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Abstract 

Background:  Ovarian follicular fluids (FFs) contain several kinds of regulatory factors that maintain a suitable micro-
environment for oocyte development. Extracellular vesicles (EVs) are among the factors that play essential roles in 
regulating follicle and oocyte development through their cargo molecules that include microRNAs (miRNAs). This 
study aimed to investigate small-EV (s-EV) miRNAs in porcine FFs and their potential association with oocyte quality.

Methods:  Individual aspirated oocytes were stained with lissamine green B stain (LB), a vital stain for oocyte qual-
ity, and each oocyte was classified as high-quality (unstained; HQ) or low-quality (stained; LQ). FFs corresponding 
to oocytes were pooled together into HQ and LQ groups. Small-EVs were isolated from FFs, characterized, and their 
miRNA cargo was identified using the Illumina NovaSeq sequencing platform. Additionally, s-EVs from the HQ and LQ 
groups were utilized to investigate their effect on oocyte development after co-incubation during in vitro maturation.

Results:  A total of 19 miRNAs (including miR-125b, miR-193a-5p, and miR-320) were significantly upregulated, while 
23 (including miR-9, miR-206, and miR-6516) were downregulated in the HQ compared to the LQ group. Apoptosis, 
p53 signaling, and cAMP signaling were among the top pathways targeted by the elevated miRNAs in the HQ group 
while oocyte meiosis, gap junction, and TGF-beta signaling were among the top pathways targeted by the elevated 
miRNAs in the LQ group. The supplementation of small-EVs during maturation does not affect the oocyte develop-
mental rates. However, LQ s-EVs increase the proportion of oocytes with homogeneous mitochondrial distribution 
and decrease the proportion of heterogeneous distribution.

Conclusion:  Our findings indicated that FF-EVs contain different miRNA cargos associated with oocyte quality and 
could affect the mitochondrial distribution patterns during oocyte maturation.
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Background
Oocyte developmental competence is commonly defined 
as the ability of the oocyte to mature, fertilize, and 
develop to the blastocyst stage. Several factors, including 

oocyte quality, could influence this ability and subse-
quently determine developmental competence. Various 
methods including morphological, biochemical, and 
molecular techniques, are being used to assess oocyte 
quality [1], with the aim of enhancing the efficiency of 
assisted reproductive technologies (ARTs). At the molec-
ular level, several studies have been done to determine 
molecular markers from follicular cells surrounding the 
oocyte or follicular fluids (FFs) as a non-invasive method 
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that predicts oocyte quality [2]. Ovarian FFs contain sev-
eral kinds of regulatory factors that maintain a suitable 
microenvironment for oocyte development and follicular 
intercellular communication [3]. This kind of communi-
cation within the follicle is essential and could determine 
oocyte quality and consequently developmental compe-
tence [4]. One of the recently discovered mechanisms 
that facilitate and modulate intercellular crosstalk is via 
the extracellular vesicles (EVs). EVs, including exosomes 
and microvesicles, are cell-derived lipid bilayer mem-
branous particles that contain different biomolecules, 
including proteins, lipids, RNAs, and microRNAs (miR-
NAs). These particles are secreted by almost all cell types 
and can be found in all body fluids [5]. The ability of EVs 
to modulate intercellular crosstalk is through the capac-
ity to transfer their biomolecular cargos between differ-
ent cells after being secreted in body fluids [5]. After this 
discovery, several studies revealed the fundamental roles 
of EVs in the different reproduction processes in domes-
tic animals (reviewed by Llobat [6]) and the subsequent 
improvement of ART outcomes [7].

MiRNAs, a small non-coding RNA class, are post-
transcriptional regulators of gene expression by bind-
ing specific mRNA target sequences for degradation or 
translational repression [8]. Extracellular miRNAs were 
discovered in various body fluids in a stable form, which 
supports their potential utilization as non-invasive bio-
markers for several physiopathological conditions [9]. 
The availability and stability of extracellular miRNAs 
within body fluids are supported by either the incor-
poration of miRNAs within the EVs or by binding with 
specific protein complexes [10]. In 2007, miRNAs were 
identified for the first time within cell-secreted EVs that 
can be delivered and regulate several functions in the 
target cells [11]. In ovarian FFs, it has been reported 
that the majority of miRNAs are found within EVs [12] 
and are suggested to play a role in follicle development 
and other ovarian functions [13]. Consequently, altera-
tions in the FF miRNAs could reflect the status of the 
oocyte quality and its developmental competence [14]. 
Therefore, the objectives of this study were to identify 
small-EV (s-EV) miRNA differences in porcine FFs in 
association with oocyte quality and to investigate the 
effect of s-EVs on oocyte developmental competence. 
The identified miRNAs could be used as non-invasive 
biomarkers for oocyte selection. Moreover, our results 
provided more insights into the potential role of FF-EVs 
during oocyte maturation.

Materials and methods
Chemicals and supplements
All plastic materials and chemicals were purchased from 
Thermo Fisher Scientific (Waltham, MA, USA) and 

Merck (Kenilworth, NJ, USA), respectively, unless stated 
otherwise. All media were prepared fresh and sterilized 
using 0.22 μm syringe filters.

Collection of follicular fluids, COCs staining, 
and classification
Porcine ovaries of prepubertal gilts (Landrace × Large 
White, 6–8 months of age, 90–120 kg) were collected 
from a local slaughterhouse and transported to the 
lab in a thermos flask within 2 h. Ovaries were washed 
three times with saline solution. Follicular fluids and 
COCs were aspirated from individual healthy follicles 
(3–6 mm in diameter, measured as previously recom-
mended [15]) using a 25-gauge needle attached to a 1-mL 
syringe (Braun, Germany). Each COC and its corre-
sponding FF were allocated in separate wells in a 96-well 
plate. COCs were washed once in PXM-HEPES (HEPES 
buffered porcine X medium [16]) and then stained for 
15 min at room temperature with 0.5% lissamine green B 
stain (LB), a vital synthetic stain for determining oocyte 
quality and competence [17, 18]. Each COC was classi-
fied separately according to the oocyte stain into high-
quality (unstained; HQ) and low-quality (stained; LQ) as 
presented in Fig.  1. FFs corresponding to oocytes were 
pooled together into HQ and LQ groups and used for the 
isolation of small-extracellular vesicles (s-EVs).

