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Abstract 

Background: Recently, interest in the use of herbs and phytogenic compounds has grown because of their potential 
role in the production and health of livestock animals. Among these compounds, several tannins have been tested in 
poultry, but those from chestnut wood and grape-industry byproducts have attracted remarkable interest. Thus, the 
present study aimed to gain further insights into the mechanisms involved in the response to the dietary supplemen-
tation with extracts of chestnut wood or grape pomace. To this purpose, 864 broiler chickens were fed a control diet 
(C) or the same diet supplemented 0.2% chestnut wood (CN) extract or 0.2% grape pomace (GP) extract from hatch-
ing until commercial slaughtering (at 45 days of age) to assess their effects on performance, meat quality, jejunum 
immune response and whole-transcriptome profiling in both sexes at different ages (15 and 35 d).

Results: Final live weight and daily weight gain significantly increased (P < 0.01) in chickens fed GP diets compared 
to CN and C diets. The villi height was lower in chickens fed the CN diet than in those fed the C diet (P < 0.001); 
moreover, a lower density of  CD45+ cells was observed in chickens fed the CN diet (P < 0.05) compared to those fed 
the C and GP diets. Genes involved in either pro- or anti-inflammatory response pathways, and antimicrobial and 
antioxidant responses were affected by GP and CN diets. There was no effect of the dietary treatment on meat quality. 
Regarding sex, in addition to a lower growth performance, females showed a lower occurrence of wooden breast 
(16.7% vs. 55.6%; P < 0.001) and a higher occurrence of spaghetti meat (48.6% vs. 4.17%; P < 0.001) in pectoralis major 
muscles after slaughtering than those in males. Based on the results of whole-transcriptome profiling, a significant 
activation of some molecular pathways related to immunity was observed in males compared with those of females.

Conclusions: The GP supplementation improved chicken performance and promoted immune responses in the 
intestinal mucosa; moreover, age and sex were associated with the most relevant transcriptional changes.
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Background
During the last decade, interest in the use of herbs and 
phytogenic compounds has grown because of their 
potential role in the production and health of livestock 
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animals. Among these compounds, plant tannins are 
polyphenolic compounds that exhibit antioxidant activ-
ity, which positively affect the composition of the gut 
microbial flora, stimulate the animal immune system and 
possess antibacterial properties [1–3]. Additionally, at the 
intestinal level polyphenols downregulate the expression 
of various proinflammatory cytokines, such as interleu-
kin (IL)-1β, IL-4, IL-6, IL-10, tumor necrosis factor alpha 
(TNF-α), and interferon gamma [4].

In the poultry industry, several tannins have been 
tested, but those from chestnut wood  (CN) and grape-
industry byproducts have attracted remarkable inter-
est. In  vitro studies have shown the antimicrobial and 
antiparasitic effects of CN tannins [5, 6]. Moreover, in 
broiler chickens [7], CN extract increased jejunal mRNA 
levels of some growth-related antioxidant genes, such 
as epidermal growth factor and its receptor, and heat 
shock protein 70. However, results of in  vivo trials lack 
consistency in their effects on poultry performance; posi-
tive effects have been reported by some authors [8, 9], 
whereas others [10, 11] did not find any improvement. 
Regarding byproducts of the grape-industry, supplemen-
tations with grape pomace (GP) concentrate and grape 
seed extracts have been shown to affect the gut morphol-
ogy and increase the microflora biodiversity in broilers, 
in addition to improving growth performance [12].

Additionally, tannins from both CN and grape-indus-
try byproducts exhibit antioxidant effects when sup-
plemented in diets for broiler chickens [13, 14]. The 
antioxidant properties of tannins contained in GP have 
been observed in both the liver and breast meat of broiler 
chickens either after slaughter [14] or during storage [15]. 
Owing to their antioxidant properties, tannins can allevi-
ate oxidative stress that occurs during the onset of breast 
myopathies [16, 17].

Interestingly, the effects of tannins could vary during 
animal development [10, 18], particularly with age and 
sex. Modern hybrids are highly precocious, and large 
sex-differences are observed from the very first days after 
hatching. Regarding age, animals fed a diet supplemented 
with a GP concentrate showed differences in perfor-
mance and gut morphology at the end of an experimen-
tal trial, suggesting a time-dependent cumulative effect 
of tannins [19]. Humer et  al. [20] reported remarkable 
differences in intestinal histometric and microbial traits 
between male and female broilers fed with phytogenic 
additives.

Thus, the present study aimed to gain further insights 
into the mechanisms involved in the response of broiler 
chickens of both sexes and different ages to different 
tannin extracts (i.e., CN and GP) supplemented in diets 
fed from hatching until slaughtering (45 days of age). In 
addition to chicken performance and meat quality, we 

examined the effect of dietary treatments on jejunum 
morphology, inflammatory patterns, and whole-tran-
scriptome profiling.

Methods
Experimental facilities
This study was conducted at the Experimental Farm of 
the University of Padova (Legnaro, Padova, Italy) in a 
poultry house equipped with a cooling system, forced 
ventilation, radiant heating, and controlled light systems. 
Thirty-six wire-net pens (2.5 m × 2.4 m; 6  m2) were used, 
each equipped with five nipple drinkers and a circular 
feeder for manual distribution of feed. Each pen had a 
concrete floor covered with wood shaving litter (depth 
5 cm, 2.5 kg/m2). A total of 24 h of light was provided 
during the first 2 d after the arrival of the chicks. Sub-
sequently, the hours of light were progressively reduced 
until an 18L:6D photoperiod was achieved, which was 
then maintained from 13 days of age onward.

Animals, experimental groups and in vivo recordings
A total of 864 broiler chicks (1 day old; 432 males and 432 
females; Ross 308, Aviagen) were delivered by a commer-
cial truck, in compliance with Council Regulation (EC) 
No 1/2005 to the experimental facilities. All chicks were 
vaccinated against Marek’s disease, infectious bronchitis, 
and Newcastle disease at the hatchery. They were ran-
domly allocated in six experimental groups according to 
an experimental arrangement based on two sexes × three 
dietary treatments (control diet, CN diet, and GP diet), 
with 6 pens per experimental group and 24 birds per pen 
(total of 36 pens).

Chicks were individually weighed on the day of 
their arrival, identified by a plastic band at the leg, and 
weighed once per week to measure live weight and any 
difference among treatments at different ages, besides 
promptly identifying any health problem. The chick-
ens were fed ad libitum. The pen feed consumption was 
measured daily through a computerized weighing system 
connected to all feeders.

The end of the growth trial was set at 44 d and birds 
were slaughtered at 45 days of age.

