 6- to 8-cell, morula, blastocyst) by 
immunostaining. Finally, targeted metabolomics analysis 
was performed using the day 4 culture media.

Statistical analysis
All percentages or values from at least three repeated 
experiments were expressed as mean ± SEM, and the 
number of oocytes observed was labeled in parentheses 
as (n). Data were analyzed by unpaired-samples t-test, 
provided by GraphPad Prism 8 (GraphPad Software Inc., 
La Jolla, CA, USA) statistical software. The level of sig-
nificance was accepted as P < 0.05.

Results
PCB2 improves oocyte viability and embryo development 
after vitrification
We first examined the survival rate of vitrified-thawed 
oocytes with or without PCB2 treatment. As shown in 
Fig.  1B, the survival rate of vitrified-thawed oocytes was 
increased after PCB2 treatment (Vitrified = 81.76 ± 1.44%, 
V + PCB2 = 92.79 ± 2.18%, P < 0.05). To explore the poten-
tial role of PCB2 in embryo development, oocytes from dif-
ferent groups were thawed and used for parthenogenetic 
activation. As shown in Fig. 1A, C and D, PCB2 could signif-
icantly improve the cleavage rate (Vitrified = 83.13 ± 2.58%, 

Table 1 Primer sequences used for quantitative real-time PCR

Beclin1, beclin 1, autophagy related; Mpa1lc3a, microtubule associated protein 1 light chain 3 alpha; Ulk1, unc-51 like autophagy activating kinase 1; Atg14, autophagy 
related 14; Lamp1, lysosomal associated membrane protein 1; Lamp2, lysosomal associated membrane protein 2; Mfn1, mitofusin 1; Mfn2, mitofusin 2; Opa1, 
mitochondrial dynamin like GTPase; Drp1, Dynamin related protein 1; Ppia, peptidylprolyl isomerase A; Rpl7, ribosomal protein L7

Gene Primer sequence (5ʹ to 3ʹ) NCBI reference sequences

Beclin1 F: ATG GAG GGG TCT AAG GCG TC. R: TCC TCT CCT GAG TTA GCC TCT NM_001359819.1

Map1lc3a F: CAT GAG CGA GTT GGT CAA GA. R: TTG ACT CAG AAG CCG AAG GT NM_025735.3

Ulk1 F: AAG TTC GAG TTC TCT CGC AAG. R: CGA TGT TTT CGT GCT TTA GTTCC NM_001347394.1

Atg14 F: GAG GGC CTT TAC GTG GCT G. R: AAT AGA CGA AAT CAC CGC TCTG NM_172599.4

Lamp1 F: CAG CAC TCT TTG AGG TGA AAAAC. R: ACG ATC TGA GAA CCA TTC GCA NM_001317353.1

Lamp2 F: TGT ATT TGG CTA ATG GCT CAGC. R: TAT GGG CAC AAG GAA GTT GTC NM_001017959.2

Mfn1 F: GGA CTT TAT CCG AAA CCA GA. R: TGA GAT TGA AGA ATG GAG GC NM_024200.4

Mfn2 F: TTC TTG TGG TCG GAG GAG TG. R: CTT TGG TGG TCC AGG TCA GT NM_001285920.1

Opa1 F: CCG AGG ATA GCT TGA GGG TT. R: CGT TCT TGG TTT CGT TGT GA NM_001199177.1

Drp1 F: CAG GTG GTG GGA TTG GAG AC. R: CTG GCA TAA TTG GAA TTG GTTT NM_001025947.2

Ppia F: GAG CTG TTT GCA GAC AAA GTTC. R: CCC TGG CAC ATG AAT CCT GG NM_008907.2

Rpl7 F: TCA ATG GAG TAA GCC CAA AG. R: CAA GAG ACC GAG CAA TCA AG NM_011291.5
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V + PCB2 = 95.48 ± 2.26%, P < 0.05) and blastocyst rate 
(Vitrified = 38.92 ± 5.18%, V + PCB2 = 61.51 ± 3.94%, 
P < 0.05) as compared to the non-supplemented group.