Isolation of small‑extracellular vesicles from follicular fluid
To isolate s-EVs (< 200 nm), pooled FFs (~ 1 mL/repli-
cate) from each group were centrifuged at 700 ×  g for 
10 min to pellet cells, at 2000 ×  g for 10 min to remove 
cell debris, and at 12,000 × g for 30 min to remove large 
particles and protein aggregates. All centrifugation steps 
were performed at 4 °C. The remaining supernatants 
were filtrated through a 0.2-μm syringe filter to eliminate 
larger vesicles. Small-EVs were isolated from 0.5 mL fil-
tered FFs (3 replicates/group) using an Exo-spin kit (Cell 
Guidance Systems, UK) and eluted in PBS according to 
the manufacturer’s protocol. For electron microscope 
imaging and western blot analysis, samples were kept at 
4 °C until analysed. The remaining samples were stored 
at − 80 °C for further analysis. All relevant data regarding 
s-EV isolation and characterization were submitted to 
the EV-TRACK knowledgebase [19] with the EV-TRACK 
ID EV210251.

Nanoparticle tracking analysis (NTA)
To determine vesicle size and concentration, samples 
were diluted in PBS (1:200) and NTA was conducted 
in a ZetaView instrument (Particle Metrix, Germany) 
in scatter mode (488 nm laser). Measurements were 
performed in two cycles by scanning 11 cell positions 
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each, and the videos were analysed using the software 
ZetaView (version 8.05.12).

Transmission electron microscopy (TEM)
For morphological evaluation, isolated s-EV samples 
were placed into formvar/carbon-coated 400 mesh cop-
per grids for 20 min at room temperature. Then, the grids 
were incubated with 2% formaldehyde in PBS for 20 min, 
followed by 6 washes for 2 min each with ultrapure water. 
The grids were stained with uranyl acetate (2%) for 
12 min, washed in water, left to dry, and then examined 
in a Jeol JEM-1400 FLASH transmission electron micro-
scope (Tokyo, Japan) equipped with Matataki 2k×2k 
CMOS camera at 80 kV.

Western blot analysis
Samples of s-EV, filtered follicular fluid, or follicu-
lar cells containing 40 μg of total protein were mixed 
with Laemmli buffer containing 2% sodium dodecyl 
sulphate (SDS) and 5% 2-mercaptoethanol. Samples 
were boiled at 100 °C for 3 min and stored frozen at 
− 20 °C. Subsequently, proteins were separated in 10% 
or 12% acrylamide/SDS gels and transferred to Immo-
bilon-P membranes (Millipore, Bedford, MA, USA). 
Membranes were blocked in 5% low-fat dry milk in 
Tris-buffered saline (TBS) with 0.5% Tween 20 for 2 h 
at room temperature and then incubated with a pri-
mary antibody at 4 °C overnight. The primary anti-
bodies were anti-CD63 (Abcam, Ab 118307, diluted 
1:1000 in 2% BSA in TBS-Tween), anti-Alix (Abcam, 
Ab 88388, diluted 1:500 in 5% milk), and anti-TSG101 
(Santa Cruz Biotechnology, Sc-7964, diluted in 1:200 in 
5% milk) raised against exosome-specific markers, and 
anti-Cytochrome C (Abcam, Ab 90529, diluted 1:1000 

in 2% BSA) and anti-ATP5A (Abcam, Ab14748, diluted 
1:2000 in 5% milk) raised against somatic cell-specific 
markers. The secondary antibodies (Amersham ECL 
anti-mouse or anti-rabbit IgG, GE Healthcare, Little 
Chalfont, UK) were diluted 1:5000 in 2% BSA in TBS-
Tween. The membranes were incubated with the sec-
ondary antibody for 1 h at room temperature and then 
washed intensively in TBS-Tween. The immune reac-
tions were detected by enhanced chemiluminescence 
(Pierce, Rockford, IL, USA) according to the manufac-
turer’s instructions and captured on CL-XPosure film 
(ThermoFisher Scientific).

Total RNA extraction, library preparation, and sequencing
Total RNA, including miRNA was isolated from EV sam-
ples using a miRNeasy Micro Kit (Qiagen, Hilden, Ger-
many) that combines the phenol/guanidine-based lysis 
of samples and silica membrane-based purification of 
total RNA, according to the manufacturer’s instructions. 
The RNA concentration and size distribution were ana-
lyzed using an Agilent RNA 6000 Pico kit in an Agilent 
2100 Bioanalyzer (Agilent Technologies, Santa Clara, 
CA, USA). Small-RNA libraries were prepared for next-
generation sequencing (NGS) using a QIAseq miRNA 
Library Kit (Qiagen) according to the manufacturer’s 
instructions. Library quantity and quality assessments 
were performed using a Qubit DNA HS Assay Kit in a 
Qubit 4 Fluorometer (Thermo Fisher Scientific) and Agi-
lent DNA High Sensitivity kit in an Agilent 2100 Bioana-
lyzer (Agilent Technologies), respectively. The libraries 
were pooled in equimolar ratios and then sequenced in a 
NovaSeq6000 sequencing instrument (Illumina, Inc., San 
Diego, CA, USA) as single-end reads.

