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Abstract

Starch from cereal grains, pulse grains, and tubers is a major energy substrate in swine rations constituting up to 55%
of the diet. In pigs, starch digestion is initiated by salivary and then pancreatic a-amylase, and has as final step the
digestion of disaccharides by the brush-border enzymes in the small intestine that produce monosaccharides (glucose)
for absorption. Resistant starch (RS) is the proportion of starch that escapes the enzymatic digestion and absorption in
the small intestine. The undigested starch reaches the distal small intestine and hindgut for microbial fermentation,
which produces short-chain fatty acids (SCFA) for absorption. SCFA in turn, influence microbial ecology and gut health
of pigs. These fermentative metabolites exert their benefits on gut health through promoting growth and proliferation
of enterocytes, maintenance of intestinal integrity and thus immunity, and modulation of the microbial community in
part by suppressing the growth of pathogenic bacteria while selectively enhancing beneficial microbes. Thus, RS has
the potential to confer prebiotic effects and may contribute to the improvement of intestinal health in pigs during the
post-weaning period. Despite these benefits to the well-being of pigs, RS has a contradictory effect due to lower
energetic efficiency of fermented vs. digested starch absorption products. The varying amount and type of RS interact
differently with the digestion process along the gastrointestinal tract affecting its energy efficiency and host
physiological responses including feed intake, energy metabolism, and feed efficiency. Results of research indicate that
the use of RS as prebiotic may improve gut health and thereby, reduce the incidence of post-weaning diarrhea (PWD)
and associated mortality. This review summarizes our current knowledge on the effects of RS on microbial ecology, gut
health and growth performance in pigs.
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Background

Nursery pig mortality is a complex interplay that in-
volves the animal, and the environment, including diet
and infectious etiologies [1]. In the United States, mor-
tality rate of nursery pigs is 3.6% with enteric-related
factors (failure to thrive, 22.1% and scours, 9.4%) ac-
counting for nearly one-third of nursery pig deaths
(USDA, 2015). Post-weaning diarrhea is a multifactorial
disease that occurs within 2 weeks after weaning and is
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most often characterized by diarrhea, dehydration, re-
duced growth performance, and mortality [2, 3]. Al-
though PWD can result in mortality of up to 25%, the
magnitude of mortality is often mild to moderate ran-
ging from 1.5% to 2% [1, 2]. During the immediate post-
weaning period, various factors reducing feed intake
have been identified and include dietary, microbiological,
environmental factors and their interactions [4]. Refusal
to eat and thus reduction in feed intake soon after wean-
ing leads to morphological and functional changes in the
intestine resulting in incomplete gut function, subse-
quent decrease in brush border enzyme activity, and
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thus absorptive capacity [4—6]. The various stressors and
low feed intake compromise gut mucosal integrity caus-
ing increased intestinal pathogen permeability, transloca-
tion of bacteria, and subsequently inflammation [7].
These compromised digestive and absorptive functions
contribute together with inflammation to PWD, dehy-
dration and poor performance [8]. Dietary antibiotic
growth promoters and therapeutic doses of zinc oxide
and copper sulfate have been used over the last decades
to prevent pathogenic diarrhea, maintain health and thus
sustain growth performance of pigs. However, in recent
years, concerns about antimicrobial resistance and the
environmental impact of zinc oxide have prompted the
swine industry to explore alternatives [9, 10]. Adopting
good animal husbandry practices including nutrition,
feeding, management of the nursery environment, biose-
curity, and disease prevention are indeed possible strat-
egies to maintain gut health and pig performance
without inclusion of dietary antibiotic growth promoters
[11]. Diet formulation aspects to consider for optimum
gut health include macronutrients (starch, protein, fiber,
and fat) and minerals, antioxidant supplementation, and
feed additives to modulate host immunity [8]. Specific
dietary interventions such as reduction of protein con-
tent [12], inclusion of fermentable carbohydrates [13,
14] fiber, and resistant starch (RS) [15] can assist in the
weaning transition from liquid milk to dry food. Specif-
ically, RS may be regarded as prebiotic because most
forms of RS have features such as stimulating beneficial
gut bacteria, increasing total short-chain fatty acid
(SCFA), more specifically butyrate levels that confer ben-
efits to the host [16]. However to date, few studies in
pigs have examined the efficacy of dietary RS on gut
health in comparison with dietary antibiotics or in com-
bination with prebiotics and probiotics [17]. The classifi-
cation of RS and application of feed processing to alter
the value of RS have been discussed in previous reviews
[18-21]. The present review addresses the current state
of knowledge on the effects of RS on gut health and
resulting growth performance in pigs. Nursery and
growing pig studies are the focus; some in vitro studies
or in vivo studies using other monogastric animals
(poultry and mice) as animal models are also cited.