Effects of PCB2 on oxidative stress and organelle 
distribution after vitrification
The redox state of the oocyte is important for the main-
tenance of cell viability. Therefore, ROS and GSH lev-
els of oocytes were measured using 2’,7’-DCFHDA and 
Cell Tracker Blue, respectively. As shown in Fig.  2A-
C, PCB2 ameliorated vitrification-induced oxidative 
stress in oocytes, indicated by reduced ROS level (Vit-
rified = 48.80 ± 4.00, V + PCB2 = 35.94 ± 2.43, P < 0.05) 
and increased GSH level (Vitrified = 162.30 ± 1.49, 
V + PCB2 = 189.10 ± 1.23, P < 0.001). The dis-
tribution of mitochondria and ER were also 
measured. PCB2 could reduce the abnormal distri-
bution of mitochondria (Vitrified = 47.40 ± 2.96%, 

V + PCB2 = 25.76 ± 0.76%, P < 0.05), but the ER dis-
tribution was not affected after vitrification (P > 0.05) 
(Fig. 2D-F).

Mitochondria function was improved after PCB2 treatment 
in vitrified oocytes
Mitochondrial membrane potential can directly reflect 
the function of mitochondria. As shown in Fig.  3A and 
C, MMP was significantly decreased in vitrified oocytes, 
whereas PCB2 effectively reversed the reduction (Vitri-
fied = 1.10 ± 0.08, V + PCB2 = 1.93 ± 0.06, P < 0.001). In 
addition, Mito Thermo Yellow (MTY) is a temperature-
sensitive fluorescent probe, in which fluorescence inten-
sity was negatively correlated with temperature. After 
vitrification, oocytes showed decreased fluorescence 
intensity, indicating that mitochondria temperature was 
significantly increased after vitrification, and PCB2 treat-
ment reduced intracellular mitochondria temperature 

Fig. 1 Survival rate and embryo development of vitrified-thawed MII oocytes. A Representative images of cleavage and blastocyst fromation. Scale 
bar = 50 μm. B The survival rate after thawing. C The rate of cleavage formation. D The rate of blastocyst formation. “n” represents the cell number 
used in this experiment. Data are presented as mean percentage (mean ± SEM) of at least three independent experiments. *P < 0.05, **P < 0.01, ns 
non significance
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(Vitrified = 921.10 ± 54.83, V + PCB2 = 1056.00 ± 37.72, 
P < 0.05) (Fig. 3B and D). Genes related to mitochondrial 
fusion (Mfn1, Mfn2 and Opa1) and fission (Drp1) were 
also examined. Mfn1, Mfn2 and Drp1 were all misex-
pressed in vitrified oocytes but restored after PCB2 sup-
plementation (P < 0.05) (Fig. 3E).

PCB2 restoresmitochondrial and endoplasmic reticulum 
 Ca2+ levels in vitrified oocytes
Calcium homeostasis of oocytes plays a significant role in 
the subsequent development capacity, Fluo 3-AM, Rhod 
2-AM, and Fluo 4-AM were used to detect the cytoplas-
mic calcium,  [Ca2+]m, and  [Ca2+]ER, respectively. To deter-
mine whether Rhod 2-AM and Fluo 4-AM can specifically 

track  [Ca2+]m and  [Ca2+]ER in oocytes, we used Mito-
Tracker and ER-Tracker to co-stain with the above two cal-
cium dyes in GV oocytes, respectively (Fig. 4A). The result 
showed that the fluorescent  Ca2+ signal was localized 
within the corresponding organelle, declaring that Rhod 
2-AM and Fluo 4-AM were efficient in tracking  Ca2+ sig-
nals. After vitrification,  [Ca2+]m was significantly increased 
(Fresh = 3339.00 ± 45.39, Vitrified = 3643.00 ± 32.92, 
P < 0.001) while  [Ca2+]ER (Fresh = 3637.00 ± 48.65, Vit-
rified = 3443.00 ± 31.28, P < 0.001) was decreased. 
However, cytoplasmic calcium was not affected after 
vitrification. As expected, PCB2 supplementation effec-
tively restored  [Ca2+]m (Vitrified = 3643.00 ± 32.92, 
V + PCB2 = 3242.00 ± 40.65, P < 0.001) and  [Ca2+]ER 

Fig. 2 PCB2 can recover redox status and organelle distribution. A ROS and GSH levels of oocytes in different groups. Scale bar = 50 μm. B The 
fluorescence intensity of ROS signals. C The fluorescence intensity of GSH signals. D Representative images of mitochondria and ER distribution. 
Scale bar = 50 μm. E Rate of abnormal mitochondria distribution. F Rate of abnormal ER distribution. “n” represents the cell number used in this 
experiment. Data are presented as mean percentage (mean ± SEM) of at least three independent experiments. *P < 0.05, ***P < 0.001, ns non 
significance
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(Vitrified = 3443.00 ± 31.28, V + PCB2 = 3703.00 ± 30.51, 
P < 0.001) levels of vitrified-thawed oocytes.

