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Abstract

Mycotoxins are secondary metabolites of different species of fungi. Aflatoxin B1 (AFB1), deoxynivalenol (DON),
zearalenone (ZEN) and fumonisin B1 (FB1) are the main mycotoxins contaminating animal feedstuffs. These
mycotoxins can primarily induce hepatotoxicity, immunotoxicity, neurotoxicity and nephrotoxicity, consequently
cause adverse effects on the health and performance of animals. Therefore, physical, chemical, biological and
nutritional regulation approaches have been developed as primary strategies for the decontamination and
detoxification of these mycotoxins in the feed industry. Meanwhile, each of these techniques has its drawbacks,
including inefficient, costly, or impractically applied on large scale. This review summarized the advantages and
disadvantages of the different remediation strategies, as well as updates of the research progress of these strategies
for AFB1, DON, ZEN and FB1 control in the feed industry.
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Introduction
Mycotoxins are secondary metabolites of various species
of fungi that can cause chronic or acute toxicity in
animals. Although over 500 mycotoxins have been iden-
tified, those of importance in feed safety are primarily
produced by the five fungal genera Aspergillus, Fusar-
ium, Penicillium, Claviceps and Alternaria [1–5]. Afla-
toxin B1 (AFB1), deoxynivalenol (DON), zearalenone
(ZEN) and fumonisin B1 (FB1) are well-known as the
main mycotoxins contaminating animal feedstuffs, such
as corn, barley, wheat, peanuts, peas, nuts, millet, forage,
and their by-products [3–6]. The toxicity of these myco-
toxins varies depending on their chemical structure (Fig.
1). The most toxic mycotoxin is AFB1, mainly produced
by Aspergillus, which is classified as a Group one car-
cinogen [7]. It displays hepatotoxic, immunotoxic, muta-
genic, carcinogenic and teratogenic characteristics in

many animal species [8–11]. Notably, all of DON, ZEN
and FB1 are primarily produced by Fusarium molds [5,
12]. DON, a type B trichothecene, can induce anorexia,
vomiting, and endanger intestinal and immune functions
in different animals by inhibiting the synthesis of nucleic
acids and proteins [13–16]. ZEN has a similar structure
to estrogen and thus competing with 17 β-estradiol for
estrogen receptor binding, consequently leading to fertil-
ity and reproductive disorders in livestock [16–19]. FB1

is the most plentiful fumonisins, which can cause
hepatotoxicity, neurotoxicity, nephrotoxicity, immuno-
toxicity, developmental toxicity and cancer in humans
and animals [20].
Mycotoxins have been proven to have significant ef-

fects on animal health, performance, as well as quality
and safety of products, this led to intensive studies over
the past few decades on counteracting methods for my-
cotoxins control in feedstuffs and feed. Generally, phys-
ical, chemical, biological and nutritional regulation
approaches have been developed as the main strategies
for the detoxification of mycotoxins in the feed industry

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: lvhuisun@mail.hzau.edu.cn
1Hubei Hongshan Laboratory, College of Animal Science and Technology,
Huazhong Agricultural University, Wuhan 430070, Hubei, China
Full list of author information is available at the end of the article

Liu et al. Journal of Animal Science and Biotechnology           (2022) 13:19 
https://doi.org/10.1186/s40104-021-00661-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s40104-021-00661-4&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:lvhuisun@mail.hzau.edu.cn


[21–26]. Nevertheless, many techniques have been
proven to be inefficiency, costly, or impractically applied
on large scale [21, 22]. The purpose of this review was
to summarize the advantages and disadvantages of the
various detoxification strategies, as well as update the re-
search progress of these strategies for AFB1, DON, ZEN
and FB1 control in the feed industry.

The strategies of mycotoxin reduction and detoxification
Physical methods
Decontamination of mycotoxin by physical techniques
mainly includes sorting and separation, washing, solvent
extraction, heating, irradiation, and adsorption [27, 28].
The commonly used methods of physical detoxification
of mycotoxins are summarized in Table 1.

Fig. 1 Structural diversity of AFB1, DON, ZEN and FB1. AFB1: Aflatoxin B1; DON: deoxynivalenol ; ZEN: zearalenone; FB1: fumonisin B1

Table 1 Summary of physical methods for mycotoxins decontaminationa

Methods Commonly used measures and reagents Decontamination efficiency References

Sorting and
separation

Sieving, aspiration, gravity separation, photoelectric
separation, image processing

Removed at least 51%, 63%, 93% of AFs, trichothecenes
and fumonisins from the shelled white maize.

[27]

Washing and
solvent
extraction

Washing, solvent extraction (methanol, ethanol, hexane,
acetonitrile, isopropanol and aqueous acetone etc.)

Removed aflatoxins, trichothecenes, ZEN and
fumonisins by 51-72%, 64-69%, 2-61% and 73-74%
from the grains through floating and washing with water.

[25, 27, 29]

Heating High temperature, high voltage Decomposited 78-88% of AFB1 in rice by cooking
with pressure (0.10 MPa) at 160 °C for 20 min.
Destroyed 90% of DON or ZEN in barely power
at 220 °C in 11 or 85min.
Reduced 80% FB1 while cooking rice at 100 °C for 10 min.

[30–32]

Irradiation X-rays, γ-rays and electron beam,
ultraviolet rays, infrared and microwave

Reduced 22.0-90.7% of AFB1 by irradiation.
Decomposited 17.2-100% of DON by irradiation.
Decontaminated 25.0-86.0% and 60.0-100% of ZEN by
γ-rays and ultraviolet rays.
FB1 was inactivated by 63.5-100%, 58.1% and 93.3% by
γ-rays, electron beam and microwave in feedstuffs.

[33–41]

aAFs Aflatoxins, AFB1 Aflatoxin B1, DON deoxynivalenol, ZEN zearalenone, FB1 fumonisin B1
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Sorting and separation The mycotoxins are not uni-
formly distributed in grains, which mainly appeared in
the moldy, broken and discolored parts [42, 43].
Meanwhile, the specific gravity of the mycotoxins-
contaminated cereals is relatively lower than the normal
ones. These characteristics enable sieving, aspiration,
gravity separation, photoelectric separation, image pro-
cessing techniques to be used to isolate the mycotoxins-
contaminated feedstuffs [27, 44]. Specifically, Matumba
et al. [27] reported that flotation, dehulling and hand
sorting alone can remove at least 51%, 63%, 93% of afla-
toxins (AFs), trichothecenes and fumonisins, respect-
ively, from the shelled white maize, while 98% of these
mycotoxins can be removed when combining three of
these methods. However, these techniques are costly and
only suitable for small-scale applications. Aspiration and
gravity separation methods can reduce the DON in
wheat, while it reduced the yield of harvested grain [21].
Additionally, near-infrared spectroscopy and optical vis-
ual sorting strategies can be used to detect the moldy
maize and wheat kernels with more than 92% level of ac-
curacy [22–28, 42–46].