Fig. 1  Classification of porcine COCs after lissamine green B (LB) staining. Left: Unstained COC (high-quality; HQ). Right: Stained COC (low-quality; 
LQ). Scale bar, 60 μm
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Sequencing data analysis
FASTQ files were generated for each sample using the 
software bcl2fastq (Illumina Inc., San Diego, CA), and 
their quality was checked using the FastQC tool ver-
sion 0.11.9. Data were analyzed using the software CLC 
Genomics Workbench, version 21 (www.​qiage​nbioi​
nform​atics.​com). Raw sequencing reads were trimmed 
based on quality score (Q-score > 30), ambiguous nucle-
otides (maximum two nucleotides allowed), read length 
(≥15 nucleotides) and removing adapter sequences. 
Reads were mapped to the porcine (Sus scrofa) refer-
ence genome (Sscrofa11.1) and annotated against por-
cine precursor and mature miRNAs listed in the mirBase 
database (release 22) using the CLC Genomics Work-
bench RNA-Seq Analysis and Quantify miRNA tools, 
respectively, applying the default software parameters. 
Raw expression data were normalized using the trimmed 
mean of M-values normalization method (TMM nor-
malization) [20] and presented as TMM-adjusted Counts 
Per Million (CPM). The CLC Genomics Workbench Dif-
ferential Expression tool was used for the expression 
analysis comparison of the two groups. MiRNAs with 
fold change (FC) ≥ 2, P-adjusted value (FDR [21]) < 0.05, 
and CPM > 5 in the enriched group were considered dif-
ferentially expressed (DE). The raw FASTQ files and pro-
cessed CSV files have been deposited in the NCBI’s Gene 
Expression Omnibus (GEO) with the accession number 
GSE181182.

Target gene prediction and ontological classification
Genes targeted by DE-miRNA were identified using the 
miRWalk database [22]. Within the miRWalk, validated 
target genes from miRTarBase (version 7.0) and com-
monly target genes predicted by TargetScan (version 
7.1) and miRDB (release 5.0) were selected for ontologi-
cal classification and pathway analysis using the DAVID 
bioinformatics web tool (https://​david.​abcc.​ncifc rf.​gov/). 
Pathways were determined from the KEGG database 
[23], and interaction networks of the targeted genes and 
the identified pathways were constructed with Cytoscape 
[24] and its plug-in ClueGO [25].

DE‑miRNA validation using droplet digital PCR (ddPCR)
To validate the miRNA-seq data, we performed a PCR 
analysis for a selected group of 11 DE-miRNAs. The 
absolute copy numbers of the selected DE-miRNAs were 
quantified in the EVs samples using specific TaqMan 
miRNA Assays (Applied Biosystems, Foster City, CA, 
USA) in a ddPCR system (Bio-Rad Inc., Hemel Hemp-
stead, UK) according to the manufacturer’s instructions 
and as previously described [26]. The copy numbers 
of the selected DE-miRNAs were normalized to miR-
26b-5p, the most stably expressed miRNA across all 

samples, according to the analysis with the software 
NormFinder.

Co‑incubation of s‑EVs with COCs during maturation
COCs were collected as mentioned above using a 
20-gauge needle attached to a 10-mL syringe and then 
morphologically evaluated under a stereomicroscope 
(Zeiss Stemi 508, magnification × 50). Only those with at 
least three layers of cumulus cells and an evenly granu-
lated ooplasm were used. COCs were washed twice in 
the maturation medium (Medium 199) supplemented 
with 0.005% gentamicin (Roth 0233), 0.0022% sodium 
pyruvate, 0.01% L-glutamine, 0.1% BSA, 10 ng/mL 
EGF, 40 ng/mL FGF2, 20 ng/mL IGF1, 2000 IU/mL LIF, 
0.57 mmol/L L-Cysteine, 10 IU/mL PMSG and 10 IU/mL 
HCG. COCs were cultivated in 4-well dishes (30–50 per 
well) for 44 h at 38.5 °C under a 5% CO2 atmosphere in 
500 μL maturation medium supplemented with or with-
out (control) s-EV particles (~ 200 million particles/mL) 
isolated from HQ or LQ FF groups. COCs cultivated in 
the same maturation media supplemented with a volume 
of PBS similar to the s-EVs were used as the negative 
control group (NC).

Parthenogenetic activation and embryo cultivation
After maturation, cumulus cells were removed from 
COCs by pipetting and washed twice in PXM-HEPES. 
Oocytes were activated using 10 μmol/L ionomycin in 
PXM-HEPES for 5 min, washed twice in porcine zygote 
medium 3 (PZM 3) [27] supplemented with 2 mmol/L 
6-dimethylaminopurine, and cultivated for 5 h at 38.5 °C 
under a 5% CO2 atmosphere. A group of 30–50 putative 
parthenotes was washed twice in PZM 3 and cultivated 
for 7 d in 4-well dishes in 500 μL of PZM 3 medium at 
38.5 °C under a 5% CO2 atmosphere. The cleavage rate 
was assessed after 40 h, and the ability of the embryos to 
reach the blastocyst stage as well as the number of nuclei 
in blastocysts were analyzed after 168 h of cultivation. 
Blastocysts were fixed using 4% paraformaldehyde and 
mounted on glass slides using DAPI mounting medium. 
Each blastocyst was scanned using a confocal microscope 
(Leica SP5, Germany), and the number of nuclei was 
counted using the software ImageJ.