Diets and feeding plans
Three commercial diets were formulated as the control 
(C) diets to be fed during three periods, i.e., from arrival 
to 15 d; from 15 to 29 d; and from 29 d until slaughter-
ing (Table  1). These C diets, produced in a mash form, 
were supplemented with 0.2% CN extracts (CN diets) or 
0.2% GP extract (GP diets). The CN extract (Saviotan® 
Feed, 57 mg/g phenolic compounds, GAE equivalent 
Folin-Ciocalteu) was produced by Sedepan (Radicofani, 
SI, Italy). The GP extract (77 mg/g phenolic compounds, 
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GAE equivalent Folin-Ciocalteu) was produced by Tamp-
ieri Financial Group (Faenza, RA, Italy).

The supplementation level of extracts was chosen 
based on commercial standards and previous results 
[8]. The inclusion of CN and GP extracts in the diets 
was performed at the experimental farm by thoroughly 
mixing the C diets with the dried extracts using an elec-
tric concrete mixer (Suncoo 4/5HP Concrete mixer, 140 
L, 600 W, 2800 r/min; SUNCOO, China). A total of 3 kg 
of mash diet were progressively added with extracts in 

two steps (starting with 1 kg) and mixed by hand in a 
box prior mixing them with other 47 kg of mash diet in 
the electric concrete mixer.

Diets were analyzed to determine their dry matter 
content, crude protein, and crude fiber using AOAC 
[22] methods. The ether extract was analyzed after acid 
hydrolysis [23].

Sampling of jejunum tissues
At 15 and 35 days post hatching, 36 chickens per period 
(1 chick per pen with mean BW) were selected and 
euthanized with  CO2 asphyxiation, prior to jejunum 
tissue collection. One sample of approximately 2 cm 
was taken from the jejunum, at the midpoint between 
the end of the duodenal loop and the location of the 
Meckel’s diverticulum [24], and washed in phosphate-
buffered saline (PBS). Sections (approximately 1-cm 
thick) were fixed in paraformaldehyde in PBS (0.1 
mol/L, pH 7.4), dehydrated, embedded in paraffin at 
the laboratory, and later submitted to the histological 
analyses and immunohistochemistry as detailed in the 
following section.

Immediately before fixing, small jejunum sections 
were collected under RNase-free conditions and stored 
in RNAlater® reagent (Applied Biosystems, Foster City, 
CA, USA) for transcriptomic analyses. In the laboratory, 
RNA-seq samples were stored at 4 °C overnight and then 
transferred to −80 ºC until further processing.

Histological analyses and immunohistochemistry
Two serial 4-μm sections per jejunum sample were 
obtained using a microtome and stained with hematoxy-
lin/eosin for morphometric evaluation and Alcian blue 
(pH 2.5)-PAS method for quantitative analysis of goblet 
cells. Moreover, two further serial sections were used 
for  CD3+ and  CD45+ immunohistochemical analyses. 
The villi length and crypt depth were collected by a slide 
scanner (D-Sight, A. Menarini Diagnostics, Firenze, Italy) 
and measured using image analysis software (DP-soft, 
Olympus Optical, Co., Hamburg, Germany), according 
to the procedure described by Hampson [25]. The goblet 
cells positive for Alcian blue (pH 2.5)-PAS staining were 
counted using NIH ImageJ software [26] on 10 different 
villi per animal along 300 μm of the villus surface. Immu-
nohistochemical analyses to identify  CD3+ intraepithelial 
T-cells and  CD45+ intraepithelial leukocytes in broiler 
jejunal mucosa were performed following the procedure 
described by Röhe et  al. [27]. Intraepithelial leukocytes 
were counted in the epithelium using a reference rectan-
gle with the short side at 100 μm and expressed as the 
density of  CD45+ and  CD3+ cells (cells/10,000 μm2).

Table 1 Ingredients and chemical composition measured in the 
lab (if not specified otherwise) of the control (C) diets. These diets 
were supplemented with 0.2% chestnut wood (CN) extracts or 
0.2% grape pomace (GP) extracts to obtain the CN and GP diets, 
respectively

aPremix provided per kg of feed: vit. A, 10,000 IU; vit.  D3, 3500 IU; vit. E acetate, 
90 mg; vit.  K3, 6 mg; Biotin, 0.38 mg; Thiamine, 3.75 mg; Riboflavin, 8 mg; vit.  B6, 
5.75 mg; vit.  B12, 0.1 mg; Niacin, 70 mg; Pantothenic acid, 17.5 mg; Folic acid, 
2.25 mg; Fe, 45 mg; Cu, 10 mg; Mn, 70 mg; Zn, 65 mg; Se, 0.25 mg
bSodium Monensin, 100 mg/kg feed
cValues calculated according to FEDNA [21]

Period of administration 1-15 d 15-29 d 29 d 
to slaughtering

Ingredients

 Corn meal, % 56.60 59.25 63.15

 Soybean meal (CP 48%), % 34.50 30.00 24.60

 Toasted full-fat soybean meal, % 3.00 5.00 7.00

 Animal fat, % 2.50 2.50 2.50

 Dicalcium phosphate, % 1.00 0.50 0.25

 Calcium carbonate, % 0.92 1.33 1.30

 Sodium chloride, % 0.26 0.27 0.27

 L-lysine base, liquid (50%), % 0.25 0.24 0.16

 Methionine hydroxy analogue, % 0.31 0.28 0.23

 Vitamin-mineral  premixa, % 0.30 0.30 0.30

 6-phytase (EC 3.1.3.26), % 0.20 0.20 0.20

 L-Threonine, % 0.11 0.08 0.04

  Coccidiostatb, % 0.05 0.05 0.00

Chemical composition

 Dry matter, % 89.2 89.2 89.3

 Crude protein, % 22.2 20.8 20.2

 Ether extract, % 5.4 5.5 6.4

 Crude fiber, % 1.3 1.2 1.8

 Ash, % 5.7 5.5 6.6

 Starch, % 41.1 43.3 40.2

  Calciumc, % 0.81 0.80 0.71

  Phosphorousc, % 0.58 0.47 0.42

 Digestible  phosphorousc, % 0.34 0.24 0.18

 Digestible  lysinec, % 1.32 1.23 1.05

 Digestible methionine +  cysteinec, % 0.91 0.85 0.76

 Digestible  threoninec, % 0.83 0.76 0.66

 Apparent metabolizable  energyc, 
kcal/kg

2982 3045 3087
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RNA-seq library preparation and sequencing
Total RNA from the 72 chickens slaughtered at 15 and 
35 d was extracted using the RNAeasy Mini Kit (Qiagen, 
Hilden, Germany), following the manufacturer’s instruc-
tions; total RNA concentration was then determined 
using a Qubit RNA BR (Broad-Range) kit in a Qubit 2.0 
Fluorometer (Life Technologies, Carlsbad, CA, USA). 
RNA quality was assessed using a 2100 Bioanalyzer (Agi-
lent Technologies, Waldbronn, Germany). All samples 
had an RNA integrity number > 7.