Washing and solvent extraction According to the
water-soluble or fat-soluble properties of mycotoxin, it
could be decontaminated by washing with water or ex-
traction with organic solvent [47]. Floating and washing
with water can remove AFs, trichothecenes, ZEN and
fumonisins by 51-72%, 64-69%, 2-61% and 73-74%, re-
spectively, from the grains [25, 27, 29]. Notably, floating
and washing with a water solution consists of 10-30%
NaCl, 30% sucrose, or 1 mol/L sodium carbonate can in-
crease the removal rate of fumonisins from the corn and
wheat [25, 48]. A combination of washing and hand
sorting technologies together can reduce 84% of fumoni-
sins [49]. The solvents, including methanol, ethanol,
hexane, acetonitrile, isopropanol and aqueous acetone,
are most commonly used for mycotoxin extraction. Pre-
vious studies showed that hexane-aqueous acetone-
water (56%:42%:2%) and dimethyl ether can eliminate
over 98% of AFs in oil crops [50, 51]. However, these
methods have major disadvantages as they result in loss
of nutrients, and costly due to drying and toxic extracts
disposal, which limit their large-scale application.

Heating Thermal treatment has been applied for the de-
contamination of mycotoxins in feed for many years.
The efficiency of this method depends on the chemical
structure and concentration of mycotoxins, temperature,
duration, moisture content, pH and ionic concentration
during the thermal treatment [52]. AFB1, DON, ZEN
and FB1 are heat-stable compounds with decomposition
temperatures more than 237, 175, 220, 150 °C, respect-
ively [30, 53, 54], which makes it difficult to eliminate

them by conventional thermal processing. Conventional
hydrothermal treatment (cooking) with pressure (0.10
MPa) at 160 °C for 20 min can decompose AFB1 by 78-
88% in rice [31], as well as pressure heating (0.10 MPa)
at 120 °C for 4 h can degrade AFB1 by 95% in moist pea-
nut powder [55]. Yumbe-Guevara et al. [30] reported
that 90% of DON or ZEN in barley powder can be
destroyed at 220 °C for 11 or 85 min. Frying chips at
190 °C for 15 min or drying rice from 150 to 200 °C for
40 min resulted in a loss of 67-70% of FB1, while cook-
ing rice at 100 °C for 10 min reduced 80% of FB1 [32,
56]. Nevertheless, thermal treatments use an excessive
amount of energy, also high temperature-induced Mail-
lard reaction would reduce the nutritional values of feed
ingredients. This led to a restriction in the application of
heat treatments in the feed industry [33].

Irradiation Irradiation might be a feasible technology
for removing mycotoxins from the feed on an industrial
scale. It can be classified into ionizing (x-rays, γ-rays and
electron beam) and non-ionizing radiations (ultraviolet
rays, infrared and microwave) [57, 58]. The action of ir-
radiation on feedstuffs can induce physical, chemical and
biological effects, which reduce or eliminate the myco-
toxins [59, 60]. Specifically, AFB1 can be reduced by
43.0-87.8%, 65.7-71.5%, 22.0-100%, 90.7% by γ-rays, elec-
tron beam, ultraviolet rays and microwave, respectively,
in different cereals [33–35]. DON can be decomposed
by 37.0-82.4%, 17.2-56.3%, 83.4-100% by γ-rays, electron
beam and ultraviolet rays, respectively, in feedstuffs [36–
39]. ZEN can be decontaminated by 25.0-86.0% and
60.0-100% by γ-rays and ultraviolet rays, respectively, in
grains [34, 36–38]. FB1 was inactivated by 63.5-100%,
58.1% and 93.3% by γ-rays, electron beam and micro-
wave, respectively, in feedstuffs [35, 40, 41]. These differ-
ent decomposition efficiencies of irradiation depend on
the variation in the treatment condition, including doses
and time of irradiation, the shape and composition of
feedstuffs [61, 62]. Although irradiations can be consid-
ered as a potentially promising approach to decontamin-
ate mycotoxins in feedstuffs, their safety issues such as
mutagenesis that generates harmful microorganisms and
damage the nutritional values of feedstuffs require a dec-
laration and further studies.

Adsorption Adsorption binders can form a complex
with mycotoxins, thus prevent mycotoxins passage from
the gastrointestinal tract into the blood and organs of
animals. In the past decades, numerous binders from dif-
ferent origins have been investigated for their capacity to
adsorb mycotoxins [52, 63]. Therefore, the adsorbent de-
toxification treatment is currently well understood and
widely used to detoxify mycotoxins in the feed industry.
In general, any ideal mycotoxin absorbent should
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possess these following properties, including high
adsorption capacity against either range of mycotoxins
(especially mycotoxins with low hydrophobicity), low
non-specific binding to nutrients, as well as high safety,
stability and palatability [52]. Table 2 shows lists of
current patents related to adsorbing mycotoxin includ-
ing AFB1, DON, ZEN and FB1 control in the feed.
Aluminosilicate minerals, as the largest class of myco-

toxin adsorbents, are the most widely applied and stud-
ied minerals in the decontamination of mycotoxin. Such
adsorption binders mainly include bentonite,

montmorillonite, zeolite, hydrated sodium calcium alu-
minosilicate, kaolin, illite, etc. [63]. The binding efficacy
of mineral adsorbents is associated with the structures of
both the binders and the mycotoxins. The binding effi-
ciency depends significantly on the surface area, charge
distribution and pore size of adsorption binders and the
charge distribution, polarity and shape of the mycotoxins
[52]. Some mycotoxins such as AFs have an ionic
charge, thus clay minerals such as bentonite, illite, zeo-
lite and kaolin are effective at removing them from the
feed with more than 90% efficiency [87]. Numerous

Table 2 Summary of adsorbents with mycotoxins mitigation effectsa

Adsorbent Mycotoxins Binding efficiency Reference

Zeolite AFB1 Decreased AFB1 residue in duck meat by 65% significantly and numerically
decreased AFB1 residue in liver and egg.