Oocyte mitochondrial activity and distribution patterns
Matured COCs were denuded as described above. 
Oocytes were washed three times in PBS, stained with 
300 nmol/L Mitotracker Orange kit (Thermo Fisher 
Scientific, USA) for 30 min in the dark at 38.5 °C. Then, 
oocytes were washed three times in PBS at 38.5 °C, 
fixed for 15 min in 4% paraformaldehyde, and mounted 
on glass slides using DAPI mounting medium. Oocytes 
were scanned in a confocal microscope (Leica SP5, 
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Germany) and mitochondrial activity was analyzed 
using the software ImageJ. The distribution patterns of 
mitochondria were characterized by observing (at 630-
fold magnification) labeled mitochondria with an active 
oxidative state. We classified the distribution and aggre-
gation patterns mainly as homogeneous, heterogeneous, 
and clustered distribution according to the previously 
reported classification [28, 29].

Statistical analysis
All experiments were done in at least three replicates. 
Data normality was checked using the Shapiro–Wilk 
test. Maturation and developmental rates and blas-
tocyst nuclei numbers were analyzed using one-way 
ANOVA (SigmaPlot 12, US) followed by Tukey’s test to 
detect differences between the means and expressed as 
mean ± SD. Categorical variables were identified using 
the chi-square test. PCR data were statistically analyzed 

using Student’s t-test. The statistical significance level 
was defined at P < 0.05.

Results
Characterization of s‑EVs from porcine follicular fluids
Different morphological and molecular analyses were 
done to determine the characteristics and the purity 
of s-EV isolated samples. Vesicle size and concentra-
tion were determined in each sample using NTA. The 
concentration of s-EVs from the HQ and LQ FF groups 
was 8.98E+ 09 ± 3.43E+ 08 and 8.97E+ 09 ± 1.25E+ 09 
particles/mL, the median size was 135.7 ± 5.3 and 
132.6 ± 3.3 nm, respectively, and the mode was 135 nm 
in both groups, with no significant differences between 
them (Fig. 2A). Imaging with TEM revealed the presence 
of s-EVs with visible lipid bilayer membranes (Fig.  2B). 
Western blot analysis identified the presence of EV-spe-
cific markers (ALIX, TSG101, and CD63) in both s-EV 

Fig. 2  Morphological and molecular characterization of s-EVs. A The concentration and size distribution of s-EVs isolated from follicular fluids (FFs) 
corresponding to high- (HQ) or low-quality (LQ) oocytes analysed by NTA. B Transmission electron microscopy (TEM) representative photos of 
isolated s-EVs showing the lipid bilayer membrane and the cup-shaped EV particles (black arrows). Scale bar of 500 and 200 nm for the upper left 
and right photos, respectively, and of 200 and 100 nm for the lower left and right photos, respectively). C Immunoblotting analysis of EV-specific 
protein markers (ALIX, TSG101, and CD63) and cellular specific protein markers (CytC and ATP5A) in the HQ and LQ EV groups, as well as in filtered FF 
and follicular cell lysate (FC) as positive and negative controls, respectively. Scale numbers are in kDa. D RNA size distribution from s-EV samples of 
HQ (sample 1–3) and LQ (sample 4–6) groups analysed with a bioanalyzer (Agilent Technologies)
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groups and the filtered FFs. Additionally, cellular specific 
protein markers (CytC and ATP5A) were only detected 
in the cell lysates, but not in the isolated s-EVs, indicating 
the absence of other cellular membrane contamination in 
the EV samples (Fig. 2C). Lastly, the size distribution of 
the total RNA isolated from s-EV samples exhibited clear 
peaks for small-RNA and the absence of ribosomal-RNA 
peaks, confirming the samples to be free of cells and cel-
lular components (Fig. 2D).

MiRNA expression profiles of s‑EVs isolated from follicular 
fluids
Small-RNA libraries were prepared from six different EV 
samples (3 replicates per group) to identify the expressed 
miRNAs in each. RNA-seq analysis gave an average num-
ber of 27 million raw reads per library with an average of 
16 million reads being retained after trimming and qual-
ity control. An average of 89% of reads were mapped to 
the porcine genome, and the average proportion of anno-
tated miRNAs was 15% (Additional file 1: Table S1). Vari-
ous types of small non-coding RNA (sncRNA), including 
misc_RNA, snRNA, and snoRNA were also identified 
in all samples. However, the majority of sncRNA reads 
were assigned to miRNAs (Additional  file  2: Fig. S1). 
Heatmap clustering and principal component analysis 
(PCA) were performed on the miRNA CPM values. The 
results showed a clear clustering of the three biological 
replicates of each group, with a clear separation between 
the two groups. The first two components of the PCA 
explained around 68.5% of the existing variances (Fig. 3). 
A miRNA with an average value of CPM > 1 was con-
sidered to be expressed. Accordingly, a total of 303 and 
301 miRNAs were expressed in the HQ and LQ groups, 
respectively, with 295 miRNAs being expressed in both 
groups (Fig.  4A). A complete list of all expressed miR-
NAs is presented in Additional file  1: Table  S2, and 
the top 20 most abundant miRNAs in each group are 
presented in Table  1. Interestingly, miR-27b-3p, miR-
140-3p, miR-29a-3p, miR-202-5p, and miR-16 were the 
top 5 expressed miRNAs in both groups, in which they 
accounted for 42% and 49.2% of the miRNAs sequence 
reads in the HQ and LQ groups, respectively (Table 1).

Differentially expressed miRNAs and ontological 
classification
Differential expression analysis of miRNAs revealed that 
19 miRNAs (including miR-193a-5p, miR-339-3p, ssc-
miR-132, ssc-miR-125b and ssc-miR-320) and 23 miR-
NAs (including miR-9-1, miR-9, miR-206, miR-133b, and 
miR-133a-3p) were significantly up- and downregulated 
(FC ≥ 2, FDR < 0.05, and CPM > 5 in the enriched group) 
in the HQ compared to the LQ s-EVs group, respectively 
(Fig. 4B, Table 2).