Equal amounts of RNA from three different chickens of 
the same sex, fed with the same diet and slaughtered at 
the same age (15 or 35 d) were pooled; a total of 24 RNA 
pools were obtained (i.e., two pools/replicates per sex 
for each of the three diets and per two slaughtering age). 
Notably, the RNA pooling is a common practice among 
gene expression studies, and it is well justified based on 
statistical and practical considerations [28]. Twenty-four 
tagged RNA-seq libraries were prepared using the Illu-
mina TruSeq Stranded mRNA kit and sequenced on an 
Illumina NovaSeq 6000 instrument at the NGS Sequenc-
ing Core (Padova, Italy) following a 100-bp paired-end 
approach.

RNA-seq reads processing and mapping
Initial quality control was performed using FastQC soft-
ware version 0.11.9 [29]. Read trimming and adapter 
removal were performed using Trimmomatic (version 
0.39) with default parameters [30]. Reads shorter than 
36 bp were excluded from the analysis. Residual ribo-
somal RNAs (rRNAs) were removed through the local 
sequence alignment tool SortMeRNA 2.1 [31] against dif-
ferent databases (Rfam 5.8S; Rfam 5S; Silva 16S archaeal, 
bacterial; Silva 18S eukaryote; Silva 23S archaeal, bacte-
rial; Silva 28S eukaryote). Reads trimmed and cleaned as 
described above were then mapped against the chicken 
Ensembl reference genome (GCA_000002315.5) using 
the STAR aligner and following the two-pass map-
ping mode [32]. The maximum number of allowed mis-
matches and the maximum number of loci to which the 
reads could map were set to 8 and 10, respectively. Read 
counts per sample at the gene level were extracted by set-
ting the GeneCounts quantification while running STAR.

Commercial slaughtering and carcass and meat quality 
recordings
At 45 days of age, all remaining chickens were slaugh-
tered in a commercial slaughterhouse. The chickens 
were weighed individually before crating. Loading 
took approximately 1 h, transport from the experimen-
tal facilities to the commercial slaughterhouse took 
approximately 15 min, and lairage before slaughtering 

took approximately 3 h. Ready-to-cook carcasses were 
recovered after 2 h of refrigeration at 2°C and indi-
vidually weighed to measure the slaughter dressing 
percentage.

A total of 144 carcasses (four per pen), previously 
selected on the basis of the final live weight as corre-
sponding to the mean BW within a pen, were subjected 
to gross examination to evaluate the occurrence in pec-
toralis major muscles (presence or absence) of white 
striping (WS) (either moderate or severe) [33]; wooden 
breast (WB) (firm upon palpation, prominent ridge like 
bulge on caudal area of fillet, clear viscous fluid cover 
and/or petechial multifocal lesions on the fillet surface) 
[34]; and spaghetti meat (SM) (exhibiting an overall 
impaired integrity and tendency toward separation of 
the muscle fiber bundles especially within the cranial 
part of the fillet) [35]. The 144 carcasses were stored at 
2  °C before meat quality analyses. Twenty-four hours 
after slaughter, carcasses were dissected for the main 
cuts (breast, wings, thighs, and drumsticks). Pectora-
lis major muscles were separated from the breasts for 
meat quality analyses [36]. The pH values of the pectora-
lis major muscles were measured in triplicates on their 
ventral side with a pH meter (Basic 20, Crison Instru-
ments Sa, Carpi, Italy) equipped with a specific elec-
trode (cat. 5232, Crison Instruments Sa, Carpi, Italy). 
The L*a*b* color indexes were measured in triplicate on 
the ventral side of the same muscles covered by a trans-
parent plastic film, using a Minolta CM-508 C spectro-
photometer (Minolta Corp., Ramsey, NJ, USA) [37].

After measuring the pH and color indexes, one meat 
portion (8 cm × 4 cm × 3 cm) was separated from the 
cranial side of the pectoralis major muscle, parallel to 
the direction of the muscle fibers, and stored under vac-
uum in plastic bags at -18 °C until meat analyses. Thaw-
ing and cooking losses were measured in this cut [36]. 
After thawing, the meat portion was placed in a plastic 
bag and cooked in a water bath for 45 min until an inter-
nal temperature of 80 °C was achieved. After 40 min of 
cooling, another meat portion (4 cm × 2 cm × 1 cm) 
was separated to assess the maximum shear force using 
an LS5 dynamometer (Lloyd Instruments Ltd, Bognor 
Regis, UK) using the Allo-Kramer (10 blades) probe 
(load cell: 500 kg; distance between the blades: 5 mm; 
thickness: 2 mm; cutting speed: 250 mm/min) [37].

The pectoralis major muscles of the remaining 72 
carcasses (2 chickens per pen, 12 per experimen-
tal group) were dissected and subsequently stored at 
-20  °C to assess the meat oxidation level of thiobarbi-
turic acid reactive substances (TBARs) [38] using spec-
trophotometric measurements (Jasco Mod. 7800 UV/
VIS) at 532 nm. The results were expressed as μg of 
malondialdehyde/kg.
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Statistical analysis
Individual data of live weights, daily growth, and carcass 
and meat traits were subjected to analysis of variance 
(ANOVA) with diets (C, CN, and GP) and sex as main 
factors of variability and their interactions, and the pens 
as a random effect, using the PROC MIXED procedure 
in SAS [39]. Being live weight of male and female chicks 
significantly different at the first hatching day (Table 2) it 
was included in the model as a covariate for live weights 
and daily growth. Pen data of feed intake and feed con-
version were subjected to ANOVA, with diet and sex as 
main factors of variability, and their interactions, using 
the PROC GLM procedure [39]. Individual data related to 
jejunum morphology, goblet cells, and  CD3+ and  CD45+ 
cell densities were analyzed using the PROC GLM proce-
dure, with diet, age, and sex as the main effects and their 
interactions. The Chi-square test was used to test differ-
ences in mortality according to diet and the rate of myo-
pathies according to diet and sex. Adjusted means were 
compared using Bonferroni’s t-test. Differences between 
the means with P ≤ 0.05 were considered statistically 
significant.

For whole-transcriptome profiling, a pairwise differ-
ential expression (DE) analysis was performed using the 
likelihood ratio test implemented in EdgeR [40] to com-
pare mRNA profiles between experimental groups. A 
false discovery rate (FDR) of ≤ 0.05 and a fold change 
(FC) of ≥ 1.5 were used as thresholds of significance 
between age and sex. Regarding changes due to diets, an 
FC threshold of 2 was selected to mitigate possible false 
positives due to the limited number of replicates per 
experimental group (i.e., two per diet, per age, per sex). 
Overall, four sex/age-specific datasets (each consisting 
of six samples) were analyzed separately, i.e., females at 
15 d; females at 35 d; males at 15 d; and males at 35 d. 
A functional interpretation of significant differentially 
expressed genes (DEGs) was obtained through a Gene 
Ontology over-representation test, performed using 
the ClusterProfiler package in the R environment [41]. 
Only KEGG pathways were considered, using the func-
tion enrichKEGG. Ensembl gene identifiers were used 
to establish a list of significantly upregulated and down-
regulated genes and a “background” (i.e., the whole set of 
expressed genes). The ClusterProfiler package was used 
to produce plots representing enriched terms (P ≤ 0.05).