[64]

Bentonite clay AFB1 Decreased liver AFB1 residue by 41-87% when broilers fed AFB1 in diet. [65]

Sodium bentonite AFB1 Decreased liver AFB1 residue by 62.5% when broilers fed AFB1 in diet. [66]

Modified maifanite ZEN Decreased ZEN residue in liver and muscle by 54.96% and 42.41%
respectively at the dose of 1% when pig fed 1.11 mg/kg AFB1 in diet.

[67]

Bentonite or montmorillonite AFB1, ZEN Decreased rumen concentration of AFB1 and ZEN, decreased AFM1 in milk
and ZEN in feces.

[68]

Organo-clay composites AFB1 Decreased AFB1 concentrations in liver, kidney and plasma significantly in
chickens.

[69]

Tri-octahedral bentonite DON, ZEN Adsorbed more than 90% of ZEN and FB1 while the adsorption dose up to
0.20%, w/v.

[70]

Pillared montmorillonite DON Adsorbed 14.7-23.4% and 21.8-27.4% of DON at at pH 2.0 and pH 6.8. [71]

Nonionic surfactant octylphenol
polyoxyethylene ether modified
montmorillonites

AFB1, ZEN The adsorption capacities of modified montmorillonites to AFB1 and ZEN
increased up to 2.78 and 8.54 mg/g respectively from 0.51 and 0.00 mg/g by
the raw montmorillonite.

[72]

Hydrated sodium calcium alumino silicate AFB1, FB1 Adsorbed AFB1and FB1 in an aqueous solution, and the adsorption ratio
ranged from 95.3% to 99.1% and 84.7% to 92.4%, respectively.

[73]

Modified Hydrated sodium calcium
alumino silicate

DON Reduced the toxicity of DON in weaning piglets. [16]

Esterified glucomannan AFs, ZEN,
DON

Adsorbed 95%, 80% and 12% of aflatoxin, ZEN and DON. [73, 74]

Inactivated yeast cell wall and low Yeast
fermenting volatile organic compound

AFs, DON Decreased AFs and DON synthesis by 82% and 93% respectively. [75]

Distillers' wet grain, distillers' dried grains
and distillers' dried grain with solubles

DON, ZEN Adsorbed 48.9% and 67.9% of DON and ZEN (1 ppm each) using 5 g/L of
micronized (20 mkm) yeast mass at 37 °C for 1h.

[76]

Yeast cell wall extract ZEN Adsorbed 40% of the total ZEN content in the intestines in monogastric
animals.

[77, 78]

Activated charcoal AFB1, ZEN Reduced the toxicity of AFB1 on broilers and decreased the absorption rate
of ZEN in small intestine from 32% to 5% when adding 2%.

[79, 80]

Cholestyramine ZEN Decreased the absorption rate of ZEN in small intestine from 32% to 16%. [80]

Magnetic carbon nanocomposites AFB1 Adsorbed nearly 90% of AFB1 within 180 min at pH 7.0. [81]

Cross-lined chitosan polymers AFB1, ZEN,
FB1, DON

Adsorbed 73% AFB1, 94% ZEN and 99% FB1, but the adsorption ratio of DON
less than 30%.

[82]

Polyvinylpyrrolidone ZEN Adsorbed 2.1 mg/g of ZEN. [83]

Lactobacillus casei AFB1 Reduced the absorption of aflatoxin in the intestinal tract significantly. [84]

Lactobacillus plantarum F22 AFB1 Adsorbed 56.8% of AFB1. [85]

Lactobacillus plantarum B7 FB1 Adsorbed 52.9% of FB1. [86]

Lactobacillus pentosus X8 FB1 Adsorbed 58% of FB1. [86]
aAFs Aflatoxins, AFB1 Aflatoxin B1, DON deoxynivalenol, ZEN: zearalenone; FB1: fumonisin B1
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studies reported that zeolite, bentonite clay and sodium
bentonite decreased AFB1 residues in the liver by 41-
87% and numerically decreased AFB1 residue in the
meat and egg when broilers or ducks fed AFB1 contami-
nated diet [64–66]. Chen et al. [67] reported that ZEN
residue in liver and muscle of pigs were decreased by
55.0% and 42.4%, respectively, when supplemented with
1.0% modified maifanite in diet included 1.11 mg/kg
ZEN. In ruminant feed, bentonite or montmorillonite
decreased rumen concentration of AFB1 and ZEN and
also decreased AFM1 in the milk and ZEN in the feces
in goats [68]. Tzou et al. [69] prepared organo-clay com-
posites by mixing bentonite-enriched clay with nonionic
surfactants (Brij 30 and Igepal CO-890) and added
organo-clay composites to feed. After chickens had con-
sumed amended feed for 11 weeks, AFB1 concentrations
in the liver, kidney, and plasma were significantly lower
than the AFB1 control dietary treatment. Although many
aluminosilicate adsorbents can adsorb strongly polar
toxins, such as AFB1, FB1, etc. as supported by many
studies, they appear to be ineffective at absorbing other
non-aflatoxin mycotoxins including DON and ZEN [88,
89]. Bentonites have been considered as promising ad-
sorbents for high-efficient removal of mycotoxins from
the animal feed as they are eco-friendly, low-cost and
highly efficient in adsorption of mycotoxins, modifying
clays also could help to increase their adsorptive ability
to non-polar mycotoxins [90–92]. To date, only one di-
octahedral bentonite (1m588) was authorized as an anti-
aflatoxin additive by the EU Regulation in 2009 [93].
Vila-Donat et al. [70] reported that tri-octahedral ben-
tonite could adsorb more than 90% of ZEN and FB1