Resistant starch as prebiotic

Starch chemistry

Starch, the main carbohydrate in cereal and pulse grains,
is stored in the amyloplast as discrete granules with dis-
tinct morphology in various botanical origins [22].
Starch consists primarily of a-glucans in the form of
amylose and amylopectin. Amylose is considered a linear
polysaccharide composed of a-D-glucose units with a-
1,4-glycosidic linkages with less than 0.5% «-1,6-branch-
ing points [23, 24]. Amylopectin is a larger, more
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branched molecule comprised of a-D-glucose units
joined by a-1,4-glycosidic bonds and 5% to 6% o-1,6-
glycosidic bonds [25, 26]. Native starches from various
botanical origins consist of 18% to 36% amylose and 72%
to 82% amylopectin [25, 27, 28]. Starch is deposited as
discrete granules in densely packed, concentric layers of
growth rings containing alternating crystalline and
amorphous regions [24]. Starch granules from a wide
variety of plant sources display distinct crystalline struc-
ture and susceptibility to enzymatic and chemical reac-
tions [22, 29, 30]. The crystallinity, granule size and
surface area, ratio of amylose to amylopectin, porosity,
structural inhomogeneities, and degree of integrity influ-
ence the susceptibility of the granules to the enzymatic
action of a-amylase [31-33]. Waxy starch granules, that
are mostly amylopectin, are more readily hydrolyzed
compared with granules with a greater content of amyl-
ose [34].

Types of resistant starch

The term resistant starch (RS) was first used to describe
the portion of starch that was cooled in cooked foods
but was resistant to digestion by a-amylase [35]. This
definition was then extended to include starch and its
degradation subunits that reach the large intestine and
there become substrate for microbial fermentation [36].
Resistant starch was later described as an analogous
carbohydrate that should be considered as dietary fiber
[27]. Resistant starch is classified based on the source,
and physicochemical characteristics of starches [37]. The
RS type 1 (RS1) are physically inaccessible starches in
pulse grains and cereal grains (Table 1). Amylolytic en-
zymes are not able to reach these starches located within
intact plant cell walls and unprocessed whole grains.
The RS type 2 (RS2) are native resistant starch granules
found in green banana and raw potato that are easily
gelatinized with the presence of water at 60°C [37]. A
second type of RS 2 (ie. high amylose cornstarch) is
characterized by its high resistance to gelatinization at
temperatures above 120°C required for gelatinization
[58, 59]. The RS type 3 (RS3) are retrograded starches
that occur when starchy food such as potato and
bread are first cooked (gelatinized) and then recoil
when cooled. The RS type 4 (RS4) are chemically
modified starches that interfere with the action of
amylases. For the latter, introduction of chemical
bonds occurs through processes that include dextrini-
zation, etherification, esterification, oxidation, and
cross-linking utilizing chemical reagents [58, 59]. The
RS type 5 (RS5) is mainly associated to amylose-lipid
V-type complexes such as starch-fatty acids and
starch-monoglycerides that have reduced starch di-
gestibility [60-62].
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Table 1 Types of resistant starch (RS) and starch sources used in pig studies
Type of Description of RS Starch sources used in pig studies References
RS
RS1 Native starch granules entrapped or inaccessible to  Hull-less barley, high moisture corn, low amylose barley and corn, oat,  [38]
enzymes rice, sorghum, triticale, wheat
Field pea [39]
RS2 Native starch granules with conformation or Raw potato starch [15, 40-44]
structure that resist enzymes Sweet potato 41
Hull-less barley, high moisture corn, low amylose barley and corn, cat,  [38]
rice, sorghum, triticale, wheat
Field pea (39]
High-amylose corn starch [45-53]
RS3 Retrograded starch that occurs naturally during food Tapioca starch [54, 55]
processing Barley [38, 39]
Comn (38]
Field pea [39]
Rice [38]
Wheat (38]
RS4 Chemically-modified starch Enzymatically-modified starch [56, 57]

Starch digestion vs. starch fermentation

Starch digestion begins in the mouth and is initiated by
salivary a-amylase during chewing. Approximately 5% of
starch is broken down by oral a-amylase due to the
short span of time in the mouth [63]. The acidic envir-
onment in the stomach restricts starch digestion to a
minimum. The luminal phase of starch digestion con-
tinues in the small intestine with the secretion of pan-
creatic a-amylase producing maltose, maltotriose, short-
branched oligosaccharides, and o-limit dextrin. Further
hydrolysis of disaccharides and oligosaccharides into
monosaccharides by the brush border enzymes (maltase-
glucoamylase and sucrase-isomaltase) occurs prior to ab-
sorption across the small intestinal epithelium [63, 64].
The final digestion product glucose is actively trans-
ported across the apical membrane of enterocytes via
the Na*/glucose cotransporter 1 against an electrochem-
ical gradient [65]. Less than 10% of glucose is absorbed
passively via the paracellular route [66]. The limited
studies found in pigs indicate that factors such as wean-
ing age, feed intake, stressors, and diet composition may
decrease passive absorption [67]. Glucose then exits the
enterocytes at the basolateral membrane via a bidirec-
tional, Na*-independent monosaccharide transporter,
glucose transporter 2. The Na*/glucose cotransporter 1
is the major route for the transport of glucose from the
lumen into enterocytes. However, based on studies in
rats and cell lines, increasing evidence indicates that glu-
cose transporter 2 can be rapidly recruited to the brush-
border membrane when the luminal glucose concentra-
tion is high and thereby, increases the capacity of glu-
cose uptake by the enterocytes [68—71]. Starch digestion