Validated and predicted target gene analysis revealed 
a total of 860 and 1308 genes are targeted by up- and 
downregulated miRNAs, respectively, with 193 genes 
targeted by both. In addition, 702 genes were among the 
validated and predicted genes and targeted by the top 
five most abundant miRNAs in both groups. Apoptosis, 
p53 signaling, and cAMP signaling were among the top 
pathways targeted by the elevated miRNAs in the HQ 
group (Fig. 5A, Additional file 1: Table S3). On the other 
hand, oocyte meiosis, gap junction, TGF-beta signal-
ing, and estrogen signaling were among the top path-
ways targeted by the elevated miRNAs in the LQ group 
(Fig. 5B, Additional file 1: Table S3). Signaling pathways 
including PI3K-Akt, MAPK, AMPK, and FoxO were 
the top commonly targeted pathways by the elevated 
miRNAs in the HQ and LQ s-EV groups, as well as by 
the top five most abundant miRNAs in both groups 
(Fig.  5C and D, Additional file  1: Table  S3). However, 
genes involved in these common pathways were differ-
entially targeted by each miRNA group, with few genes 
commonly targeted by two or three miRNA groups, as 
shown for instance for the PI3K-Akt and MAPK signal-
ing pathways (Additional file 3: Fig. S2).

Validation of DE‑miRNA
A group of 11 DE-miRNAs was selected to validate the 
miRNA-seq data using ddPCR. All selected miRNAs 
exhibited the same expression pattern as in the miRNA-
seq data (P < 0.05) except for two miRNAs (ssc-miR-125b 
and ssc-miR-1306-5p), which did not differ significantly 
between the HQ and LQ s-EV groups (Fig. 6).

Oocyte maturation, developmental competence, 
and mitochondrial activity after s‑EVs co‑incubation
To investigate the effect of s-EVs and their cargos on por-
cine oocyte maturation and embryonic development, 
COCs were supplemented with s-EVs of the HQ or LQ 
groups. We evaluated the nuclear maturation, cleav-
age, blastocyst rates, and blastocyst cell count in com-
parison to the non-supplemented control group (C) or 
PBS-supplemented group (NC). There were no signifi-
cant differences in nuclear maturation or developmen-
tal rates, as well as in the blastocyst cell counts among 
the experimental groups (Table  3). To examine whether 
s-EVs might modulate changes in mitochondrial distribu-
tion or activity in oocytes after maturation, metaphase 
II (MII) oocytes were stained with MitoTracker Orange 
after co-incubation with s-EVs. Based on the mitochon-
drial distribution patterns, oocytes were categorized into 
three main categories, homogeneous, heterogeneous, or 
cluster distribution (Fig.  7A). The results showed that a 
significantly higher proportion of oocytes co-incubated 
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Fig. 3  Samples clustering. A Principal component analysis (PCA). B Heatmap and hierarchical clustering. HQ1-HQ3: high-quality s-EVs replicates, 
LQ1-LQ3: low-quality s-EVs replicates
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Fig. 4  Differential expression analysis. A Venn diagram for commonly and exclusively expressed miRNAs in HQ and LQ s-EVs groups. B Volcano 
plot of expressed miRNAs. Up- and downregulated miRNAs in the HQ compared to the LQ s-EVs groups are labeled with red and green points, 
respectively
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with the LQ s-EV group was in the homogeneous cat-
egory and a lower proportion was in the heterogene-
ous category compared to the other groups (Chi-square 
test, N = 130, P < 0.001; Fig.  7B). The overall mitochon-
drial activity measured as the intensity signal of the stain 
exhibited no significant differences between the experi-
mental groups (Fig. 7C).

Discussion
In this study, we identified the miRNA cargo of the s-EVs 
isolated from porcine FFs corresponding to different 
oocyte qualities. Furthermore, we investigated the effect 
of s-EV supplementation during maturation on oocyte 
developmental competence. We mainly found that s-EV 
miRNA expression profiles in FFs differed between high- 
and low-quality corresponding oocytes. These identi-
fied miRNAs could be used as non-invasive biomarkers 
to predict oocyte developmental competence and could 
provide more insights into the potential role of miR-
NAs in follicular cell-cell communications and develop-
ment. Moreover, the supplementation of s-EVs from the 
FFs of the low-quality group to oocytes during matura-
tion modulates changes in mitochondrial distribution 
patterns in MII oocytes by increasing the proportion of 

homogeneous and decreasing the proportion of hetero-
geneous distribution patterns.

Oocyte quality is one of the key factors that determine 
the success of IVM, IVF, and the developmental poten-
tial of the produced embryo [30]. Several methods are 
used to evaluate oocyte quality based on morphology, 
biomarkers expression, and machine learning assistance 
using oocyte images [31]. Staining GV oocytes with vital 
stains is another method that can predict oocyte qual-
ity and developmental competence. For instance, bril-
liant cresyl blue (BCB) staining has been widely used to 
differentiate between growing and fully grown oocytes 
based on the activity of the G6PDH enzyme [32], since 
oocytes stained with BCB are more competent than the 
unstained ones. Another interesting synthetic non-toxic 
stain that has been used to detect cellular membrane 
damages is LB stain [33]. It has been used previously for 
the non-invasive morphological assessment of porcine 
oocyte quality since it enables the detection of oocytes in 
the pre-apoptotic stage, expressing high levels of TP53, 
but still with low levels of pro-apoptotic genes [18]. 
Moreover, in another study from our group, Bartkova 
et al. [17] reported LB staining as a non-invasive oocyte 
selection method that can detect cellular membrane 

Table 1  List of top 20 most abundant miRNAs in small-extracellular vesicles obtained from follicular fluids of high (HQ) or low (LQ) 
quality corresponding oocytes