PCB2 inhibits DNA damage, apoptosis, and autophagy 
in vitrified oocytes
Oxidative stress usually results in the accumulation 
of DNA damage and accelerates early apoptosis and 
autophagy. An Annexin-V probe was used to assess 
apoptosis initiation in oocytes (Fig. 5A-B). The increased 
percentage of early apoptosis in vitrified oocytes was 
suppressed by supplementation with PCB2 (Vitri-
fied = 89.58 ± 6.25%, V + PCB2 = 35.21 ± 4.60, P < 0.01). 
Furthermore, vitrified-thawed oocytes showed more 
intense LC3 signals than fresh ones (Fresh = 34.23 ± 0.67, 

Vitrified = 40.64 ± 0.57, P < 0.001), while PCB2 treat-
ment reversed this phenomenon (Vitrified = 40.64 ± 0.57, 
V + PCB2 = 36.88 ± 0.59, P < 0.001) (Fig.  5A and C). The 
expression of autophagy and lysosome-related genes were 
further quantified. In vitrified-thawed oocytes, expression 
of Beclin1 (P < 0.001), Map1lc3a (P < 0.01), Ulk1 (P < 0.01), 
Atg14 (P < 0.05) and Lamp2 (P < 0.05) were significantly 
up-regulated. Notably, PCB2 treatment down-regulated 
the expression of Beclin1 (P < 0.001), Map1lc3a (P < 0.01), 
Ulk1 (P < 0.05) and Lamp2 (P < 0.05) (Fig. 5D). DNA dam-
age was next detected by γ-H2A.X staining (Fig.  5F). 
Vitrification led to a higher fluorescence intensity of 
γ-H2A.X (Fresh = 6.20 ± 1.51, Vitrified = 13.01 ± 1.95, 
P < 0.01), which could be rescued by PCB2 treatment 

Fig. 3 Mitochondrial function was impaired after vitrification. A Mitochondrial membrane potential was detected by JC-1 staining. Scale 
bar = 50 μm. B Mitochondrial temperature was detected by MTY fluorescent probe. Scale bar = 50 μm. C Quantification of the mitochondria 
membrane potential level. D Quantification of the MTY signals. E Expression of Mfn1, Mfn2, Opa1 and Drp1 was examined by qPCR. “n” represents 
the cell number used in this experiment. Data are presented as mean percentage (mean ± SEM) of at least three independent experiments. 
*P < 0.05, **P < 0.01, ***P < 0.001, ns non significance



Page 9 of 22Zhuan et al. Journal of Animal Science and Biotechnology           (2022) 13:95  

(Vitrified = 13.01 ± 1.95, V + PCB2 = 6.31 ± 2.17, P < 0.01) 
(Fig. 5E).

PCB2 has a beneficial effect on vitrified oocytes meiosis 
progression
As shown in Fig. 6A-C, GVBD (Fresh = 86.01 ± 1.10%, Vitri-
fied = 68.54 ± 5.55%, P < 0.05) and PBE (Fresh = 96.34 ± 2.06%, 
Vitrified = 76.67 ± 5.09%, P < 0.05) rates were significantly 
decreased in vitrified oocytes compared with the fresh 

counterparts. To investigate whether PCB2 could alleviate 
meiosis damage of mouse oocytes caused by vitrification, 
PCB2 was added into in vitro maturation medium. PCB2 sig-
nificantly increased the rate of PBE (Vitrified = 76.67 ± 5.09%, 
V + PCB2 = 94.66 ± 2.68%, P < 0.05), but had no effect 
on the occurrence of GVBD (Vitrified = 68.54 ± 5.55%, 
V + PCB2 = 82.22 ± 2.22%, P > 0.05). Furthermore, an 
increased rate of disorganized spindle apparatuses was 
present in vitrified oocytes, while PCB2 promoted the 