is influenced by the ratio amylose: amylopectin and
branch chain-length distribution of amylopectin [59]. In-
deed, starch with high amylose content reduced the rate
of starch digestion and thus lowered postprandial blood
glucose compared with starch with lower amylose con-
tent [49]. The crystalline structure and amylopectin
chain length in starches of different botanical origin
strongly influenced the rate of starch digestion in an
in vitro model mimicking porcine digestion [52].

A proportion of starch resists enzymatic degradation
in the small intestine and so passes into the large intes-
tine (resistant starch) to be fermented by the resident
microbiota to produce SCFA, CO,, H,, and CH, [72].
The SCFA produced are rapidly absorbed from the
lumen either by passive diffusion or active transport util-
izing monocarboxylate transporter 1 (MCT1) or Na'-
dependent monocarboxylate transporter 1 [73]. Oxida-
tion of SCFA contributes approximately 60% to 70% of
energy to colonocytes with butyrate as the main energy
source, whereas the remaining SCFA are transported
across the basolateral membrane by MCT4 [73]. Lesser
known MCT isoforms (MCT2 and MCT4) are found in
the small intestine and colon of the pig [74].

The most commonly used techniques to assess diges-
tion of starch in pigs are ileal cannulation, portal-vein
catheterization, and slaughter techniques [75]. In ileal-
cannulated pigs, the insertion of a cannula at the ter-
minal ileum allows for the collection of digesta and
feces. Apart from measurements of nutrient digestibility,
bacteria and metabolites can be quantified from these
samples [76]. The use of indigestible markers such as
chromic oxide, allows for the quantification of the extent



Tan et al. Journal of Animal Science and Biotechnology

of starch digestion in the small vs. large intestine. In
portal-vein catheterization, pigs are surgically fitted with
indwelling catheters in the portal vein and carotid artery,
and a flow probe is installed around the portal vein [77].
With this technique, the kinetics of starch digestion and
absorption of metabolites such as glucose, lactic acid,
short-chain fatty acids, and amino acids can be studied
[75]. Alternatively, p-aminohippuric acid can be admin-
istered into the bloodstream to measure portal blood
flow and nutrient fluxes [78]. The slaughter technique
involves euthanizing pigs at a specific time point after
meal and followed by prompt collection of digesta sam-
ples and sometimes tissue at multiple sites of the gastro-
intestinal tract [79]. This technique provides a localized
progression of starch digestion without surgery, thereby,
minimizing the risk of altering gut physiology [75] but is
a static portrait of digestion at sampling sites rather than
a reflection of the dynamics of the digestion process over
time as influenced by peristalsis and nutrient flow.

Interaction with other feed components

In cereal and pulse grains, several non-starch compo-
nents that are associated with the starch granules may
restrict the digestibility of starch. In vitro studies have
indicated that amylose-lipid complexes reduced the ac-
cessibility of a-amylase to amylose for digestion [80].
The rate of a-amylolysis is also affected by the protein-
starch structural network that forms in the seed endo-
sperm, many of which are hydrophobic [81, 82]. Starch
and phenolic compounds such as tannins, phenolic
acids, flavonoids, and lignans also interact through
hydrophobic and hydrogen bonds to inhibit gastrointes-
tinal enzyme activity to different extents depending on
the type of phenolic compounds and type of starch [83,
84]. Non-starch polysaccharides such as mixed-linked p-
glucans present in some cereals such as barley and oat
grain encapsulate both protein and starch, thereby, de-
creasing enzyme accessibility, reducing starch digestion
and the rate of postprandial glycemia [85, 86].