CPM average Counts Per Million mapped reads
a Percentage of the miRNAs sequence reads

miRNA HQ group
CPM

%a miRNA LQ group
CPM

%a

ssc-miR-27b-3p 102,691.3 10.9 ssc-miR-27b-3p 155,625.9 14.8

ssc-miR-140-3p 80,017.22 8.6 ssc-miR-16 115,577.2 11.4

ssc-miR-29a-3p 78,734.08 8.3 ssc-miR-29a-3p 99,770.91 9.2

ssc-miR-202-5p 71,447.84 7.5 ssc-miR-140-3p 82,856.62 7.4

ssc-miR-16 62,302.65 6.7 ssc-miR-202-5p 70,526.08 6.4

ssc-let-7c 39,828.22 4.3 ssc-miR-29c 51,664.11 4.7

ssc-miR-423-5p 32,738.73 3.6 ssc-miR-152 44,794.39 4.3

ssc-miR-128 31,129.2 3.4 ssc-let-7c 30,586.53 2.5

ssc-miR-152 28,718.56 3.1 ssc-miR-146a-5p 26,660.02 2.5

ssc-miR-29c 28,297.13 3.0 ssc-let-7i-5p 26,275.77 2.5

ssc-let-7a 26,486.27 2.9 ssc-miR-676-3p 22,826.69 2.2

ssc-miR-676-3p 24,661.24 2.7 ssc-miR-30e-5p 22,798.43 2.2

ssc-miR-146a-5p 23,950.27 2.6 ssc-miR-128 22,443.82 2.2

ssc-miR-24-3p 21,119.86 2.3 ssc-let-7a 16,416.26 1.4

ssc-miR-10b 19,325.57 2.1 ssc-miR-24-3p 16,005.13 1.5

ssc-miR-191 17,564.45 1.9 ssc-miR-30a-5p 15,408.66 1.4

ssc-let-7f-5p 17,071.41 1.8 ssc-miR-423-5p 14,893.75 1.3

ssc-let-7i-5p 16,857.99 1.8 ssc-miR-10b 13,573.69 1.1

ssc-miR-30e-5p 12,606.02 1.3 ssc-let-7f-5p 12,654.58 1.1

ssc-miR-30a-5p 11,671.15 1.2 ssc-miR-19b 11,413.06 1.2
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damage in porcine COCs. Although oocyte staining 
with such stains is considered a non-invasive method, 
it is still not the optimal approach for oocyte selection, 
since further treatment and incubation steps need to be 
incorporated to evaluate the oocytes. Therefore, search-
ing for specific biomarkers in follicular cells or FFs which 
are associated with oocyte quality could be a much 
more appropriate strategy for oocyte quality assessment 
and selection. To avoid any variations in the follicular 
stages or the physiological conditions of the donors, we 
collected the FFs from individual healthy ovarian fol-
licles of similar size from prepubertal gilts within simi-
lar weight and age ranges. Then, we used LB staining to 
differentiate between high- and low-quality COCs, and 
we subsequently collected the corresponding FFs for 
each category for s-EVs isolation and miRNA identifica-
tion. We characterized the s-EVs isolated from porcine 
FFs using three different methods. The size distribu-
tion, shape, and the analysis of specific protein markers 
revealed the successful isolation of s-EVs in agreement 
with the minimal information for studies of extracellu-
lar vesicles (MISEV2018) [34]. Importantly, s-EV sam-
ples were negative for CytC and ATP5A proteins as 

cellular-specific markers. In addition, the RNA electro-
pherogram clearly showed the absence of the ribosomal 
RNA peaks after total RNA isolation. These verified the 
isolation procedure and confirmed the degree of purity of 
the s-EV preparations from other intracellular compart-
ments or cellular contamination [34].

Since the first reported evidence on the EV-medi-
ated transfer of miRNAs between cells [11], EV-miR-
NAs have been considered to be novel non-invasive 
molecular markers for the prediction and diagnosis 
of various pathophysiological conditions [10]. From 
the FFs, several EV-miRNAs have been reported to 
be associated with follicular and oocyte development 
in different mammalian species including porcines 
[35], humans [36], bovines [37, 38], and equines [39]. 
However, the mechanism of EV-miRNAs in FFs that 
influences the oocyte developmental competence 
remains unclear. In this study, miRNA sequencing 
analysis identified a total of 42 significantly DE miR-
NAs between the HQ and LQ s-EV groups. Among 
the DE miRNAs, the mir-9 family-related miRNAs 
(miR-9-1 and miR-9) were the most highly elevated 
miRNAs in the LQ compared to the HQ group, with 

Table 2  Differentially expressed (DE) miRNAs in small-extracellular vesicles obtained from follicular fluids of high (HQ) compared to 
low (LQ) quality corresponding oocytes