Fig. 4 PCB2 has a positive role in regulating calcium level in vitrified oocytes. A Rhod 2-AM and Fluo 4-AM co-stained with Mito-tracker and 
ER-tracker respectively to indicate  [Ca2+]m and  [Ca2+]ER. Scale bar = 50 μm. B Representative images of cytoplasmic calcium,  [Ca2+]m,and  [Ca2+]ER 
in different groups. Scale bar = 50 μm. C-E Quantification of Fluo 3-AM, Rhod 2-AM and Fluo 4-AM fluorescence intensity. “n” represents the cell 
number used in this experiment. Data are presented as mean percentage (mean ± SEM) of at least three independent experiments. ***P < 0.001, ns 
non significance
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Fig. 5 PCB2 can alleviate oxidative stress-related cell damage. A Representative images of early apoptotic indicator Annexin-V and autophagy 
indicator LC3 in different groups. DNA was counterstained with DAPI (blue). Scale bar = 50 μm. B The rate of early apoptosis. C The fluorescence 
intensity of LC3 signals. D Expression of Beclin1, Map1lc3a, Ulk1, Atg14, Lamp1, and Lamp2 was examined by qPCR. E Relative fluorescence intensity 
of γH2A.X signals. F Representative images of DNA damage in different groups. Arrow indicates polar body. Scale bar = 50 μm. “n” represents the 
cell number used in this experiment. Data are presented as mean percentage (mean ± SEM) of at least three independent experiments. *P < 0.05, 
**P < 0.01, ***P < 0.001, ns non significance
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formation of normal spindle (Vitrified = 35.51 ± 1.10%, 
V + PCB2 = 23.69 ± 2.10%, P < 0.01) (Fig.  6D and F). The 
occurrence of aneuploidy in the vitrified group was res-
cued by PCB2 treatment (Vitrified = 42.77 ± 1.57%, 
V + PCB2 = 26.84 ± 3.43%, P < 0.05) (Fig. 6E and G).

PCB2 affects spindle migration and F‑actin density 
in vitrified oocytes
Spindle migration during oocyte maturation is critical 
for polar body formation. To investigate how vitrifica-
tion reduces polar body extrusion, spindle position in 
oocytes was examined. The distance between the spin-
dle pole to the cortex (Length, L) and the diameter (D) 
of the oocyte was quantified to determine the cortically 
and centrally positioned spindles (Fig.  7A-B). After 
9  h culture of oocytes, compared to the fresh group 
(0.12 ± 0.01%), a large proportion of spindles in the 
vitrified group remained in the center of the oocytes, 
whereas most spindles in the fresh and PCB2 treatment 
group migrated to the cortex (Vitrified = 0.23 ± 0.02%, 
V + PCB2 = 0.17 ± 0.01%, P < 0.01). Since F-actin con-
trols chromosome gathering and spindle positioning 
in oocytes, we next analyzed the actin filament in the 
MI stage to further explore the mechanism underlying 
spindle positioning defects. When normalized with that 
of the fresh group, the total F-actin fluorescent signal in 
the vitrified oocytes was decreased and PCB2 treatment 
rescued this phenomenon (Vitrified = 0.35 ± 0.03%, 
V + PCB2 = 0.66 ± 0.04%, P < 0.001) (Fig. 7C-D).

PCB2 elevates cortical tension in vitrified oocytes
The actin cortex functions in directing spindle migra-
tion in part through membrane tension regulation. To 
verify whether cortical tension was altered in vitrified 
oocytes, pERM and pMRLC were examined. As shown in 
Fig. 8A-B, the fluorescent signal of pERM was significantly 
decreased in vitrified groups (Fresh = 172.00 ± 6.69, Vit-
rified = 127.70 ± 6.31, P < 0.001). Moreover, the fluores-
cent signal of pMRLC in the cytoplasm was significantly 
increased after vitrification (Fresh = 387.20 ± 10.05, Vitri-
fied = 515.40 ± 17.54, P < 0.001). The role of PCB2 played 
in cortical tension regulation under vitrification stress was 
also explored. PCB2 treatment could restore cortical tension 
in vitrified oocytes as evidenced by elevated pERM (Vitri-
fied = 127.70 ± 6.31, V + PCB2 = 188.80 ± 6.87, P < 0.001) 
and reduced pMRLC intensities (Vitrified = 515.40 ± 17.54, 
V + PCB2 = 295.80 ± 36.77, P < 0.001) (Fig. 8C-D).