while the adsorption dose up to 0.20% (w/v). Nonionic
surfactant octylphenol polyoxyethylene ether and modi-
fied montmorillonites, as mycotoxins adsorbent, were
used for adsorption of AFB1 and weak polar ZEN in
both single and binary-contaminate systems by simulat-
ing the conditions of the gastrointestinal tract. Modified
montmorillonites increased the adsorption capacities to
AFB1 from 0.51 mg/g of raw montmorillonite to 2.78
mg/g and ZEN from 0.00 mg/g of raw montmorillonite
to 8.54 mg/g [72]. Adsorption of DON by pillared mont-
morillonite modified with aluminum, iron and titanium
was investigated using UPLC-MSMS (at pH 2.0 and 6.8)
and the results demonstrated that the adsorption ratios
were 14.7-23.4% at pH 2.0 and 21.8-27.4% at pH 6.8
[71]. The commercially hydrated sodium calcium alu-
minosilicate has an excellent capability of adsorbing
AFB1 and FB1 in an aqueous solution, and the adsorp-
tion ratio ranged from 95.3-99.1% and 84.7-92.4% of the
available AFB1 and FB1, respectively [73]. Mineral adsor-
bents have been modified with quaternary long-chain
alkyl/aryl amines to improve the adsorption of non-
aflatoxin mycotoxins [74]. The binder Amdetox™ is

mainly comprised of hydrated sodium calcium alumino-
silicate that has been modified by cetylpyridinium
chloride and intercalation with β-glucan [94]; these
modifications increase the surface area of hydrated so-
dium calcium aluminosilicate, which maximizes the
binding of mycotoxins with minimal adsorption of nutri-
ents. Zhang et al. [16] reported that a modified hydrated
sodium calcium aluminosilicate adsorbent could reduce
the toxicity of DON in weaning piglets [16]. Further-
more, it must be noted that these adsorbents can adsorb
micronutrients and have negative effects on the bioavail-
ability of trace minerals and vitamins.
Second generation adsorbents have been developed

originating from the cell wall component of microorgan-
isms. Glucomannan is a common adsorbent that cannot
be used by gut microbes and strongly adsorbed toxic
substances and harmful pathogenic bacteria in animals.
Mycotoxins can be adsorbed by esterified glucomannan,
which is a kind of broad-spectrum mycotoxin adsorbent
with an effective binding ability for AFs, ZEN, FBs and
DON by 95%, 75%, 59% and 12%, respectively [73, 74].
Esterified glucomannan has been proved to improve the
adverse consequences of mycotoxins on the perform-
ance, immunity, blood haematological and biochemical
indices of chickens [70, 76, 78, 94]. The β-D-glucan
chains of yeast cell walls have been demonstrated to ef-
fectively inactivate ZEN [77, 95]. Zeidan et al. [75] re-
ported that inactivated yeast cell walls and low yeast
fermenting (L. thermotolerans) volatile organic com-
pounds could decrease AFs and DON synthesis by 82%
and 93%, respectively, in vitro. A combination of mineral
clay and yeast cell walls showed a considerably enhanced
binding capacity of AFs, ZEN and fumonisins in an
in vitro study; however, the adsorption abilities toward
DON, ochratoxin A and T-2 toxin were low (< 60%)
[96]. The yeast biomass obtained from distillers’ wet
grain, distillers’ dried grains and distillers’ dried grain
with solubles have the ability to bind various mycotoxins
and adsorbed 48.9% and 67.9% of DON and ZEN (1.0
mg/kg each), respectively, using 5.0 g/L micronized yeast
mass at 37 °C for 1 h [76]. In addition, the yeast cell
walls extract adsorbed ZEN in the gastrointestinal tracts
of monogastrics [77] and was able to adsorb 40% of the
total ZEN contents in the intestines [78].
Activated charcoal, as a general adsorbent, has a large

surface area and excellent adsorption capabilities in
aqueous environments. Activated charcoal has demon-
strated the ability to reduce AFs, ZEN, DON due to its
porous structure in several studies [97, 98]. The partial
protection induced by activated charcoal in lowering
mycotoxin residues in the liver of broilers has been ob-
served previously [65, 99]. The addition of 0.1% activated
carbon to feed containing 10 mg/kg AFB1 was able to re-
duce the detrimental effects of AFB1 on broilers [79].
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Avantaggiato et al. [80] found that the absorption rate
of ZEN in the small intestine decreased from 32% to
5% when activated carbon was added at 2.0% in an
in vitro gastrointestinal model. Cholestyramine is an
anion exchange resin. The addition of cholestyramine
decreased the absorption rate of ZEN in the small in-
testine from 32% to 16% using a laboratory model
that mimics the metabolic processes of the gastro-
intestinal tract of healthy pigs [80]. Polyvinylpyrroli-
done has good adsorption and selectivity. In vitro
adsorption experiments showed that polyvinylpyrroli-
done could adsorb 0.3 mg/g of ZEN, and the adsorp-
tion capacity of modified polyvinylpyrrolidone could
be increased to adsorb 2.1 mg/g of ZEN [83]. Durian
peel is an agricultural waste that is widely used for
organic and inorganic pollutant adsorption. Adun-
phatcharaphon et al. [100] reported that the acid-
treated durian peel adsorbed 98.4% of AFB1, 98.4% of
ZEN, 86.1% of FB1 and 2.0% of DON through its lar-
ger surface area and a surface charge modification.
Numerous studies have suggested that removal of my-

cotoxins with magnetic materials is effective and these
are promising adsorbents in the feed industry. Magro
et al. [101] reported that the adsorbent-mycotoxin
complex was characterized and was structurally and
magnetically well conserved [101]. Magnetic carbon
nanocomposites produced by maize wastes were used
for the removal of AFB1, and the adsorption ratio was
nearly 90% within 180 min at pH 7.0 [81]. In addition,
cross-linked chitosan polymers as generic adsorbents for
simultaneous adsorption could adsorb multiple myco-
toxins. Cross-linked chitosan-glutaraldehyde complex
presented high adsorption capability for AFB1 (73%),
ZEN (94%) and FB1 (99%), but no obvious adsorption
for DON and T-2 toxin (< 30%) [82]. Some volatile
bioactive compounds have proved to be effective in inhi-
biting mould growth and reducing mycotoxin
accumulation.
The principle of microbial adsorbent detoxification

is that the bacterium adsorbs mycotoxins to form a
complex and then excretes it together with the toxins,
thus reducing the hazard [102]. Lactic acid bacteria
and yeast are the most studied microbial adsorbents.
Lactobacillus casei can significantly reduce the ab-
sorption of aflatoxin in the intestinal tract [84]. Zeng
et al. [85] reported that Lactobacillus plantarum F22
had a strong adsorption capacity on AFB1 and the ad-
sorption rate could reach 56.8%. Lactobacillus plan-
tarum B7 and Lactobacillus pentosus X8 can remove
52.9% and 58.0% of FB1 [86]. Halttunen et al. [103]
compared the adsorption effect of multiple lactic acid
bacteria on aflatoxin and they found that a composite
agent consisting of multiple lactic acid bacteria was
more effective than a single strain.