Effect of resistant starch on gut health

Gut microbial profile and diversity

In pigs, the estimated size of the microbial population is
approximately 10'° to 10 per gram of gut content [87—
89]. The largest proportion of bacteria in the pig intes-
tinal microbiome is from the phyla Firmicutes, followed
in descending order by Bacteroidetes, Proteobacteria,
Actinobacteria, and Spirochaetes [90, 91]. Firmicutes
and Bacteroidetes constitute 90% of the microbiota with
Prevotella from Bacteroidetes phyla being the predomin-
ant genus [91, 92]. In the ileal digesta of pigs, the major
phylas are Firmicutes and Proteobacteria, with faculta-
tive anaerobes Lactobacillus and Enterobacteriaceae be-
ing the most dominant [92, 93]. The phyla Firmicutes,
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Bacteroidetes, and Proteobacteria comprise together 90%
of the microbiota in pigs at 7-day post-weaning and 84%
at 27-day post-weaning. In both post-weaning age
groups, Lactobacillus was the predominant genus (46%-
58%), followed by Prevotella (16%-30%) in both the je-
junum and colon [92]. As post-weaning age increases,
the relative abundance of Proteobacteria phyla decreases.
This phylum consists of many pathogenic, gram negative
bacteria such as Escherichia, Salmonella, Vibrio, Helico-
bacter, and Campylobacter, all of which are often nega-
tively associated with gut health [90, 91].
Enterotoxigenic E. coli proliferation is widely known as a
main cause of PWD [94]. Recent findings of high abun-
dance of Campylobacter in 7-day post-weaning piglets
with diarrhea indicates that these bacteria may also play
a relevant role in PWD [92].

The composition and activity of microbes is largely in-
fluenced by diet, especially dietary carbohydrates [95—
97]. Genes coding for enzymes involved in starch, p-
glucan, xylose, and arabinose digestion were particularly
enriched in fecal samples from weaned pigs [97]. Meta-
genomic analyses revealed that Firmicutes possess the
extracellular a-(1,4)-glucan branching enzyme and Bac-
teroidetes possess the periplasmic neopullulanase and o-
glucosidase enzymes for starch fermentation in the hind-
gut [98]. Diets containing purified native starches with
amylose ranging from 0 to 80% of starch did not affect
the microbial diversity in the large intestine of grower
pigs; however, high amylose corn starch (80%) selectively
promoted the incidence of Bifidobacterium spp. in feces
(Table 2) [93]. In weaned pigs, increasing amylose from
0 to 63%, increased Bifidobacterium spp. but decreased
Clostridia clusters IV and XIVa in cecal and colonic
digesta [51]. Previously, high amylose corn starch (85%)
increased lactobacilli population in the hindgut of
weaned pigs [47]. A meta-analysis of 24 research articles
indicated that increasing RS type 2 starch with a min-
imal dietary content of 10% of this in pigs, reduced pH
and promoted lactobacilli and bifidobacteria in the feces;
thus, potentially limiting the growth of pathogenic bac-
teria in the hindgut [99] (Fig. 1). In one study, feeding
weaned pigs 14% of raw potato starch (RPS) reduced the
richness and diversity of the microbial species in the
colon [15]. Consumption of a RS type 3 starch diet low-
ered Firmicutes:Bacteroidetes ratio in digesta of the
proximal colon in pigs, increased abundance of butyrate-
producing Faecalibacterium prausnitzii, and decreased
pathogenic members of Gammaproteobacteria such as
Escherichia coli [54]. In pigs, differences observed in
cecal and colonic microbiota are likely due to the alter-
ation in the chemical structure of resistant starch at dif-
ferent intestinal sites [54]. The changes in microbial
profile with the alteration of dietary starch content and
structure supports the concept that the amount and rate
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Table 2 Microbial effects of resistant starch (RS) in pig studies

Test animals® Types of RS Microbial effects® References

Nursery pigs RPS (RS 14%) Increased colonic lactobacilli and Bacteroides [15]

Nursery pigs Purified corn starch (63% Increased cecal and colonic Bifidobacterium [51]
amylose) Decreased Clostridium clusters IV and XIVa

Nursery pigs High amylose corn starch (85% Increased proximal colonic Lactobacilli and Bifidobacteria [47]
amylose)

Growing pigs RS2 in corn, potato, barley, pea, Increased fecal lactobacilli and bifidobacteria (meta-analysis) [99]
tapioca

Growing pigs High amylose corn and RPS (RS No significant changes in microbial composition [42]
11%)

Growing pigs Retrograded tapioca starch (RS Increased colonic Ruminococcus bromii, and bacterial group Clostridium cluster — [54]
34%) IV, IX, XV, XVI, and XVII

Decreased colonic Gammaproteobacteria

Growing pigs Retrograded tapioca starch (RS  Increased Lachnospiraceae- and Ruminococcus-affiliated phylotypes [55]
33%)

Cannulated growing  Purified corn starch (63% Increased fecal Bifidobacterium [93]

pigs amylose)

Growing-finishing Purified RPS (RS 13 to 15%) Increased Coprococcus, Ruminococcus, and Turicibacter [43]

pigs Decreased Sarcina and Clostridium

Gestating and Pea starch (RS 5 to 9%) Increased Bifidobacterium and ratio of Firmicutes to Bacteroidetes [100]

lactating sows

Pregnant sows RPS (RS 5%) Increased fecal Clostridia [82]

“BW of pigs at the start of the study: nursery pigs, 6 to 27 kg; growing pigs, 30 to 63 kg; finishing pigs, 70 kg and above.
PMicrobial composition represented by relative abundance.
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of starch that is available for fermentation in the distal
region of the gut selectively increased the beneficial bac-
teria in the gut [101]. Finally, evidence was provided re-
cently for a link between porcine gut microbiota and
growth and feed efficiency. Certain bacterial taxa (e.g.,
Treponema, Methanobrevibacter, and Lactobacillus) that
are involved in nutrition digestion, energy harvest, and
anti-inflammatory effects are indeed consistently associ-
ated with improvements in productivity [102].