A pre-ranked KEGG Gene Set Enrichment Analy-
sis (GSEA) [42] was performed to investigate whether 
gene sets defined a priori showed a statistically signifi-
cant enrichment at either end of the ranking. A statisti-
cally significant enrichment value (Benjamini–Hochberg 
adjusted P value ≤ 0.05) indicates that the biological 
activity (e.g., the biomolecular pathway) characterized 
by the gene set is correlated with the supplied ranking. 

The input was prepared as follows: the raw P values (pval) 
obtained through the pairwise DE analysis were used 
to rank the list of genes by significance. When multiple 
genes with the same gene name were detected, only the 
most significant gene (based on pval) was retained. The 
pval were replaced by 1-pval or -(1-pval) when a gene 
was over- or under-expressed, respectively. The analysis 
was performed using the gseKEGG function in the Clus-
terProfiler package [41].

Results
Growth performance
Live weight at 15 d did not differ among groups (513 g on 
average), whereas live weight at 29 d was higher in broil-
ers fed the GP diet than in those fed the CN diets (P < 
0.01), and this difference was confirmed at the end of the 
study in comparison with those fed the C and CN diets 
(45 d; P < 0.01) Table 2. Therefore, the daily weight gain 
during the study was higher in broilers fed the GP diet 
than in those fed the other two diets (P < 0.01), without 
differences in feed intake and feed conversion.

Males were heavier than females from the first day to 
the end of the study (P < 0.001), resulting in a higher daily 
weight gain (+22%) and feed intake (+17%), without dif-
ferences in feed conversion (1.59) (Table 2). A significant 
interaction was observed between dietary treatment and 
sex at 45 d (P < 0.05); males fed the GP diet were heavier 
than those fed C and CN diets, whereas females fed C 
and GP diets were heavier than those fed the CN diet.

Losses were low (3.4%, 27 chickens) and due to mortal-
ity (1.1%) and lameness (2.3%) (Table 2).

Slaughter results, meat quality, and myopathy rate
Table  3 shows that the carcass weight (with feet) was 
higher in chickens fed the GP diet than in those fed the 
other two diets (P < 0.05). No diet-related effects on myo-
pathy occurrence (Table 3) or meat quality (Table 4) were 
recorded.

Regarding the effect of sex, males had heavier carcasses 
(+17%, P < 0.001) and a higher proportion of leg weight 
(thighs + drumsticks) (+0.7; P < 0.05) but a lower breast 
yield (-1.7%; P < 0.001) and pectoralis major muscle pro-
portion (-0.6%; P < 0.001) than those of females (Table 3). 
Females showed a lower meat pH (P < 0.01) (Table  4), 
lower WB rate (P < 0.001), and higher SM rate (P < 0.001) 
than those of males but had similar WS rates to those of 
males (Table 3).

Jejunum morphology and immuno-histochemical analyses
On average of the two slaughtering times of 15 and 35 
d, the villi height was lower in chickens fed the CN diet 
than in those fed the C diet (P < 0.001); moreover, chick-
ens fed the CN diet had a lower density of  CD45+ cells (P 



Page 6 of 17Pascual et al. Journal of Animal Science and Biotechnology          (2022) 13:102 

Table 2 Growth  performance1 (LS means) and mortality of broiler chickens until slaughter

MSE root mean square error. C, control diet. CN, control diet supplemented with 0.2% chestnut wood extracts. GP, control diet supplemented with 0.2% grape pomace 
extracts
1Individual data: live weight and daily growth rate. Pen data: feed intake and feed conversion
2Interaction Diet × Sex, Final live weight: P = 0.02: 2827 g, 2789 g and 2822 g in females fed C, CN and GP diets; 3372 g, 3381 g and 3473 g in males fed C, CN, and GP 
diets, respectively. Daily weight gain: P = 0.02: 63.2 g/d, 62.4 g/d and 63.1 g/d in females fed C, CN, and GP diets, 75.6 g/d, 75.8 g/d and 77.9 g/d in males fed C, CN, GP 
diets, respectively.
3Dead and lame chickens
a,bValues with different superscript letters significantly differ (P < 0.05)

Diet (D) Sex (S) P value MSE

Items C CN GP Females Males D S D×S

Chickens, n 258 252 255 383 382

Pens, n 12 12 12 18 18

Live weight, g

 Initial (1 d) 44.3 43.9 44.5 43.7 44.9 0.15 <0.001 0.16 3.45

 15 d 512 510 518 498 529 0.23 <0.001 0.12 50.7

 29 d 1689ab 1669a 1703b 1559 1815 <0.01 <0.001 0.12 124

 Final (44 d)2 3099a 3087a 3146b 2816 3406 <0.01 <0.001 0.02 217

Whole trial (1-44 d)

 Daily weight  gain2, g/d 69.4a 69.1a 70.5b 63.0 76.4 <0.01 <0.001 0.02 4.94

 Daily feed intake, g/d 111 110 112 102 119 0.16 <0.001 0.70 2.47

 Feed conversion 1.59 1.59 1.59 1.59 1.59 0.85 0.91 0.26 0.36

Losses3, % 2.27 4.55 3.41 3.28 3.54 0.33 0.70 0.70 -

Table 3 Slaughter results, carcass traits (LS means) and myopathy rates in chickens slaughtered at 45 days of age

MSE root mean square error. C, control diet. CN, control diet supplemented with 0.2% chestnut wood extracts. GP, control diet supplemented with 0.2% grape pomace 
extracts
1Carcasses with feet. 2Interaction Diet × Sex, Cold carcasses: P < 0.01: 2126 g, 2103 g, 2126 g in females fed C, CN and GP diets, respectively; 2571 g, 2580 g, and 2652 
g in males fed CN and GP diets. 3Without feet. 4With bone
a,bValues with different superscript letters significantly differ (P < 0.05)