FC Fold Change, FDR False Discovery Rate

Upregulated miRNAs FC FDR Downregulated miRNAs FC FDR

ssc-miR-193a-5p 4.48 4.83E-05 ssc-miR-9-1 −51.16 4.90E-22

ssc-miR-339-3p 3.34 1.38E-03 ssc-miR-9 −12.67 2.60E-17

ssc-miR-671-3p 3.26 1.48E-04 ssc-miR-338 −8.39 2.15E-04

ssc-miR-1306-5p 3.22 4.63E-09 ssc-miR-6516 −7.95 3.34E-05

ssc-miR-885-5p 2.75 4.28E-05 ssc-miR-206 −5.67 3.51E-07

ssc-miR-7142-3p 2.67 1.07E-04 ssc-miR-133b −4.34 6.23E-06

ssc-miR-125b 2.60 3.40E-06 ssc-miR-133a-3p −3.14 3.04E-05

ssc-miR-132 2.60 7.14E-05 ssc-miR-101 −3.10 9.57E-12

ssc-miR-6529 2.54 1.62E-07 ssc-miR-219b-3p −3.07 3.67E-02

ssc-miR-296-5p 2.28 1.82E-03 ssc-miR-143-5p −2.90 2.04E-03

ssc-miR-125a 2.27 8.51E-04 ssc-miR-142-5p −2.74 1.94E-07

ssc-miR-423-3p 2.22 6.35E-06 ssc-miR-451 −2.48 2.34E-02

ssc-miR-423-5p 2.21 1.92E-04 ssc-miR-10,388 −2.43 1.44E-02

ssc-miR-7144-5p 2.19 3.78E-02 ssc-miR-199b-5p −2.33 3.51E-07

ssc-let-7d-3p 2.17 6.33E-06 ssc-miR-20a-5p −2.29 7.58E-04

ssc-miR-551a 2.09 5.36E-03 ssc-miR-19a −2.19 7.14E-05

ssc-miR-149 2.09 7.98E-03 ssc-miR-301 −2.18 1.34E-04

ssc-miR-320 2.07 1.85E-06 ssc-miR-126-5p −2.18 5.10E-07

ssc-miR-425-5p 2.02 1.29E-04 ssc-miR-218b −2.16 1.29E-04

ssc-miR-424-5p −2.14 4.15E-03

ssc-miR-190b −2.13 5.58E-04

ssc-miR-545-5p −2.08 2.04E-02

ssc-miR-95 −2.04 9.49E-03
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more than 50-fold miR-9-1 in the LQ group. The 
miR-9 family was previously known to play roles as 
repressor mediators of proliferation promoting tran-
scription factors [40] and as tumor suppressors [41]. 
In humans, miR-9 exhibited a higher expression in the 
FFs (104 folds) [42] and granulosa cells [43] of women 
with polycystic ovary syndrome (PCOS) compared to 
normal women. It has been previously reported that 
PCOS is highly correlated with poor oocyte qual-
ity and subsequently low developmental competence 
due to consecutive disturbances in the paracrine and/
or endocrine follicular microenvironment [44, 45]. 
Moreover, in our previous study [26] we reported an 
increase in the expression of miR-9-1 in low-compe-
tence porcine oocytes derived from small compared to 

large follicles. These findings may indicate a possible 
correlation between the cellular and/or extracellular 
expression of miR-9 with the oocyte quality. In addi-
tion, miR-101 was among the upregulated miRNAs 
in the LQ compared to the HQ group and was one 
of the highly abundant DE-miRNAs. Recently, it has 
been reported that miR-101-3p inhibits goat granu-
losa cells in  vitro proliferation by regulating CDK4, 
CCND1, CCNE1, and PCNA expressions and promotes 
the apoptotic rate by regulating Bcl-2, Bax, p53, and 
caspase3 expression [46]. The same study reported 
that, in mouse ovaries, miR-101-3p exhibited unu-
sual ovarian development functions, as reflected by 
decreased numbers of various follicles as well as small 
and stunted ovarian fragments. Another interesting 

Fig. 5  Pathway analysis of differentially expressed miRNA target genes. Bubble plots for the pathways targeted by the elevated miRNAs in the high 
(A) and low quality (B) s-EVs groups and by the top five most abundant miRNAs in both groups (C). The color and size of each bubble represent the 
P-value and the number of miRNA target genes in each pathway, respectively. Exclusive and common pathways targeted by elevated miRNAs in the 
high- (HQ) and low-quality (LQ) s-EVs groups and by the top five most abundant miRNAs in both groups (D) 
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group of miRNAs including miR-206, miR-133b, and 
miR-133a-3p showed a significant up-regulation in the 
LQ compared to the HQ group. The same three miR-
NAs exhibited a higher expression pattern in the EVs 
isolated from the blood plasma of low- compared to 
high-response heifers to ovarian stimulation [47]. Both 
miR-206 and miR-133a are highly correlated with E2 
deficiency by targeting and reducing the expression 
of E2 receptor-α, which mediates the biological activ-
ity of E2 in ovarian follicular cells and subsequently 
affects oocyte quality [48–51]. In mice, theca-spe-
cific E2 receptor-α knockout leads to a reduction in 
the oocyte quality and decreased ovulation capacity 
[52]. Recently, it has been demonstrated that miR-
206 decreased the viability and induced apoptosis 
levels in ovarian granulosa cells by targeting CCND2 
mRNA [53]. Similarly, miR-133a was reported to be a 
cell proliferation inhibitor and apoptosis promotor in 
the intestinal epithelial cells [54]. These could explain 
the higher expression of this group of miRNAs in the 
FF-EVs of the LQ compared to the corresponding HQ 

oocytes in this study. On the other hand, a group of 
19 miRNAs including miR-132 and miR-320 (one of 
the highly abundant DE-miRNAs) was significantly 
up-regulated in the FF-EVs of the corresponding HQ 
oocytes. Similar to our findings, miR-132 and miR-320 
were detected as extracellular miRNAs with a higher 
expression level in human ovarian FFs of oocytes that 
yielded top-quality embryos [55]. Moreover, both 
miRNAs were highly expressed in the ovarian FFs of 
healthy compared to PCOS patients [56]. In another 
study, the expression of miR-320 in FFs was posi-
tively correlated with human embryonic quality and 
development. The same study showed that miR-320 
knockdown in mouse oocytes strongly decreased their 
developmental competence [57]. The expression level 
of miR-132 was higher in the FFs of equine preovula-
tory compared to dominant follicles, with an indica-
tion of the physiological involvement of miR-132 in 
steroidogenesis, follicle selection, and ovulation [58]. 
Other interesting miRNAs which were highly abun-
dant in the FF-EVs and exhibited a higher expression 

Fig. 6  Droplet digital PCR (ddPCR) validation of the selected DE-miRNAs in comparison to the small RNAseq (sRNAseq) analysis. *Statistical 
significance between the high- (HQ) and low- quality (LQ) s-EVs groups (P < 0.05)