Gut microbial mediators

Plant cell wall polysaccharides, oligosaccharides, and
resistant starches that are not digested by endogenous
enzymes in the small intestine are degraded by micro-
bial polysaccharidases and glycosidases to monomers
such as glucose, which are then fermented to produce
SCFA (mainly acetate, propionate, and butyrate) and
gases CO,, H,, and CH, [103]. Acetate is mainly
taken up by the liver to be used as an energy source
and as precursor for the synthesis of fatty acids and
cholesterol. Propionate is used mainly as a precursor
for gluconeogenesis in the liver, kidney, muscle and
intestine. Butyrate is the preferred energy source for
colonocytes, whereas the remainder SCFA are oxi-
dized by hepatocytes [104, 105]. Minor fermentation
products such as ethanol, lactate, and succinate are
intermediate products that are metabolized through
cross-feeding interactions between bacterial species in
the large intestine [106].

The greatest microbial activity occurs in the cecum
and proximal colon of the pigs; however, substantial mi-
crobial activity also takes place in the distal section of
the small intestine [42, 107, 108]. The amount and type
of substrate (typically fermentable carbohydrate) affects
the microbiota population, thereby, the type and amount
of SCFA produced [73, 103, 109]. Actual intestinal SCFA
production, however, is not reflected by SCFA concen-
tration in the gut because SCFA are rapidly absorbed (>
95%) from the gut lumen and metabolized by the host
[105, 107].

Across pig studies, diets high in RS or amylose in-
creased intestinal SCFA concentrations. Slowly digestible
starch (63% amylose) increased ileal starch and total bu-
tyrate content [49], and SCFA concentration in the
cecum and feces [51]. Both RS type 2 and RS type 3
starch also increased cecal and fecal SCFA [44, 54]. The
increase in butyrate production has been positively asso-
ciated to the increased in SCFA transporter, MCT1
mRNA abundance in some pig studies [54, 110].

At weaning, refusal to eat or drastic reduction in feed
intake decreased villus height and increased crypt depth,
thus reducing brush-border enzyme activities and nutri-
ent digestion [111, 112]. Other than carbohydrates, un-
digested protein is also expected to reach the hindgut to
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a greater extent during the post-weaning period. This
undigested protein, along with protein of endogenous
origin, is available for fermentation by bacteria resulting
in greater protein catabolic activity, and increased for-
mation of SCFA, branched-chain fatty acids (mainly iso-
butyrate, isovalerate, and 2-methylbutyrate), and gasses
such as ammonia, phenols, indoles, and amines that are
potentially harmful [109] (Fig. 1). The major amino acid-
fermenting bacteria in the gut of pigs are members of
Proteobacteria (E. coli, Klebsiella spp.) Firmicutes
(Streptococcus spp., Clostridium bifermentans, Clostrid-
ium difficile, Clostridium perfringens, Megasphaera els-
denii, and Acidaminococcus fermentans), Bacteroidetes
[113]. Protein fermentation is not limited to only the
hindgut but may happen to a lesser extent in the distal
small intestine. Some of the bacteria that have been spe-
cifically identified in the small intestine of pigs include
Escherichia coli, Klebsiella spp., Streptococcus spp.,
Megasphaera spp., and Acidaminococcus fermentans
[114]. Akkermansia muciniphila, a mucin-degrading bac-
teria, contributed substantially to nitrogen cycling in the
small intestine [115]. Previous studies have indicated
that synthesis of bacterial protein primarily occurs in the
distal small intestine whereas bacterial protein catabol-
ism mostly occurs in the large intestine. This rate of bac-
terial protein synthesis and degradations seems to
depend on the availability of fermentable carbohydrates
[114, 116, 117]. Increasing dietary fermentable carbohy-
drates shifted nitrogen excretion from urine to feces,
thus reducing potentially harmful protein metabolites
such as ammonia [118].