 Items Diet (D) Sex (S) P value MSE

C CN GP Females Males D S D×S

Chickens1, n 258 252 255 383 382

Pens, n 12 12 12 18 18

 Cold  carcasses2, g 2352a 2342a 2392b 2122 2602 0.03 <0.001 <0.01 173.06

 Dressing out percentage, % 76.6 76.8 76.8 76.4 77.1 0.45 <0.001 0.51 1.48

Chickens, n 48 48 48 72 72

 Cold  carcasses3 (CC), g 2274 2243 2306 2063 2486 0.32 <0.001 0.10 143.58

 Dressing percentage, % 73.3 73.0 73.0 73.3 73.0 0.48 0.18 0.92 1.32

 Breast  yield4, % CC 39.3 38.8 39.5 40.0 38.3 0.16 <0.001 0.56 1.76

 P. major, % CC 12.2 12.1 13.4 12.5 11.9 0.33 <0.001 0.37 0.85

 Wings, % CC 9.8 10.0 9.9 9.9 9.9 0.06 0.44 0.65 0.51

 Legs (thighs+drumsticks), % CC 30.1 30.1 29.8 29.6 30.3 0.67 0.04 0.43 2.02

Myopathy rates at P. major

 White striping, % 72.9 60.4 79.2 66.7 75.0 0.12 0.26 - -

 Wooden breast, % 41.7 25.0 41.7 16.7 55.6 0.11 <0.001 - -

 Spaghetti meat, % 29.5 25.5 25.0 48.6 4.2 0.83 <0.001 - -
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< 0.05) than those chickens fed the GP diet (Table 5). Die-
tary treatment did not affect the density of goblet cells.

As the age increased from 15 to 35 d, villi height (P < 
0.01), crypt depth (P < 0.05), and density of both  CD3+ 
and  CD45+ cells (P < 0.001) increased (Table 5), whereas 
the density of goblet cells decreased (P = 0.001).

Regarding sex, villi height was lower in females than in 
males (P < 0.01), whereas the densities of  CD45+ cells (P 
= 0.01) and goblet cells (P = 0.06) were higher (Table 5). 
As for villi height,  CD3+ and  CD45+ cells, significant 
interactions were recorded between sex and age (Table 
S1), and between sex and diet (Table S2).

Whole transcriptome analysis
A total of 725,278,263 raw reads were obtained. Raw Illu-
mina sequencing data were deposited in GenBank under 
the BioProject accession number PRJNA666129. All 
samples passed the quality control measures. After trim-
ming and rRNA removal, an average of approximately 30 
million reads per sample was retained, with ~94% reads 

mapped to the chicken reference genome (Table S3). The 
multidimensional scaling plot provided unsupervised 
clustering of the samples (Fig.  1). The first dimension 
(x-axis) clearly separates females from males, whereas 
the second dimension (y-axis) separates samples by age. 
The biological variability within dietary treatments was 
low, as demonstrated by the clusters formed when MDS 
distances between expression profiles of all the replicates 
were plotted. Jejunum samples showed largely different 
transcriptional profiles between sexes and between ages, 
whereas compared with the C diet, the CN and GP diets 
had a moderate impact on jejunum gene expression.

Dietary effects on jejunum whole transcriptome
Transcriptional profiles of same-sex and same-age 
chickens fed CN and GP diets were compared to those 
of chickens fed the C diet, thus identifying significant 
DEGs, that are shown in Table 6 and in the supplemen-
tary Tables S4 and S5.

Table 4 Rheological traits and lipid oxidation status (TBARs) of the pectoralis major muscle in chickens slaughtered at 45 days of age

MSE root mean square error. C, control diet. CN, control diet supplemented with 0.2% chestnut wood extracts. GP, control diet supplemented with 0.2% grape pomace 
extracts

 Items Diet (D) Sex (S) P-value MSE

C CN GP Females Males D S D×S

P. major, n 48 48 48 72 72

  pH 5.99 5.99 5.95 5.94 6.02 0.56 <0.01 0.99 0.16

  L* 50.4 50.2 49.7 49.9 50.1 0.66 0.63 0.10 2.40

  a* -0.04 -0.07 -0.15 -0.03 -0.15 0.56 0.23 0.20 0.54

  b* 10.4 10.3 10.2 10.5 10.1 0.70 0.09 0.65 1.38

P. major, n 24 24 24 36 36

  Cooking losses, % 12.0 11.7 11.8 11.4 12.3 0.99 0.65 0.92 12.4

  Shear force, kg/g 4.17 4.06 4.30 4.17 4.18 0.39 0.96 0.72 0.83

  TBARs, mg MDA/kg 0.083 0.080 0.075 0.078 0.080 0.38 0.74 0.22 0.021

Table 5 Jejunum morphometry, number of goblet cells and densities of  CD45+ and  CD3+ cells at 15 and 35 days of age

MSE root mean square error. C, control diet. CN, control diet supplemented with 0.2% chestnut wood extracts. GP, control diet supplemented with 0.2% grape pomace 
extracts
1Averages of traits according to Age × Sex are provided in Table S1. 2Averages of traits according to Diet × Sex are provided in Table S2.
a,bValues with different superscript letters significantly differ (P < 0.05)

 Items Diet (D) Age (A) Sex (S) P-value MSE

C CN GP 15 35 F M D A S D×A A×S1 D×S2 D×A×S

Broilers, n 24 24 24 36 36 36 36

Villi height, μm 1033b 934a 954ab 866 1082 936 1011 <0.001 <0.01 <0.01 0.44 0.02 0.03 0.13 111

Crypt depth, μm 145 139 144 138 147 140 145 0.45 0.04 0.23 0.70 0.29 0.79 0.31 18,5

Villi / Crypt ratio 7.49 7.06 6.96 6.67 7.67 7.06 7.28 <0.001 0.16 0.37 0.70 0.37 0.20 0.68 1,00

Goblet cells, n/300 μm 21.02 21.67 22.25 22.84 20.45 22.20 21.09 0.24 0.001 0.06 0.34 0.12 0.43 0.27 2.46

CD3+ cells, n/10,000 μm2 2242 2219 2297 2069 2436 2223 2283 0.16 <0.001 0.09 0.23 <0.001 <0.001 0.46 459

CD45+ cells, n/10,000 μm2 2879ab 2793a 2925b 2437 3295 2915 2816 0.02 <0.001 0.01 0.18 <0.001 0.01 0.45 537



Page 8 of 17Pascual et al. Journal of Animal Science and Biotechnology          (2022) 13:102 

At 15 d, when comparing females fed the CN diet 
with those fed the C diet, 15 DEGs were identified. 
Cytochrome P450 1A1 (CYP1A1; logFC: 1.71), CYP1A2 
(logFC: 1.47) and STEAP4 Metalloreductase (STEAP4; 
logFC: 4.65) were upregulated. Guanylate-binding pro-
tein 1-like (GBP1-like; logFC: -8.43), butyrophilin sub-
family 1 member A1-like (BTN1A1-like; logFC: -1.69), 
and leukocyte immunoglobulin-like receptor subfamily 
A member 2 (logFC: -4.12) were downregulated. Regard-
ing the effects of the GP diet compared with those of the 
C diet in females at 15 d, avian beta-defensin 9 and 10 
(AvBD9 and AvBD10, respectively) and class I histocom-
patibility antigen, F10 alpha chain-like (HA1F-like) were 
remarkably upregulated (logFC of 7.18, 9.23, and 2.43, 
respectively). Both GBP1-like and BTN1A1-like mRNA 
levels were lowered (logFC: -6.09 and -1.45). Gap junc-
tion protein beta 1 and pyruvate dehydrogenase kinase 4 
were among the most significantly downregulated genes.