Chemical methods
Chemical techniques can destroy the structure of the
mycotoxins, which generate mildly toxic or nontoxic
products. Decontamination of mycotoxin by chemical
techniques primarily includes alkaline and ozone treat-
ments, as well as other chemical agent treatments [104,
105]. The commonly used methods of chemical detoxifi-
cation of mycotoxins are summarized in Table 3.

Alkaline treatment Alkaline chemicals, including am-
monia, sodium hydroxide, potassium hydroxide and so-
dium carbonate, etc., have been used for the destruction
of various mycotoxins in the moldy feedstuffs [104, 105].
The lactone ring structure of AFB1 can be opened by
base hydrolysis to produce coumarin sodium salt and
then further be eliminated by washing with water [120].
Ammoniation and hydroxide salts treatments are the
common approach that has been used to remove AFB1

from feed ingredients, with more than 95% removal rate
in various cereals [107–110]. An epoxide at C-12 and C-
13, essential for the toxicity of DON, can be destructed
under alkaline conditions [28]. Sodium carbonate and
hydroxide salts treatments can reduce DON by 83.9-
100% in different feedstuffs [111, 112]. Although these
treatments could nearly reduce the complete concentra-
tion of mycotoxins, the possible transformation of myco-
toxins to other forms such as masked mycotoxins, along
with the harmful side effects on the environment and
food (changes in nutritional quality, texture, or flavor),
the quality and safety assessments of chemically treated
products are necessary [104, 105].

Ozone treatment Mycotoxin oxidizing agent treatment
is an effective detoxification method through changing
the molecular structure of mycotoxins. The oxidizers
commonly used are ozone, hydrogen peroxide, sodium
and calcium hypochlorite, chlorine and other oxidizers
[106, 121]. AFs, DON, ZEN and FB1 have been shown to
be effectively degraded by ozone [122–124]. Agriopoulou
et al. [125] has found that ozone has the ability to de-
grade AFs (AFB1, AFB2, AFG1 and AFG2). Trombete
et al. [126] reported that ozone concentration, form and
exposure time influenced positively the reduction of
DON, AFs and fungal count. AFs can be reduced by 92-
95% in corn and by 91% or 78% in cottonseed or peanut
meal, respectively, by ozone [113, 127, 128]. DON can
be reduced by 70-90% in corn and by 20-80% in wheat
by ozone [112, 114–116]. The degradation of ZEN in
corn can reach 90.7% through the ozone treatment with
100 mg/L ozone for 180 min [117]. Furthermore, there
are other oxidizing agents such as sodium hypochlorite
and hydrogen peroxide that can effectively degrade my-
cotoxins [118, 119, 129, 130].
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Although the ozone treatment can result in a complete
reduction in the mycotoxin concentration, it can cause
changes in the physical and chemical composition of the
feed, such as changes in starch structure, lipid oxidation,
protein denaturation, color change and processing prop-
erties [106, 113, 126]. Moreover, these treatments may
produce some harmful chemicals to the health of ani-
mals [106, 113, 126].

Biological methods
Although many physical and chemical decontamination
strategies have been developed to reduce or eliminate
mycotoxins in feed ingredients or complete feed, few
techniques met the requirements of practical application
owing to their limitation of binding efficiency, bio-safety
or cost-effectiveness. Therefore, as a promising strategy,
biodegradation of mycotoxin by microorganism or en-
zymes attracted the attention of scientists [131–133].
The biological strategies that have been developed for
the biodegradation of AFB1, DON, ZEN and FB1 in the
feed are presented in Table 4.

Microorganisms with detoxification activities Biol-
ogy-based detoxification methods are widely recognized
as specific, efficient and environment-friendly. The nu-
tritive and sensory characteristics like color and flavor
are reserved without involving harmful chemicals.
Screening and isolating naturally existing microorgan-
isms that show biotransformation capabilities against
specific mycotoxins have been a popular strategy. Myco-
toxin biodegradation technology is the process by which
the toxic group of the mycotoxin molecules is broken
down and destroyed by the secondary metabolites pro-
duced by microorganisms or their secreted intracellular
and extracellular enzymes, while producing non-toxic or
less toxic degradation products.
A number of different fungal have been shown to de-

toxify AFB1. Fungal strains such as S. cerevisiae ŁOCK
0119 has been shown to degrade AFB1 at levels of 69.0%
[131]. Similarly, some studies reported that the ability of
various Aspergillus strains such as A. niger FS10 and A.

niger RAF106 have shown the ability to degrade AFB1 to
levels between 88.6% and 98.7% [132, 133]. Bacteria de-
graded AFs mainly by secreting extracellular enzymes.
Some strains of Nocardia corynebacterioides, Flavobac-
terium aurantiacum and Bacillus have been shown to
degrade AFB1. Smiley and Draughon reported that the
degradation efficiency of AFB1 by Nocardia corynebac-
terioides reached 74.5% in 24 h [159]. Flavobacterium
aurantiacum could degrade AFB1 efficiently and its
crude protein extract could degrade 74.5% of AFB1 [160,
161]. Bacillus is an important class of bacteria capable of
degrading AFB1. Farzaneh et al. [141] isolated Bacillus
subtilis UTBSP1 from Iranian pistachio nut and the deg-
radation rate of AFB1 reached 78.4-95.0%. Bacillus subti-
lis ANSB060 isolated from the fish intestine could
degrade 81.5% of AFB1 within 72 h [162]. In addition,
other Bacillus such as Bacillus licheniformis CFR1, Ba-
cillus velezensis DY3108, Bacillus subtilis JSW-1 and Ba-
cillus shackletonii L7 have been able to degrade AFB1 to
levels between 67.2-94.7% [136–139]. Other bacteria
such as Pseudomonas putida, Escherichia coli CG1061
and Stenotrophomonas sp. CW117 also showed very effi-
cient biodegradation rates up to 90% or more for AFB1