Cortical tension regulation associated with ameliorated 
mitochondrial function
ConA is a tetravalent lectin that crosslinks the cell surface 
through binding to membrane glycosylated proteins [29]. 
It has been reported that ConA treatment can increase 

cortical tension in oocytes [24]. Here, we use ConA 
or myosin light chain kinase (MLCK) specific inhibi-
tor ML-7 to induce increased or decreased cortical ten-
sion respectively, and further investigate their effects on 
MMP, mitochondrial distribution and ATP production. 
Compared to the vitrified control group (0.33 ± 0.03), 
both PCB2 (0.53 ± 0.04, P < 0.01) and ConA (0.64 ± 0.06, 
P < 0.001) significantly increased the MMP after vitri-
fication (Fig.  9A-B). PCB2 also reversed MMP reduc-
tion after ML-7 treatment (P < 0.05). Moreover, PCB2 
(14.72 ± 1.63%, P < 0.01), as well as ConA (14.21 ± 2.09%, 
P < 0.01), significantly alleviated the abnormal distribution 
(Fig. 9D-E). Interestingly, unlike ConA (0.45 ± 0.04 pmol/
oocyte, P > 0.05), PCB2 (0.82 ± 0.07 pmol/oocyte, P < 0.05) 
also exhibited an additional role in promoting ATP pro-
duction compared with vitrified group (0.51 ± 0.01 pmol/
oocyte) (Fig. 9C). The results showed that PCB2 treatment 
not only alleviated mitochondrial defects but also pro-
moted ATP production. This drove us to further investi-
gate the interplay between cortical tension and ATP. Thus, 
vitrified oocytes were treated with rotenone (mitochon-
drial respiratory chain complex I inhibitor), diphenyle-
neiodonium (DPI, pentose phosphate pathway inhibitor), 
and oligomycin (ATP synthase inhibitor). The expression 
of pERM was significantly decreased after the treatment 
of the three inhibitors (P < 0.001) (Fig. 9F). Among them, 
oligomycin almost eliminated pERM expression (Fig. 9G). 
Vitrified oocytes were then treated with PCB2 in com-
bination with the individual inhibitor mentioned above. 
Results showed that PCB2 could rescue the cortical ten-
sion reduction induced by rotenone or DPI (P < 0.001), 
but not oligomycin (P > 0.05) (Fig.  9G). This indicated 
that PCB2 mediated cortical tension through the electron 
transport chain and pentose phosphate pathway.

PCB2 was mainly involved in the regulation 
of glycometabolism during embryo development
As shown in Fig.  10A-C, the blastocyst quality was 
greatly improved after PCB2 treatment indicated by 
CDX2 (a cell lineage-specific marker for trophectoderm 
(TE)) and Nanog (a cell lineage-specific marker for inner 
cell mass (ICM)) staining. Both the ratio of ICM to TE 
(P < 0.001) and ICM to total cell number (P < 0.001) were 
significantly increased in the PCB2 group. To further dis-
sect the underlying mechanisms of the effects of PCB2 on 
the subsequent embryo development of vitrified oocytes, 
we performed targeted metabolomics analysis of day4 
culture media from fresh, vitrified and PCB2 treatment 
groups. PCB2 treatment significantly affected the metab-
olism of five saccharides, while only one amino acid 
was affected (Fig.  10D-M). This implied that PCB2 was 
mainly involved in glycometabolism to regulate embry-
onic development.
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Fig. 6 Vitrification induced meiosis progress defection was alleviated by PCB2. A Representative images of GV, GVBD and PBE. Scale bar = 100 μm. 
B The rate of GVBD in different groups. C The rate of PBE in different groups. D Immunofluorescent staining of matured oocytes for α-tubulin (green) 
and chromosome (blue). Scale bar = 50 μm. E Representative images of euploidy and aneuploidy chromosomes. Scale bar = 10 μm. F Comparison 
of abnormal spindle formation in different groups. G Rate of euploidy and aneuploidy. “n” represents the cell number used in this experiment. Data 
are presented as mean percentage (mean ± SEM) of at least three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001, ns non significance
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PBC2 regulates cortical tension in morula and blastocyst 
cells after vitrification
pERM was used as an indicator to investigate the change 
of cortical tension in embryo cells from different stages 
after vitrification. As shown in Fig. 11, cell cortical ten-
sion in 2-cell, 4-cell and 6- to 8-cell embryos was not 
affected after vitrification, but cell cortical tension sig-
nificantly decreased at morula and blastocyst stages. 
PCB2 can improve the cell cortical tension abnormalities 
caused by vitrification. Interestingly, the fluorescent sig-
nal of F-actin in embryo cells was significantly reduced 
in the vitrified group (P < 0.001), and PCB2 did not play a 
positive role (P > 0.05).