At 35 d, 30 DEGs were detected when comparing 
females fed the CN and C diets. Some genes involved in 
immunity and inflammation, such as complement C1q 
C chain (logFC: 1.07), major histocompatibility complex 
class I polypeptide-related sequence A (MICA; logFC: 
1.72), extracellular fatty acid-binding protein (logFC: 
1.32), and bradykinin receptor B1 (BDKRB1; logFC: 1.26), 
were upregulated. Likewise, the glutathione S-transferase 
class-alpha (GSTA) gene was upregulated (logFC: 1.25).

In females at 35 d, compared with the C diet the GP 
diet upregulated 197 genes. Among the genes involved 
in inflammatory processes, the following were upregu-
lated: nephroblastoma overexpressed (NOV; logFC: 
1.06), netrin 1 (logFC: 1.05), C1q and tumor necrosis 
factor related protein 4 (C1QTNF4; logFC: 1.69), and 
BDKRB1 (logFC: 1.09). Additional upregulated genes 
that play a role in the regulation of immune defense 
were the junctional adhesion molecule 2 (logFC: 1.04), 

Fig. 1 Multiple dimensional scaling (MDS) plot of distances between expression profiles (as  log2 fold change, logFC) of RNA-seq libraries (24 
samples) of the jejunum of female (F) and male (M) broiler chickens fed control diet (C diet), diet added with 0.2% chestnut extracts (CN diet), and 
diet added with 0.2% grape pomace extracts (GP diet) at 15 d (libraries C_15d, CN_15d, GP_15d) and 35 days of age (libraries C_35d, CN_35d, 
GP_35d) [1F, 2F, 1M, 2M stand for the two replicates for females and the two replicates for males per age]
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C-X-C motif chemokine ligand 12 (CXCL12; logFC: 
1.08), and T-cell surface glycoprotein CD8 alpha chain-
like (logFC: 1.74). Moreover, the mRNA levels of hemo-
globin beta, subunits A, A1, and AD (HBBA, HBA1, and 
HBAD), as well as GSTA, were increased (logFC: 2.25, 
1.85, 2.27, and 1.18, respectively). Finally, as for upregu-
lated genes, glucagon like peptide 1 receptor (GLP1R; 
logFC: 1.02), and solute carrier family 2, facilitated glu-
cose transporter member 4-like (GLUT4-like; logFC: 
1.17) play a role in nutrients intestinal absorption. 
Among the downregulated genes, some are involved 
in vitamin and protein absorption, such as scavenger 
receptor class B member 1 (logFC: -2.00) and beta-car-
otene oxygenase 1 (logFC: -1.55). Further downregu-
lated genes are involved in protein and carbohydrate 
metabolism, such as carboxypeptidase O (logFC: -1.80), 
glutamic-pyruvic transaminase 2 (logFC: -1.27), and 
lactase (logFC: -1.10). Additionally, the expression of 
AvBD9 and AvBD10 was downregulated (logFC: -7.59 
and -6.21, respectively).

At 15 d, compared with the C diet, the CN diet signifi-
cantly upregulated STEAP4 (logFC: 3.31), CYP1A (logFC: 
1.89), and HA1F-like (logFC: 1.61) genes in males. Among 
the seven downregulated genes, ectonucleotide pyroph-
osphatase/phosphodiesterase 7 (logFC: 1.66) encodes a 

protein that protects the intestinal mucosa from inflam-
mation. The gene most significantly induced by the GP 
diet was glutathione peroxidase 4 (logFC: 1.26), whereas 
the suppressor of cytokine signaling 3 (logFC: -1.04) and 
IL-22 (logFC: -2.80) were downregulated.

At 35 d, CN diet in males significantly induced HA1F-
like (logFC: 1.46) and MICA mRNA levels (logFC: 1.41), 
while lysozyme-g-like (logFC: -2.47) and NOV (logFC: 
-1.89) were downregulated.

On comparing chickens at 35 d and those at 15 d (Table 
S6), 324 DEGs were identified (FDR ≤ 0.05; FC ≥ 1.5). 
The top 10 upregulated and downregulated genes are 
shown in Table 7. Only two KEGG pathways were statis-
tically enriched by the 213 genes upregulated after 15 d, 
namely, the “peroxisome proliferator-activated receptor 
(PPAR) signaling pathway” and the “neuroactive ligand–
receptor interaction pathway” (Table S7). However, a 
higher number of KEGG pathways (i.e., 14) were sig-
nificantly enriched by the upregulated genes in chickens 
at 35 d (Fig. 2 and Table S7); some of them were related 
to PPAR signaling, xenobiotic metabolism, glutathione 
metabolism, steroid hormone synthesis, IgA production, 
and amino acid metabolism.

In 15-d chickens, the GSEA (Table S7)  pointed out 
the activation of 18 KEGG pathways related to cell–cell 
junctions (i.e., tight junction, focal adhesion, and adher-
ent junction), cytoskeleton, and transforming growth 
factor-β (TGF-β). In 35-d chickens, the GSEA highlighted 
the activation of 33 KEGG pathways; the most significant 
ones include gene sets related to xenobiotic metabolism, 
antioxidant response (i.e., glutathione metabolism), pro-
tein processing (i.e., proteasome, protein export, and 
ribosome), and amino acid metabolism. The top-35 sig-
nificant KEGG pathways activated in 35-d chickens com-
pared to 15-d chickens are reported in Fig. 3.

On comparing females and males, 246 significant DEGs 
were identified; among these, 47 and 199 genes were 
upregulated in females and males, respectively. The top 
10 upregulated and downregulated genes are listed in 
Table  8. The KEGG enrichment analysis of upregulated 
genes in males showed that only the “ribosome biogen-
esis in eukaryotes” pathway was significantly enriched. In 
contrast, GSEA identified a total of 19 KEGG pathways 
that were significantly enriched, 9 in females and 13 in 
males (Fig. 4; Table S7). In females, a considerable num-
ber of activated gene sets was related to cell cycle regula-
tion (e.g., DNA replication and mismatch repair).