Table 3  Maturation and developmental rates of porcine oocytes co-incubated with s-EVs isolated from HQ or LQ FF groups

C Control, NC negative control, HQ high quality, LQ low quality

Group MII rate
% ± SD (n)

Cleavage rate
% ± SD (n)

Blastocyst rate
% ± SD (n)

Blastocyst cell 
number ± SD (n)

C 90.07 ± 9.95% (47) 85.34 ± 7.21% (124) 32.40 ± 2.37% (124) 39 ± 5 (27)

NC 85.35 ± 10.95% (55) 86.79 ± 6.17% (125) 29.33 ± 7.93% (125) 39 ± 10 (17)

HQ 75.74 ± 14.29% (53) 76.68 ± 3.83% (129) 25.38 ± 5.13% (129) 42 ± 6 (20)

LQ 87.74 ± 5.75% (55) 75.84 ± 7.98% (154) 25.70 ± 7.71% (154) 45 ± 4 (18)
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level in the HQ compared to the LQ group are miR-
125a and miR-125b. Both are members of the mir-10 
family and were detected in human FF microvesicles 
[56]. A recent study demonstrated that miR-125a can 
be transcribed by all follicular components and play 
a role in intercellular communication within the folli-
cle [59]. In mice, miR-125a and miR-125b were highly 
expressed in GV compared to MII oocytes, and it was 
also found that they play an important role in regulat-
ing maternal genes and zygotic genome activation [60].

To investigate the effect of s-EVs on porcine oocyte 
maturation and embryonic development, we performed 
a functional experiment by coincubating COCs with 
s-EVs of the HQ or LQ groups. However, we didn’t 
observe any significant differences in maturation or 
embryonic developmental rates after coincubation 
compared to the control groups. In different mamma-
lian species, several studies have demonstrated that, 
during in vitro culture, EVs could be uptaken by gran-
ulosa or cumulus cells and could be found within the 
zona pellucida and transzonal projections of cumulus 
cells [37–39]. Moreover, the uptake of EVs by follicular 

cells was associated with an increase in endogenous 
miRNA levels and altered gene expression in in  vitro 
cultured follicular cells [12]. However, the results of 
studies on the effect of EVs on developmental rates con-
tradict each other. For instance, de Ávila et al. reported 
that the supplementation of bovine oocytes with FF-
isolated EVs does not affect the maturation rate [37]. 
Moreover, in pigs, it has been suggested that exosomes 
from FFs are not effective in inducing cumulus cell 
expansion [61]. In contrast, bovine follicular EVs 
induced mouse and bovine cumulus cell expansion [38] 
and improve oocyte competence and survival of heat 
stress [62]. Several factors including the source of EVs, 
isolation method, concentration, and incubation time 
could influence the extent of the EV impact on oocyte 
or embryonic developmental competence, which could 
explain these contrary results. For instance, the supple-
mentation of EVs from early antral follicles increased 
bovine blastocyst rates compared to the control, how-
ever, EVs derived from pre-ovulatory follicles exhib-
ited no significant difference [63]. In another study, the 
supplementation of maturation media with follicular 

Fig. 7  Mitochondrial activity and distribution patterns in porcine MII oocytes. A Oocytes were classified into three main distribution patterns: 
Homogeneous (left), Heterogeneous (middle), or Cluster (right). Scale bar, 60 μm. B The proportion of each distribution pattern in porcine MII 
oocytes after co-incubation with s-EVs of high- or low-quality groups. Bars with different letters indicate significant differences (P < 0.05). C The 
relative intensity signal of mitochondrial activity in the different oocyte groups. C: control; NC: negative control; HQ: high-quality; LQ: low-quality
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EVs derived by density gradient ultracentrifugation 
improved the blastocyst rate compared to EVs derived 
by size-exclusion chromatography [64]. In the same 
study, EVs derived by both isolation methods improved 
embryo quality measured as blastocyst cell number and 
apoptotic cell ratio. More studies considering these fac-
tors are needed to optimize the EV co-culture condi-
tions and to determine the mechanisms that regulate 
oocyte and embryonic development under in vitro con-
ditions. Our results showed that a higher proportion of 
MII oocytes that were co-cultured with the LQ s-EVs 
exhibited a homogeneous mitochondrial distribution 
pattern, and a lower proportion of them was in the het-
erogeneous pattern compared to the other groups. It is 
well known that homogeneous and heterogeneous dis-
tribution patterns of mitochondria are more commonly 
observed in GV and MII oocytes, respectively [28]. As 
oocyte maturation progresses, the mitochondrial dis-
tribution changes from homogeneous to a heteroge-
neous pattern as a sign of cytoplasmic maturation [28, 
65]. Several studies reported that released EVs could 
regulate the function and composition of mitochondria 
in receptor cells via their metabolite, miRNA, and pro-
tein cargos (reviewed in [66]). Not only that, but whole 
mitochondria or their component parts could be trans-
ferred between cells via EVs [67]. This could explain the 
negative effect of LQ-EVs on the cytoplasmic matura-
tion of MII oocytes by affecting the mitochondrial dis-
tribution pattern. However, the precise mechanism by 
which the EVs could regulate oocyte mitochondrial dis-
tribution is still unclear.

Conclusion
Our results indicated that s-EVs purified from porcine 
ovarian FFs contain different miRNA cargos that are 
associated with the quality of the corresponding oocytes. 
These miRNAs could be used as non-invasive biomarkers 
for oocyte selection. Moreover, the supplementation of 
maturation media with s-EVs of the LQ FF group modu-
lates the cytoplasmic maturation of the matured oocytes 
by affecting the mitochondrial distribution patterns. 
Further functional studies on the mechanisms by which 
FF-EVs and their molecular cargos could regulate and 
maintain oocyte developmental competence will enhance 
ART outcomes.
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