[134, 135, 140].
Devosia insulae A16, Strain E3-39, Bacterial consor-

tium C20, Pseudomonas sp. Y1 and Lysobacter sp. S1
isolated from soil samples can convert DON to 3-keto-
DON or 3-epi-DON, a less toxic derivative [142, 144,
145, 150]. Several studies have revealed that these strains
resulted in 74-100% reduction of DON [142, 144, 145,
150]. From a different point of view, Bacterial isolates
LS100 and SS3, Bacterial strain BBSH 797 and
Eggerthella sp. DII-9 presented a high biotransformation
activity of converting DON to diepoxy-deoxynivalenol
[146, 148, 149]. Strains isolated from the intestine of
donkeys and soil samples, namely Bacillus subtilis ASAG
216 and Aspergillus (NJA-1) have shown to decrease
DON concentration by 81.1% and 94.4% [143, 147].
Microorganisms metabolize ZEN mainly through

conversion or degradation to α-zearalenol, β-zearalenol,
sulfate and other secondary metabolites with low or

Table 3 Summary of physical methods for mycotoxins detoxificationa.

Methods Measures and reagents Detoxification efficiency Reference

Alkaline
treatment

Ammonia, sodium hydroxide, potassium hydroxide
and sodium carbonate etc.

Removed 95% of AFB1 in various cereals by ammoniation and
hydroxide salts treatments.

[106–111]

Reduced DON by 83.9-100% in different feedstuffs through sodium
carbonate and hydroxide salts treatments.

Ozone
treatment

Ozone, hydrogen peroxide, chlorine, sodium and
calcium hypochlorite etc.

Reduced 92-95%, 91% and 78% of AFBs in corn, cottonseed and pea-
nut meal respectively by ozone.
DON can be reduced 70-90% in corn and 20-80% in wheat by ozone.
The degradation of ZEN in corn can reach 90.7% through the ozone
treatment with 100 mg/L ozone for 180 min.

[112–119]

aAFB1 Aflatoxin B1, DON deoxynivalenol, ZEN zearalenone, FB1 fumonisin B1

Liu et al. Journal of Animal Science and Biotechnology           (2022) 13:19 Page 7 of 16



non-toxicity. Bacillus natto and Bacillus subtilis
strains were shown to remove ZEN from the liquid
medium: more than 75% ZEN could be biodegraded
after incubation. In another study, up to 99% of ZEN
was degraded by B. subtilis strain [151]. Lei et al.
[154] isolated Bacillus subtilis ANSB01G from broiler
intestinal chyme, and the degradation rate of ZEN by
this strain in a liquid medium, natural mold corn,
distillers' dried grain with solubles and a complete pig
feed were 88.7%, 84.6%, 66.3% and 83.0%, respectively.
Bacillus pumilus ES-21 and Bacillus amyloliquefaciens
ZDS-1, isolated from soil samples, showed 95.7% re-
duction of ZEN [152, 153].
Some fungal and bacterial microorganisms have been

reported to be able to degrade fumonisins. Styriak et al.

[157] screened two strains of preserved yeast from the
laboratory that were able to significantly degrade fumo-
nisins in the culture medium. One is Saccharomyces cer-
evisiae IS1/1, which can degrade 45% of FB1 and 50% of
the mixture FB1 and FB2 in the culture medium, the
other one is Saccharomyces cerevisiae SC82, which also
degrade FB1 and the mixture FB1 and FB2, the degrad-
ation rates were 22% and 25%, respectively [157]. Camilo
et al. [158] screened three strains such as Bacillus spp.
S9, S10 and S69, that degraded 43%, 48% and 83% FB1,
respectively. Strain NCB 1492, isolated from soil sam-
ples, can completely degrade FB1 under 25°C, after 24 h
[156]. Notably, another study reported that the degrad-
ation rate of FB1 by Bacterial consortium SAAS79 can
reach 100% [155].

Table 4 Biological biotransformation approaches by microorganisms for the detoxification of mycotoxinsa.

Mycotoxins Microorganisms Biotransformation efficiency Reference

AFB1 Aspergillus niger FS10 98.65% [133]

Aspergillus niger RAF106 88.59% [132]

Stenotrophomonas sp. CW117 100.00% [134]

S. cerevisiae ŁOCK 0119 69.00% [131]

Escherichia coli CG1061 93.70% [135]

Bacillus velezensis DY3108 91.50% [136]

Bacillus subtilis JSW-1 67.20% [137]

Bacillus shackletonii L7 92.10% [138]

Bacillus licheniformis CFR1 94.70% [139]

Pseudomonas putida 90.00% [140]

Bacillus subtilis UTBSP1 95.00% [141]

DON Bacterial consortium C20 74.29% [142]

Bacillus subtilis ASAG 216 81.10% [143]

Devosia insulae A16 88.00% [144]

Pseudomonas sp. Y1 and Lysobacter sp. S1 100.00% [145]

Eggerthella sp. DII-9 100.00% [146]

Aspergillus (NJA-1) 94.40% [147]

Bacterial isolates LS100 & SS3 100.00% [148]

Bacterial strain BBSH 797 - [149]

Strain E3-39 100.00% [150]

ZEN Bacillus subtilis 100.00% [151]

Bacillus natto 87.00% [151]

Bacillus pumilus ES-21 95.70% [152]

Bacillus amyloliquefaciens ZDS-1 95.70% [153]

Bacillus subtilis ANSB01G 88.65% [154]

FB1 Bacterial consortium SAAS79 100.00% [155]

Strain NCB 1492 100.00% [156]

Saccharomyces cerevisiae IS1/1 and SC82 22%-50% [157]

Bacillus spp. S9, S10 and S69 43%-83% [158]
aAFB1 Aflatoxin B1, DON deoxynivalenol, ZEN zearalenone, FB1 fumonisin B1
-means the biotransformation efficiency did not reported

Liu et al. Journal of Animal Science and Biotechnology           (2022) 13:19 Page 8 of 16