Discussion
In animal feeding, tannins can have either beneficial or 
detrimental effects depending on their chemical struc-
ture and dosage, in addition to other individual (e.g., 

Table 6 Number of significantly upregulated and downregulated 
differentially expressed genes (Fold change ≥ 2; False Discovery 
Rate ≤ 0.05) in the jejunum of male or female broiler chickens fed 
the experimental diets at 15 or 35 days of age

DEGs differentially expressed genes. C, control diet. CN, control diet 
supplemented with 0.2% chestnut wood extracts. GP, control diet 
supplemented with 0.2% grape pomace extracts

Comparison Number of 
up-regulated 
genes

Number of 
down-regulated 
genes

Total DEGs

Female chickens 
at 15 d

  CN diet vs. C diet 7 8 15

  GP diet vs. C diet 14 18 32

Male chickens at 
15 d

  CN diet vs. C diet 7 7 14

  GP diet vs. C diet 21 10 31

Female chickens 
at 35 d

  CN diet vs. C diet 18 12 30

  GP diet vs. C diet 197 74 271

Male chickens at 
35 d

  CN diet vs. C diet 8 8 16

  GP diet vs. C diet 2 4 6
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Table 7 Top 10 upregulated ( ) and downregulated ( ) differentially expressed genes (DEGs) in broiler chickens at 35 d compared with 
those at 15 d. For each DEG, Ensembl gene ID,  log2 fold change (logFC), and False Discovery Rate (FDR), as reported in edgeR output 
and the Ensembl gene description, are provided

Fig. 2 Over-represented KEGG pathways among the upregulated genes in broiler chickens at 35 d compared with those in broiler chickens at 15 d. 
The number of differentially expressed genes (DEGs) belonging to each enriched KEGG pathway is reported in the x axes. Color gradient represents 
the P-value significance, as specified in the legend. P-values were adjusted using the Benjamini–Hochberg method
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animal species, age, sex, physiological state) and feeding 
factors [43]. Standardization of conditions (in terms of 
quantity and quality of the different polyphenolic frac-
tions) is even more difficult when using extracts from 
natural sources. Thus, in the present trial, we compared 
two products of a similar nature (byproducts containing 
different quantities of polyphenols of different types) in 
the same form (powder) at the same moderate supple-
mentation level.

We observed that the GP diet improved growth per-
formance compared with the other dietary treatments, 
whereas CN diet reduced the villi height compared to 
the control diet and the density of  CD45+ cells compared 
to the GP diet. The highest growth performance meas-
ured in broilers fed GP diet might be in part supported 
by an increased intestinal absorption of nutrients. In the 
present study, this is suggested by the upregulation in 
females of genes such as the receptor of glucagon-like 
peptide (GLP1R), that promotes efficient nutrient assimi-
lation [44], and GLUT4, a glucose transporter whose 
expression can be induced by tannins [45].

The different nature of tannins of CN and GP and 
their effects at the gut level can partly explain our 
results, even if different effects are likely to expected 
depending on the animal age and gut tract [46]. The 
CN mainly contains hydrolysable tannins, which usu-
ally possess a relatively low molecular weight and high 
bioavailability [8, 9, 47]. Thus, CN hydrolysable tannins 
can be early hydrolyzed and absorbed in the first gastro 
intestinal tract, as observed in rats [48], exerting both 
cytotoxic or cytoprotective effects on jejunal mucosa 
[46, 48, 49]. On the other hand, GP condensed tannins 
can remain active along the whole gut and can be trans-
formed by gut microbiota in other bioactive metabolites 
which can further affect gut mucosa and microbiota 
composition [46, 50].

Schiavone et  al. [8] showed dose-dependent effects of 
dietary supplementation with CN tannins, i.e., null at the 
lowest inclusion rate (1.5 g CN wood extract/kg), positive 
at the intermediate level (2.0 g/kg) in terms of final live 
weight and feed intake, and negative at the highest rate 
(2.5 g/kg), which reduced live weight, compared with the 

Fig. 3 Results of the Gene Set Enrichment Analysis (GSEA): top-35 significantly enriched KEGG pathways in broiler chickens at 35 d compared 
with those in broiler chickens at 15 d. Pathways showing an enrichment value > 0 are activated in 35-d broiler chickens, whereas those with an 
enrichment value < 0 are activated in 15-d broiler chickens. Color gradient represents the P-value significance, as specified in the legend. The 
P-values were adjusted using the Benjamini–Hochberg method
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Table 8 Top 10 upregulated ( ) and downregulated ( ) differentially expressed genes (DEGs) in females compared with those in 
males. For each DEG, Ensembl gene ID,  log2 fold change (logFC), and False Discovery Rate (FDR), as reported in edgeR output and the 
Ensembl gene description, are provided

Fig. 4 Results of the Gene Set Enrichment Analysis (GSEA): enriched KEGG pathways in female broiler chickens compared with those in male broiler 
chickens. Pathways showing an enrichment value > 0 are activated in females, whereas those with an enrichment value < 0 are activated in males. 
Color gradient represents the P-value significance, as specified in the legend. The P-values were adjusted using the Benjamini–Hochberg method
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C diet (from 14 to 56 days of age). Similarly, Jamroz et al. 
[10] did not observe effects on performance with low CN 
tannin inclusion rates (0.25 and 0.50 g of sweet CN tan-
nin/kg), whereas the highest dose (1.0 g/kg) decreased 
the live weight at 41 d and caused alterations in the intes-
tinal wall morphology and a decreased proliferation rate 
in the mother-cell zone. These findings are consistent 
with the decreased villi length observed in our study in 
chickens fed the CN diet. In contrast, CN tannin supple-
mentation increased the average daily weight gain and 
jejunum villus height under a heat-stress challenge [51] 
and reduced the proliferation of Clostridium perfringens 
and the severity of gut damage in necrotic enteritis [52].

Similar to CN, condensed tannins of GP byproducts 
(extracted from seeds, skin, and stems as byproducts of 
winemaking) can reduce diet digestibility and negatively 
affect the growth performance of monogastric animals 
[53]. In poultry, during the first period (from hatching 
until 21 days of age), the increase in GP supplementa-
tion (from 2.5 to 5.0 g of GP seed extract/kg) decreased 
both animal performance and diet digestibility [54]. Some 
authors reported negative effects on performance with 
high inclusion rates of grape-based extracts [12], which 
also showed a negative effect on villus length. In contrast, 
6% dietary inclusion of a GP concentrate did not modify 
performance or diet digestibility but showed antioxidant 
potential that was as effective as vitamin E in diet, excreta, 
ileal content, and breast muscle [15]. Other authors evi-
denced that the dietary supplementation of grape byprod-
ucts increased activity of total superoxide dismutase and 
decreased the content of malondialdehyde in plasma [19] 
and leg meat [55], whereas this was not observed in the 
present study when measuring meat TBARs.

In our study, we neither observed any effect of CN or 
GP supplementation on myopathy rate, which is consist-
ent with the findings of previous studies that tested vari-
ous antioxidants for this purpose [56–58]. Nevertheless, 
oxidative stress, localized hypoxia, increased intracellular 
calcium, and the presence of muscle fiber-type switching 
are pathways responsible for the occurrence of WB and 
WS [16, 59, 60]; hence, the administration of antioxidant 
substances, such as GP or CN extracts, could be expected 
to affect myopathy occurrence.