Discussion
In the present study, the mechanism by which the natu-
ral antioxidant PCB2 improved the viability of vitrified 
oocytes was revealed, and the interaction between corti-
cal tension and mitochondrial function during vitrifica-
tion was investigated. To our knowledge, this is the first 

report to unravel increased cortical tension as another 
contributor for improved viability in vitrified oocytes and 
clarify the muti-protective roles of PCB2 in response to 
vitrification stimuli.

Cryopreservation is a method of choice for establish-
ing animal gene banks and preserving female fertility. 
However, MII oocyte cryopreservation is much more 
challenging among reproductive cells and tissues, mainly 
because of the large size, low surface area to volume 
ratio, relatively high water content, and presence of the 
meiotic spindle in MII oocytes [58]. It is reported that 
vitrification can induce the generation of excessive ROS, 
which severely impairs endogenous antioxidant systems 
in oocytes [55]. As a powerful antioxidant, procyanidin 
extract provides significantly greater protection against 
free radicals and free radical-induced lipid peroxida-
tion and DNA damage than vitamins C, E [59]. PCB2, 
a member of oligomeric anthocyanins precursors, bal-
anced the redox status of vitrified oocytes and signifi-
cantly improved mitochondrial function (Figs.  2 and 3). 

Fig. 7 F-actin and spindle migration after vitrification. A The distance between the spindle pole to the cortex (Length, L) and the diameter (D) 
of oocyte was quantified to determine the cortically and centrally positioned spindles. Scale bar = 50 μm. B Rate of L/D in different groups. 
C Representative images of F-actin in different groups. Scale bar = 50 μm. D Quantification of F-actin fluorescence intensity. “n” represents the cell 
number used in this experiment. Data are presented as mean percentage (mean ± SEM) of at least three independent experiments. **P < 0.01, 
***P < 0.001
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Mitochondria also have multiple functions, including 
the regulation of calcium and actively participating in 
the regulation of signal transduction pathways [60]. Vit-
rification triggered  [Ca2+]ER release leading to abnor-
mally increased  [Ca2+]m levels in bovine [61], which was 
also confirmed in our results (Fig. 4). The accumulation 
of ROS can further cause double-strand breaks (DSB) 
[62]. Early apoptosis and autophagy were also alleviated 
through PCB2 antioxidant property (Fig. 5). These results 
confirmed that PCB2 can restore intracellular calcium 
homeostasis and redox levels through regulating mito-
chondrial function.

The damage caused by vitrification to the meiotic pro-
cess is directly reflected in the two processes of germinal 
vesicle breakdown and pole body extrusion [63]. PCB2 
can rescue the decreased PBE rate in vitrified oocytes 
(Fig.  6). Although vitrified oocytes can extrude the first 
polar body after meiosis resumption, the chromosome 
alignment and spindle formation are more error-prone 

[64]. PCB2 not only played a positive role in spindle for-
mation, but also significantly reduced the aneuploidy 
rate of vitrified oocytes. The functional integrity of the 
spindle is also demonstrated by the migration from the 
oocyte center to the cortex during the MI phase, which 
is mediated by F-actin [65]. Disruption of F-actin also 
contributes to the generation of aneuploid oocytes [66]. 
As expected, PCB2 ameliorated the MI-phase spindle 
migration damage caused by vitrification and increased 
the F-actin signal intensity (Fig.  7). These results indi-
cated that PCB2 can upregulate vitrified oocyte quality 
by restoring the meiotic process.

Changes in cell fate are often accompanied by changes 
in cell shape and mechanics. Oocyte underwent a dra-
matic osmotic pressure change during the vitrification/
thawing process, which resulted in a drastic change in 
the morphology of the oocyte [67, 68]. Cortical tension is 
mediated by ERM family, myosin-II and actin [19]. In the 
present study, the level of pERM, which was positively 