The usage of catabolizing enzymes Although some mi-
croorganisms are highly active in biodegrading myco-
toxins, some of them might secrete harmful metabolites
or cannot survive in the gastrointestinal tract of the ani-
mals [163, 164]. Therefore, screening the enzymes from
these microorganisms might be the promising strategy
to solve the issues. Recently, there are many researches
that have focused on the isolation of the enzymes that
can biodegrade AFB1, DON, ZEN and FB1. The enzymes
for the biodegradation of AFB1, DON, ZEN and FB1 in
the feed are presented in Table 5.
The main fungal enzymes known to have degradation

activity against AFB1 are laccase and oxidase [163]. The
enzyme for AFB1 detoxification designated as aflatoxin-
detoxifizyme was reported [164]. The gene was identified
and cloned from an Armillariella tabescens. The recom-
binant aflatoxin-detoxifizyme was able to detoxify AFB1

and significantly reduce its mutagenic effects. Manga-
nese peroxidase (1.5 U/mL) can degrade 90% AFB1 after
48 h of reaction [165]. Alberts et al. [167] recombinantly
expressed the laccase gene by gene cloning and its deg-
radation rate of AFB1 was 55%. Bacillus aflatoxin-
degrading enzyme and myxobacteria aflatoxin degrad-
ation enzyme secreted by Bacillus shackletonii L7 and
Myxococcus fulvus ANSM068 are also efficient in de-
grading AFB1 [138, 166].
Although there are early reports on an NADH-

dependent bacterial cytochrome P450 system that trans-
forms DON into 16-hydroxy-DON, no efficient DON
biotransformation enzymes are patented yet [172]. Per-
oxidase such as manganese peroxidase and lignin perox-
idase showed the potential for significant DON
degradation [168, 171]. Aldo-keto reductase DepA and

DepB can transfer DON to 3-keto-DON and 3-epi-DON
which have lower toxicity than DON [170]. A quinone-
dependent dehydrogenase and two NADPH-dependent
aldo/keto reductases (AKR13B2 and AKR6D1) can de-
toxify deoxynivalenol in wheat via epimerization in a
Devosia strain [169].
Laccases are copper-containing oxidases have high po-

tential in degrading the heat-stable mycotoxin ZEN,
which involved in many industrial application [176, 177].
A novel ZEN-specific lactonohydrolase was developed
previously as a producer of different hydrolytic enzymes
for feed biorefinery. The recombinant ZEN-specific lac-
tonohydrolase secreted by the transformed fungal clones
into the culture liquid was shown to remove ZEN [173].
A recombinant fusion enzyme by combining two single
genes named ZEN-specific lactonohydrolase and car-
boxypeptidase have demonstrated that can completely
degrade ZEN to the non-toxic product in 2 h at an
optimum pH of 7 and a temperature of 35 °C [174].
The fumonisin carboxylesterase FumD can degrade

FB1 to its less toxic metabolite the hydrolyzed FB1 in the
gastrointestinal tract of turkeys and pigs [175]. Within 2
h of incubation with FumD, FB1 was completely de-
graded to hydrolyzed FB1 in the duodenum and jejunum
in an ex vivo pig model [175].

Nutritional strategies
It is well accepted that none of the physical, chemical or
biological strategies can totally decontaminate the myco-
toxin in feed, considering that even a low consumption
level of a mycotoxin can cause chronic toxicity including
a reduction of the performance and immunosuppression
in animals [45], therefore, development of nutritional

Table 5 The usage of degrading enzymes for the detoxification of mycotoxinsa

Mycotoxins Degrading enzyme Origin Reference

AFB1 Bacillus aflatoxin-degrading enzyme Bacillus shackletonii L7 [138]

Manganese peroxidase Pleurotus ostreatus [165]

Aflatoxin-Oxidase Armillariella tabescens [163]

Myxobacteria aflatoxin degradation enzyme Myxococcus fulvus ANSM068 [166]

Laccase White rot fungi [167]

DON Manganese peroxidase and Lignin peroxidase Spent Mushroom Substrate [168]

Quinone-dependent dehydrogenase, NADPH-dependent aldo/
keto reductases

Devosia sp. D6-9 [169]

Aldo-keto reductase DepA/DepB Devosia mutans 17-2-E-8 [170]

Peroxidase Rice bran [171]

Cytochrome P450 system Sphingomonas sp. strain KSM1 [172]

ZEN ZEN-specific lactonohydrolase Recombinant enzymes [173]

A fusion enzyme by combining ZEN-specific lactonohydrolase
and carboxypeptidase

Clonostachys rosea strain IFO7063 and Bacillus
amyloliquefaciens strain ASAG1

[174]

FB1 Fumonisin carboxylesterase FumD Recombinant enzymes [175]
aAFB1 Aflatoxin B1, DON deoxynivalenol, ZEN zearalenone, FB1 fumonisin B1
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strategies to help mitigation of the mycotoxicoses is also
important. Some nutritional strategies that have been
disclosed are presented in Table 6.
It is feasible to modulate the mycotoxin detoxifica-

tion system through nutritional measures. On the one
hand, detoxification systems in animals including
CYP450s, ketoreductase, α-glutathione transferase, etc.
can degrade mycotoxins [9, 10]. Therefore, any nutri-
ent that can promote the normal functioning of one
of the above detoxification enzyme systems can be
used as a nutritional regulator. Glutamate, cysteine
and glycine can be used as substrates for the synthe-
sis of glutathione and participate in the detoxification
process by forming glutathione. On the other hand,
mycotoxins can reduce nutrient uptake, so adding
critical nutrients is one of the ways to mitigate the
harmful effects of mycotoxins [13–15].
Oxidative stress is an important mechanism of cyto-

toxicity caused by mycotoxins [9, 10]. Adding antioxi-
dants to mycotoxin-contaminated feed can improve
the antioxidant capacity of the organism and increase
the resistance of livestock and poultry to mycotoxins.
Selenium, some vitamins A, C and E, and their pre-
cursors have marked antioxidant properties that act
as superoxide anion scavengers. For these reasons,
these substances have been investigated as protecting
agents against toxic effects of mycotoxins. Selenium is
an essential trace element for humans and animals as
it plays an important role in antioxidant defense, anti-
cancer, immunity, and detoxification [181, 182]. Previ-
ous studies have shown that dietary selenium
supplementation can help to protect against AFB1-in-
duced hepatotoxicity, immunotoxicity, and genotoxi-
city in chicks, which is mainly associated with
regulation of redox/inflammation/apoptotic signaling
and CYP450 isozymes [11]. Selenium has the poten-
tial to counteract DON-induced immunosuppression
in piglets by increased the expression levels of IL-2,
IL-10, IFN-γ, IgG, and IgM mRNA and protein in
piglet splenic lymphocyte [190]. Selenium, vitamins C