In the present study, the increased mucosal immune 
responses with the GP diet (i.e. the higher density of 
intraepithelial leukocytes, especially  CD45+) compared 
to the CN diet could be attributed to the tannin nature 
and availability along the intestinal tract as discussed 
above (condensed compared to hydrolysable tannins in 
GP compared to CN). On the other hand, when com-
paring different dietary supplementation doses of tan-
nic acid, effects on broiler chicken immunity changed 
from positive to negative in a dose-dependent manner 

[61]. Indeed, genes involved in either pro- or anti-
inflammatory response pathways and antimicrobial 
responses were affected by GP and CN diets, besides 
genes contributing to the antioxidant responses. Nev-
ertheless, the majority of these genes, especially those 
related to immune functions, were significantly regu-
lated by the GP supplementation consistently with the 
higher  CD45+ density in the jejunum of broilers fed 
GP diet compared to those fed CN diet. Finally, the 
improved immune competences observed in broilers 
fed GP diet might have positively impacted on their 
growth performance compared to the other dietary 
treatments.

In the present study, the majority of changes in the 
chicken jejunum transcriptome was observed in chick-
ens of the same sex but at different ages. In fact, in 15-d 
females, the GP and CN diets downregulated genes 
involved in the inflammatory response [62] and pro-
tection against microbes and viruses, such as GBP1-
like [63] a robust marker of inflammation. In 15-d male 
and female broilers, the CN diet upregulated STEAP4, 
which plays a role in the response to chronic inflamma-
tion in colon cancer [64], the suppression or inhibition 
of cytokine production and signaling (IL-6 and TNF-α-
induced NF-κB signaling [65]), the response to nutri-
ents, oxidative stress, fatty acid metabolism, and glucose 
metabolism [66]. In 15-d chickens of both sexes, CN 
supplementation modulated the expression of CYP1A, 
an important detoxifying monooxygenase that can be 
induced by natural polyphenols [67] as demonstrated in 
the gut of pigs fed CN extracts [68].

In 35-d females, the GP diet upregulated C1QTNF4 
(involved in the regulation of the inflammatory networks 
and in feed intake suppression in mice) [69] and CXCL12 
(a constitutive and inflammatory chemokine of the intes-
tinal immune system) [70]. Conversely, in 35-d females, 
the GP diet downregulated beta-defensins (AvBD9, 
AvBD10), which possess modest antimicrobial properties 
and display a wide range of immunomodulatory activi-
ties, such as modulation of pro- and anti-inflammatory 
responses, promotion of wound healing [71]. Addition-
ally, in 35-d females, both GP and CN diets induced the 
expression of GSTA, primarily involved in the defense 
against oxidative stress. The GP diet also induced three 
hemoglobin subunits (i.e., HBBA, HBAD, and HBA1), 
which are upregulated in the presence of oxidative stress 
and are believed to alleviate it [72].

Notably, most of the differences in favor of GP supple-
mentation regarding the overall transcriptomic response 
appeared in the second period of growth. Overall, this is 
consistent with the results of Farahat et  al. [73] and Yang 
et al. [19], who observed a time-dependent cumulative effect 
of dietary supplementation with grape seed extracts and 
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pomace concentrate. However, according to some authors 
[8, 53], the dietary supplementation with tannins (from grape 
seed and CN extracts) was more effective in younger broilers 
than in older ones, likely based on their effects on pathogenic 
microorganisms as well as on commensal microbiota [74, 75].

In the present study, the most significant age-dependent 
transcriptional variations (i.e., top 10 upregulated DEGs) 
were related to immunoglobulin functions, for which the 
KEGG pathway “intestinal immune network for IgA pro-
duction” was significantly enriched with the increase in age. 
Overall, this age-dependent improvement of immune com-
petencies, together with the increased densities of jejunum 
 CD3+ and  CD45+ cells we observed in older chickens, was 
expected. Additionally, four of the top 10 upregulated DEGs 
encoded GSTs, which suggests that glutathione-dependent 
detoxifying capability significantly increases with chicken 
development. This was further strengthened by the enrich-
ment of the KEGG pathways “glutathione metabolism” and 
“metabolism of xenobiotics by cytochrome P450,” both 
including several differentially regulated GSTs.

The downregulation of three hemoglobin subunits (i.e., 
HBBA, HBAD, and HBA1) in 35-d chickens compared 
with 15-d chickens could be related to an imbalance 
between the muscular development of birds and the vas-
cularization/blood supply and might reflect the possible 
muscle suffering that leads to muscle fiber degeneration 
and myopathies with the increase in age [76, 77].

Expected differences in performance between males 
and females were confirmed and found to be associ-
ated with differences in the jejunum transcriptome. Top 
upregulated genes in females are involved in ubiquitina-
tion, a post-translational mechanism for protein deg-
radation via the proteasome, ensuring the structural 
integrity control and/or protein turnover rate. However, 
these transcriptional variations seem related to DNA 
repair pathways and cell fate decisions, rather than pro-
teolytic processes. This hypothesis is consistent with a 
non-degrading role of protein ubiquitination [78], and 
supported by the enriched KEGG pathways reported in 
females (e.g., “mismatch repair,” “cell cycle”).

Overall, the gene expression data showed that DNA 
repair processes are likely to be differentially regulated in 
male and female jejunum. Notably, sex differences in the 
control of cell cycle and DNA repair have been reported 
in mammals [79, 80]. Upregulated DEGs playing a role in 
the mitochondrial respiratory chain and ATP production 
were also reported, e.g., cytochrome c oxidase subunit 7C 
and NADH:ubiquinone oxidoreductase subunit S4. This 
is most likely linked to the different growth rate between 
sexes (higher in males), which is confirmed by the sig-
nificant activation in males of genes involved in tissue 
morphogenesis and maintenance of cell and tissue struc-
ture and function (e.g. “focal adhesion,” “ECM-receptor 

interaction,” and “regulation of actin cytoskeleton” gene 
sets). On the other hand, differences in growth rates and 
final live weight between sexes are also associated to a 
different occurrence of myopathies whereas the results 
of the present study confirmed that SM occurred more 
often in females than in males, whereas WB was more 
frequent in males than in females [81, 82].

Conclusions
The dietary supplementation of GP extracts can be ben-
eficial to broilers because it increases growth performance 
and the final live weight of animals. In the absence of any 
specific challenges, it still improved the jejunum morphol-
ogy and the overall immune response. The addition of CN 
extracts affected the jejunum morphology, although growth 
traits remained unaffected. Overall, the chicken jejunum 
transcriptome was scarcely affected by extracts, although 
in 35-d females fed the GP diet, some positive effects on 
nutrient absorption, immune and antioxidant responses 
were observed. Regarding age and sex, further molecular 
investigations are required in view of the interactions with 
dietary additives, as observed in the present study, and sub-
sequent effect on chicken health and performance.
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