Gut pH

The interaction between diet, intestinal environment
and gut bacteria is complex: fermentation of RS
leads to increased production of SCFA, which lowers
gut pH, thereby affecting microbial composition and
in turn, affects both the type and production rate of
SCFA [73] (Fig. 1). High amylose starch increased
intraluminal SCFA concentrations and lowers pH in
digesta and feces of pigs [47, 51]. Greater SCFA con-
centration from ileum to cecum lowers this gut sec-
tion pH and therefore prevents overgrowth of
pathogenic Enterobacteriaceae and Clostridia [119,
120]. As fermentable substrates progressively deplete
in the distal part of the large intestine, SCFA con-
centration declines along from the cecum to the dis-
tal colon, and pH increased from 5.6 to 6.6 [121].
The increased pH caused a microbial shift from
butyrate-producing bacteria such as Roseburia spp.
and Faecalibacterium prausnitzii to acetate- and
propionate-producing bacteria (mainly Bacteroides)
[122, 123].
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Gut immune response

In pigs, important gastrointestinal development occurs
in the first three months after birth [124, 125]. The es-
tablishment of the epithelial barrier coincides with the
development of the enteric nervous system and matur-
ation of the adaptive and innate immune system [124,
125]. In commercial pig production, pigs are generally
weaned between 14 to 30 days. Other stressors associ-
ated with weaning (such as maternal separation, estab-
lishment of social hierarchy, disease, and environmental
challenges) occurs during the critical period of gastro-
intestinal barrier development, thereby, affecting the im-
mune maturation processes in the intestinal tract [124].
The effects of weaning on gastrointestinal health are well
documented; however, the underlying mechanisms are
not fully understood. Weaning stress in pigs has been
proposed to trigger corticotropin-releasing factor leading
to mast cells activation and release of mast cell media-
tors such as proteases and tumor necrosis factor (TNF-
a) [124]. Initiation of this process in turn reduces tight
junctions and increases intestinal permeability allowing
the translocation of bacteria and microbial products
[124—-126]. Several animal studies demonstrated that
stress due to weaning induced impaired intestinal barrier
function, reduced mRNA expression of tight junction
proteins (occludin, claudin-1, and zonula occludens-1)
and upregulated expression of pro-inflammatory cyto-
kines (TNF-a and interleukin (IL)-6; Table 3).

In addition to the potential to alter the diversity and
stability of gut microbiota, RS affects the intestinal ex-
pression of genes involved in immune regulation and
thereby gut health. Among SCFA, especially butyrate
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produced by RS fermentation serves as the primary en-
ergy source for the colonocytes, and regarded as the
modulator of intestinal barrier function and immunity
[131, 132]. Recently, finishing pigs with Prevotella-rich
enterotype that were fed a diet containing high amylose
(68% amylose) corn starch had decreased gene expres-
sion of inflammatory cytokines in the colonic mucosa
[129]. Feeding a diet containing 34% RS suppressed
genes (Table 3) that are involved in many of the immune
response pathways in adaptive and innate immune sys-
tem [113]. In multiple studies, mainly in cell lines and
mice, the potential of SCFA in regulating T-cell metab-
olism and controlling gut inflammatory responses was
established [133-137]. Butyrate suppressed pro-
inflammatory cytokine production, therefore, suppres-
sion of immune response in a high RS diet is likely due
to increased SCFA concentration [138, 139]. Long-term
intake of RS may affect the immune response. Pigs fed
sequentially a diet containing 23% RPS during the grow-
ing phase and 28% RPS during the finishing phase, in-
creased expression of colonic mucin genes (MUC4,
MUCSAC, and MUCI2) compared with feeding a corn
starch diet. Therefore, long-term intake of RS may con-
sequentially improve gut health by increasing mucin se-
cretion and lowering the incidence of bacterial products
translocation across the gut barrier [128, 140]. Using
transcriptomic analysis, pigs that were fed a diet contain-
ing 13.3%-15.4% of RS for 100 days altered colonic ex-
pression of genes involved in immune response;
however, expression of the pro-inflammatory cytokine
gene IL-1f also increased. Hence, long-term intake of
RS may exert both positive and negative effects on gut

Table 3 Immunomodulatory effects of resistant starch (RS) in animal studies®

Test Type of RS Immune effects References
animal

Grower High amylose corn and RPS (RS 11%) Increased TNF-a, MCP2, MUC2 [110]
pigs

Grower Retrograded tapioca starch (RS 34%) Increased PPARy 127
pigs Decreased NFKB, TLR4, BCL6, ICOS, and CR2

Grower RPS (RS > 13%) Increased IL-18, F7, Pollll, TLR6 [43]
pigs Decreased CD4, ITGB3, CTSB, C1S, SERPING1, TLR7

Grower RPS (RS 15.3%) Increased MUC4, MUC5AC, and MUC12 [128]
pigs

Finishing High amylose corn starch (68.5% Increased IL-6, IL-12, IL-13, and TNF-a in pigs with Prevotella-rich enterotype [129]
pigs amylose)

Pregnant Pea starch (Gestation RS 5.4%; Increased zonula occludens-1 in piglets [100]
SOWS Lactation RS 8.6%)

Pregnant RPS (RS 5 %) Increased MUC2, IL6, DEF1B, cecal immunoglobulin A, and regulatory T cells [44]
SOWS

Ducks RPS (RS 3.8%, 7.4% and 19.5%) Increased claudin-1, zonula occludens-1, MUC2, reduced plasma TNF-q, IL-18 and  [130]

endotoxin (RS 7.4%)