Fig. 8 PCB2 reestablishes cortical tension in vitrified oocytes. A Immunofluorescent staining of matured oocytes for pERM. DNA was 
counterstained with DAPI (blue). Scale bar = 100 μm. B Immunofluorescent staining of matured oocytes for pMRLC. DNA was counterstained with 
DAPI (blue). Scale bar = 100 μm. C Mean fluorescence intensity of pERM signals. D Mean fluorescence intensity of pMRLC signals. “n” represents the 
cell number used in this experiment. Data are presented as mean percentage (mean ± SEM) of at least three independent experiments. ***P < 0.001
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Fig. 9 PCB2 and ConA exert different roles in mitochondrial function. A Mitochondrial membrane potential was detected by JC-1 staining. ConA, 
PCB2 and ML-7 were supplemented in recovery medium for 1 h during warming process. Scale bar = 50 μm. B Quantification of the MMP level in 
different groups. C ATP was measured in different groups. D Representative images of mitochondria distribution in different groups. Oocytes were 
stained with Mito-Tracker Green. Scale bar = 50 μm. E Rate of abnormal mitochondria distribution in different groups. F pERM staining of matured 
oocytes. DNA was counterstained with DAPI (blue). Scale bar = 50 μm. G Relative fluorescence intensity of pERM signals was recorded in different 
groups. “n” represents the cell number used in this experiment. Data are presented as mean percentage (mean ± SEM) of at least three independent 
experiments. *P < 0.05, **P < 0.01, ***P < 0.001, ns non significance
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Fig. 10 PCB2 was mainly involved in the regulation of glycometabolism during embryo development. A Immunofluorescent staining of CDX2 
and Nanog in blastocysts from different groups. DNA was counterstained with DAPI (blue). Scale bar = 50 μm. B-C The ICM: TE rate and ICM: total 
cells rate were compared in different groups. D Schematic diagram of metabolomic sample collection. E–H The relative contents of four amino 
acids (L-hydroxyproline, L-citrulline, L-kynurenine hydrate, and L-glutamic acid) in different groups. I-M The mean contents of five carbohydrates 
(arabinose, fructose, glucose, maltose, and xylose) in the medium of different groups. “n” represents the cell number used in this experiment. Data 
are presented as mean percentage (mean ± SEM) of at least three independent experiments. ***P < 0.001, ns non significance
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correlated with cortical tension [24], significantly 
decreased in the vitrified oocyte (Fig.  8). The change of 
pMRLC after vitrification was also consistent with the 
cortical tension reduced model [28, 29]. However, PCB2 
showed the same effect as ConA, which helps to re-estab-
lish cortical tension (pERM and pMRLC) (Fig. 8).

Cytoskeletal dynamics induced by mechanical signals 
can induce cytoplasmic enzyme response and/or activ-
ity to influence cell metabolism [69, 70], and also play a 
critical role in the regulation of mitochondrial structure 
[71, 72]. Therefore, changes in cortical tension are likely to 
be related to mitochondrial function. PCB2 not only res-
cued the decline of MMP like ConA, but also promoted 
ATP production, which implied that PCB2 had an extra 

role. However, there was a discrepancy between MMP 
and ATP content, previous finding also discovered that 
native mitochondrial ATP (ATPmito) and mitochondrial 
inner membrane potential (IMPmito) were not necessar-
ily correlated under physiological conditions [73]. This 
can be interpreted as IMPmito at any given time is sim-
ply the difference in voltage in the mitochondrial inner 
membrane, but ATPmito is a result of not only produc-
tion but also consumption and flux from the mitochon-
drial matrix [73]. Furthermore, PCB2 corrected the 
abnormal mitochondrial distribution (Fig. 9). The results 
indicate that the mechanism underlying PCB2 modu-
lated cortical tension elevation differs from that of ConA. 
The cortical tension increased by ConA can only affect 

Fig. 11 PCB2 has a long-lasting effect on the cortical tension of embryos. A-E Immunofluorescent staining of pERM in different stages of 
embryo. Scale bar = 50 μm. F-J Relative fluorescence intensity of pERM signals was recorded in different groups. K–O Quantification of F-actin 
fluorescence intensity.“n” represents the cell number used in this experiment. Data are presented as mean percentage (mean ± SEM) of at least three 
independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001, ns non significance
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mitochondrial localization and inner membrane voltage 
from the cytoskeleton dynamics, while the antioxidant 
PCB2 probably participates in the consumption and flux 
of ATP in the mitochondrial matrix in addition to the 
above functions.