and E could be used as antioxidants to protect the
spleen and brain cell membranes from DON toxicity
and against DNA damage in liver caused by DON
[191]. Nagaraj et al. [183] reported that dietary sup-
plemented vitamin B1 reduced the toxicity of fusar-
ium in chicks. Vitamin E supplementation counteracts
the adverse impacts of FB1 on reproductive hormones,
gestation length and milk production in rabbits [196].
Grosse et al. [195] observed that retinol, as-corbic
acid and alpha-tocopherol reduced DNA adducts in
the kidney and liver of mice exposed to ochratoxin A
and ZEN from 70-90%. Carotenoids (carotene and
xanthophylls) are excellent antioxidants with antimu-
tagenic and anticarcinogenic properties, which have
been demonstrated can inhibit AFB1-induced liver
DNA damage in rats [178].
Silymarin is a potent antihepatotoxic agent provide

protection against the negative effects of AFB1 on per-
formance of broiler chicks [184]. Curcumin alleviates
AFB1 toxicity through downregulating CYP450 enzymes,
promoting ATPase activities in chickens [185]. Pretreat-
ment with silymarin, curcumin enhanced the viability of
cells exposed to the mycotoxins and attenuated reactive
oxygen species formation by DON, partially reduced
ROS formation by FB1 [180]. Curcumin significantly de-
creased apoptosis in cells exposed to DON, whereas sily-
marin was able to prevent apoptosis exposed to FB1 and
DON in PK-15 cells [180]. Gao et al. [17] reported that
dietary silymarin supplementation protected rats from
ZEN-induced hepatotoxicity and reproductive toxicity
through improvement in the antioxidant capacity and
regulation in the genes related to ZEN metabolism, hor-
mone synthesis, protein synthesis, and ABC transporters
in the tissues.
Butylated hydroxytoluene, a dietary antioxidant in

mammals, has been shown to lessen the toxic effects of
AFB1 by inducing the activity of glutathione sulfotrans-
ferase and inhibiting the activity of cytochrome P450
1A5 [198]. Li et al. [186] reported that alpha lipoic acid
improved the growth performance and alleviated the

Table 6 Nutritional strategies to mitigate mycotoxins toxicitya

Mycotoxins Nutritional strategies Mechanisms Reference

AFB1 Selenium, vitamins C, vitamins E, vitamin B1, carotenoids,
silymarin, curcumin, butylated hydroxytoluene, alpha lipoic
acid, quercetin, resveratrol, rhamnoides oil

Mainly by improving antioxidant capacity and
detoxification enzyme activities to alleviate the harm of
AFB1 to livestock and poultry

[11, 178–
188]

DON Selenium, vitamins C, vitamins E, silymarin, curcumin,
functional amino acid (methionine, glutamic acid, arginine,
aspartate and lysine), antimicrobial peptide, astragalus

Primarily through enhancement of antioxidant capacity
and immune functions to improve the resistance to DON
in livestock and poultry.

[179, 180,
189–194]

ZEN Retinol, as-corbic acid, alpha-tocopherol, silymarin, soybean
isoflavone

Alleviated the toxic effects of ZEN by improving the
antioxidant capacity and inhibiting the estrogenic toxicity
of ZEN.

[17, 190,
195]

FB1 Vitamin E, silymarin, curcumin, soybean isoflavone Mainly via counteracting the oxidative stress caused by
FB1 to livestock.

[180, 196,
197]

aAFB1 Aflatoxin B1, DON deoxynivalenol, ZEN zearalenone, FB1 fumonisin B1
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liver damage associated with improved the antioxidant
capacity in the broilers exposed to AFB1. Quercetin
exerted its beneficial effects by depressing the bioactiva-
tion of AFB1 and counterbalancing its pro-oxidant ef-
fects in a bovine mammary epithelial cell line [187].
Resveratrol, a polyphenol derived from red grapes, ber-
ries and peanuts, exerted anti-inflammatory and antioxi-
dant effects. Dietary supplementation of resveratrol
helped in increasing the activities of the oxidative en-
zymes and in improving the plasma total antioxidant
capacity and total protein in broilers fed with AFB1

[188]. Solcan et al. [199] reported that rhamnoides oil
had a potent hepatoprotective activity, reduced the con-
centration of AFs in the liver and diminished their ad-
verse effects in broilers.
Andretta et al. [192] suggested that methionine can al-

leviate the DON induced adverse effects in growing pigs.
Supplementing glutamic acid, arginine, aspartate and ly-
sine to a diet had positive effects on remission of visceral
disease induced by DON, enhancement of antioxidant
ability and improvement of blood physiological and bio-
chemical indexes of fattening pigs [200]. Dietary supple-
mentation of 2.0% glutamic acid could mitigate DON
induced negative effects on the growth performance and
intestinal injury in the weaned piglets [193]. Xiao et al.
[179, 194] found that an antimicrobial peptide complex
composed of lactoferrin peptide, plant defensin and ac-
tive yeast effectively improved the adverse effects of
DON on production performance, autoimmunity and in-
testinal functions of weaned piglets. Astragalus played
an important role in the reduction of immunosuppres-
sion and organ damages of the liver and kidney induced
by DON and can improve the immunofunction signifi-
cantly in mice [189]. Wang et al. [190] suggested that
soybean isoflavone added to diets at 600 mg/kg
could reduce the harmful effects induced by 2.0 mg/
kg ZEN on the reproductive organs in prepubertal
gilts during the growth phase. In an in vivo study on
rats, Lu [197] reported that soybean isoflavone ex-
tract has a marked protective action against FB1 hep-
atotoxicity by the suppression of FB1-stimulated
prostaglandin production.

Conclusion and perspectives
The occurrence of mycotoxins in the feed is of a great
concern and an unavoidable problem in the feed indus-
try around the world. Mycotoxins also endanger human
health through the cycle of the food chain. This review
summarizes a number of strategies to reduce mycotoxin
contamination in terms of physical detoxification (separ-
ation, washing, heating, irradiation and adsorption),
chemical treatments (bases and oxidizing agents), bio-
logical detoxification methods (microorganisms and en-
zymes), and nutritional regulation strategies. Each of

these approaches can be practically used while along
with their own advantages and disadvantages. However,
with the growing awareness of environmental protection
as well as feed and food safety, there is a growing ex-
pectation for more green and innovative technologies to
control mycotoxin contamination.
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