#BCL6 B-cell lymphoma 6, CD4 Cluster of differentiation 4, CR2 Complement receptor type 2, CTSB Cathepsin B, C1S Complement component 1S, DEF1B Defensin
beta 1, ICOS Inducible T cell co-stimulator, IL Interleukin, ITGB3 Integrin subunit beta 3, MCP2 Monocyte chemoattractant protein 2, MUC Mucin, NFKB Nuclear
factor kappa B, Pollll RNA polymerase Ill, PPARy Peroxisome proliferator-activated receptor, RPS Raw potato starch, SERPINGT Serpin Family G Member 1, TLR Toll

like receptor, TNF-a Tumor necrosis factor alpha



Tan et al. Journal of Animal Science and Biotechnology

health [43]. Pro-inflammatory cytokine signaling has also
been linked to increased protein fermentation and
down-regulation of MCT1 in the colon of pigs [141].

Effect of resistant starch on energy metabolism
and growth performance

Metabolic responses

Apparent total tract digestibility of starch is mostly
complete; however, apparent ileal digestibility of starch
differs depending on its botanical origin [142, 143]. Feed-
ing pigs a slowly digestible starch such as yellow field pea
starch (67% inclusion) and RPS (32.5% to 65%) decreased
net portal flux of glucose but simultaneously increased net
portal flux of SCFA [144, 145]. As established, diets high
in RS (high amylose) can increase substrate flow into the
hindgut thereby promoting microbial fermentation evi-
denced by increased total SCFA concentration [47, 51,
93]. Pigs fed diets containing high amylose corn starch
[93], raw potato starch [145], and slowly degradable yellow
field pea starch [144] have decreased glucose absorption.
These findings indicate that in pigs fed a diet containing
slowly digestible purified starch of corn, raw potato, or
field pea, the intestinal wall metabolizes more glucose, or
a portion of dietary starch is fermented in the small intes-
tine. Thus, digestibility of starch alone does not explain
the rate of glucose absorption. Previously, in vitro starch
digestion was used to accurately predict the kinetics of net
portal vein appearance of glucose in pigs by applying the
corrections for gastric emptying and intestinal glucose
utilization [146].

Resistant starches affect host glucose and lipid metab-
olism by altering the profile of metabolites in systemic
circulation such as glucose, cholesterols, triglycerides,
and SCFA. Pigs fed diets containing a wide range of
amylose or RS have a reduction in postprandial glucose
and insulin responses, hence, indicating that a specific
starch characteristic may not entirely explain the starch
effect on postprandial glucose. In portal vein-
catheterized pigs, the net portal appearance of glucose,
insulin, C-peptide, and glucose-dependent insulinotropic
polypeptide was lowered in pigs fed slowly digestible
starch [93]. Insulin secretion peaked prior to peak glu-
cose absorption when pigs were fed a rapidly digestible
starch. The presence of glucose in the intestinal lumen
facilitates incretin secretion, which accounts for 50% to
70% of the insulin secreted [147]. Two incretins hor-
mones that are important for metabolism of starch me-
tabolites are a) glucose-dependent insulinotropic
polypeptide that is secreted from K cells predominantly
located in the duodenum, and b) proximal jejunum and
glucagon-like peptide-1 (GLP-1) secreted from L cells at
the distal small intestine and colon [148, 149]. The other
likely reason is the presence of intestinal glucose sen-
sor(s), taste receptor type 1 family (T1R2 + T1R3) in the
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lumen of the intestine in the presence of free digesta
glucose [150, 151].

In mammalian species, evidence is accumulating that
SCFA production directly affects pancreatic secretion of
insulin [152]. The SCFA may act as signaling molecules by
activating its receptors, G-protein coupled receptors 43
(FFAR2), and G-protein coupled receptors 41 (FFAR3)
that triggers cell-specific signaling cascades [153]. These
receptors are expressed in the ileum, colon, and insulin-
sensitive tissues such as adipose tissue, skeletal muscle,
liver, and pancreas, thereby, the potential involvement in
regulation of glucose and lipid metabolism [73]. Activation
of FFAR2 and FFAR3 stimulates the secretion of the
incretins GLP-1 and peptide YY (PYY) [154-156]. The
PYY, a satiety-related hormone produced by the L-cells in
the colon, reinforces the action of insulin by increasing
glycemic control in rats [157-159]. In rats, increased
FFAR2 was associated with increased GLP-1 in the prox-
imal colon [160]. Furthermore, butyrate had a slower po-
tency than acetate and propionate in stimulating GLP-1
secretion in the basolateral membrane of the colonic cells
[161]. In pigs fed a diet with high RS (34%), expression of
FFAR2 and FFAR3 did not differ; however, the possibility
that receptors were activated is not excluded [162]. Pro-
duction of SCFA does not seem related to expression of
proglucagon, but increased net portal SCFA from fermen-
tation of RS increasing net portal GLP-1 and decreasing
glucose-dependent insulinotropic polypeptide in pigs [49].