Mitochondria provide ATP through electron trans-
port chain coupling OXPHOS, which has been proved 
necessary for cytoskeletal migration [74, 75]. For exam-
ple, myosin is an ATP-dependent actin-based molecu-
lar motor that performs a variety of functions such as 
spindle assembly, spindle orientation, chromosome 
segregation, and cytokinesis [76]. Rotenone induces 
free radical formation, ATP production deficiency and 
impairs oocyte maturation by inhibiting mitochondrial 
electron transport chain complex I [77, 78]. Oligomycin 
binds to the mitochondrial membrane embedding area 
F0 and blocks proton conductance through the inner 
membrane, thereby inhibiting the synthesis and hydroly-
sis of ATP [79]. Rotenone and oligomycin both severely 
induce decreased cortical tension in vitrified oocytes. 
However, PCB2 could rescue the inhibition of rotenone, 
but not oligomycin (Fig.  9). Pentose phosphate pathway 
(PPP) inhibitor DPI was also used to determine the effect 
of metabolism on cortical tension in vitrified oocytes. 
DPI inhibits NADPH oxidase, which is an enzyme that 
produces NADP required for PPP activity [80]. DPI treat-
ment of porcine oocytes can inhibit glycolysis and PPP, 
resulting in decreased intracellular glutathione concen-
tration and maturation rate [81]. PCB2 also salvaged the 
decline in cortical tension caused by DPI (Fig.  9). The 
above results indicate that PCB2 could influence ATP 
flux through the electron transport chain, but PCB2 
loses function to cortical tension when ATP synthesis is 
blocked. Further proved that ATP production directly 
affects cortical tension.

Since PCB2 has a positive effect on vitrified oocyte 
viability, we then explored the role in embryo develop-
ment. The increased ICM ratio was always correlated with 
high developmental potential [82]. As expected, PCB2 
enhanced the quality of subsequent blastocyst, indicated 
by increased ICM cell number (Fig. 10). Before implanta-
tion, glucose uptake and utilization were prerequisites for 
embryo survival and normal development, abnormal glu-
cose transport resulted in programmed embryonic death 
[83]. Hence, sufficient and timely glucose transport was 
important in maintaining the dynamic balance of glucose 
metabolism in oocytes and embryos [84, 85]. Vitrification 
decreased glucose transporter 1 (GLUT1) expression in 
mouse MII oocytes, leading to abnormal glucose transport 
and metabolism [57], which was further verified by our 
targeted metabolomics analysis of day 4 culture medium 
(Fig. 10D). PCB2 treatment rescued metabolism deficiency 

by restoring glycometabolism activity in embryos. PPP is 
important in oocytes glycometabolism [86] and controls 
TE cell fate [87]. These results further demonstrate that 
PCB2 could relieve the effect of PPP inhibitor DPI on 
oocytes, and promote embryo development [88]. Thus, 
our data imply that PCB2 has a significant protective effect 
on vitrified oocytes and subsequent embryo development 
through glycometabolism regulation.

Embryo mechanical property is also an important indi-
cator to evaluate it’s quality [89]. The superior effects of 
PCB2 on oocytes can extend into embryonic develop-
ment, which prompted us to further explore whether 
PCB2 is involved in the mediation of cortical tension in 
the embryo cells. During blastocyst development, the 
lumenal pressure increases about twofold, which trans-
lates into a concomitant increase in cell cortical tension 
and tissue stiffness of the trophectoderm [90]. In the pre-
sent study, the cortical tension of embryo cells in differ-
ent stages was detected by pERM immunofluorescence 
staining. Results showed that vitrification did not alter 
cortical tension in embryo cells at the 2-cell to 6–8-cell 
stages, but significantly reduced cortical tension in mor-
ula and blastocyst cells. Our results implied that vitrifi-
cation-induced decreased cortical tension would impact 
further embryo development, which was consistent with 
the previous finding that the reduced pressure would 
lead to the decreased developmental potential of thawing 
embryos [91]. It was reported that during embryo devel-
opment, cortical F-actin ring assembles at the apical pole 
of the embryo’s outer cells, subsequently forming a ring 
structure and extending to the cell–cell junction and ini-
tiating a tension-dependent zipper mechanism along the 
junction, which is required to seal the embryo for blasto-
cyst formation [92]. In our study, the decreased cortical 
tension of embryo cells was observed at the morula stage, 
which indicated that the development capacity for blas-
tocyst formation was compromised. As expected, PCB2 
contributes to the re-establishment of cortical tension 
in morula and blastocyst embryo cells, suggesting that 
PCB2 also plays an active role in embryonic development 
in addition to regulating metabolism.

Conclusion
The present study unravels the additional role of anti-
oxidant PCB2 in promoting oocyte quality through 
mitochondrial ATP production regulated cortical ten-
sion. Our results will provide an integrative perspective 
into understanding the cryoinjuries in oocytes, and con-
tribute to clarifying the protective roles of polyphenolic 
compounds in cortical tension during the vitrification/
thawing process.
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