An earlier study in humans identified that dietary in-
clusion of 5.4% RS (high amylose corn starch) increased
fermentation products, SCFA, and fat oxidation, and
thereby may decrease fat accumulation in the long term
[163]. In pigs, glucose and insulin are potent signals that
upregulates the expression of lipogenic enzymes [164,
165]. In weaned pigs, starch with faster digestion rate
(68.9% total starch; 3.5% amylose and 96.5% amylopec-
tin) produced more postprandial blood glucose, insulin,
and circulating lipids (triglyceride, total cholesterol, low-
density lipoprotein cholesterol, and high density lipopro-
tein cholesterol) [166]. In addition, the expression of pri-
mary lipogenic enzymes, fatty acid synthase, acetyl CoA-
carboxylase, and ATP-citrate lyase in the liver and adi-
pose tissue, were increased in pig fed highly digestible
starch [166]. Indeed, weaned pigs fed cassava starch con-
taining 80% amylopectin had a greater insulinemic re-
sponse than pigs fed corn starch containing 70%
amylopectin and stimulated lipogenesis in the liver
[167]. Recently, oral administration of SCFA to growing
pigs prevented fat deposition [168]. More specifically,
acetate downregulated expression of genes involved in
de novo synthesis of fatty acids; fatty acid synthase,
acetyl CoA-carboxylase, and sterol regulatory element
binding protein 1c (SREBP-1C), whereas butyrate en-
hanced expression of genes involved in fatty acid
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oxidation; hormone-sensitive lipase and carnitine palmi-
toyltransferase 1. In finishing pigs, pea starch with high
amylose content (51.1% total starch; 28% amylose and
72% amylopectin) consistently induced downregulation
of lipogenesis [169].

Whole body energy metabolism

Previously, RS that is fermented to SCFA was shown to
be approximately 17% less efficient than starch that are
digested and absorbed as glucose from the small intes-
tine [170]. In the net energy system, energy efficiency
from fermented starch is 70% compared with in-vitro
enzymatically-degradable starch [171]. Using indirect
calorimetry, the net energy value of fermented RS (retro-
graded corn starch) was 83% of the net energy value of
enzymatically degradable starch [172]. The differences in
energetic efficiency raises the question if switching from
digested starch to fermentable starch reduces growth
and feed efficiency. Most starch sources (both RS and
digested starch) are almost completely degraded in the
gastrointestinal tract reaching 100% apparent total tract
digestibility; however, apparent ileal digestibility of these
starch sources varies: cereal grains (84.8% to 99.4%),
pulse grains (78% to 91%), purified starches (69.7% to
97.5%), and tuber (78% to 91%) [173]. The equation that
predicts net energy value recommended in North Amer-
ica utilizes total starch as analyzed without considering
its actual energetic efficiency [174, 175]. However using
total analyzed starch in the equation is a major limita-
tion because, as per the foregoing discussion, starch di-
gestion and starch  fermentation cannot be
physiologically unlinked. Indeed, differences in site, ex-
tent or kinetics of starch digestion affect the energetic
efficiency of digested vs. fermented starch due to
changes in absorption and subsequent metabolism that
affect energy loss through heat production [49, 147,
173]. Part of the lower energetic efficiency of RS due to
increased heat increment may be compensated by redu-
cing energy losses due to activity-related heat production
that varies between 5% to 35% of maintenance heat pro-
duction [176-179] (Fig. 1).

Feed intake and growth

Feed intake regulation likely involves two processes: (1)
rate of passage of digesta or transit time [180] and (2)
activation of the brain satiety and hunger center as a re-
sult of feed consumption, digestion, and metabolites
production [180, 181]. The rate of macronutrient diges-
tion that determines the site of digestion and also feed
intake control through modification of satiety provide
opportunities to improve feed efficiency [182]. Currently,
some evidence exists that RS can decrease appetite and
short-term food intake; however, the underlying mecha-
nisms are not clearly understood, and findings have been
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inconsistent. Potential mechanisms include first, SCFA
produced by hindgut fermentation stabilize postprandial
glucose preventing a decline below basal glucose levels
thereby prolonging satiety [183]. Second, luminary SCFA
stimulate the release of incretins GLP-1 and PYY that
promote satiety via a neural inhibitory effect in the brain
[73, 182, 184]. Slow digestion of starch towards the end
of the small intestine activates an ileal physicochemical
brake switch causing delayed gastric emptying and thus,
stimulating the satiety center in the brain via hormonal
and neural signals [185]. The SCFA may also activate
FFAR2 to release serotonin in the colon, thereby con-
tributing further to satiety [184]. Recently, oral adminis-
tration of acetate in growing pigs had the greatest effects
on appetite suppression via enhanced leptin, PYY and
GLP-1 secretions [168]. Although current available evi-
dence to support SCFA role in appetite regulation are
mainly from animal models such as rats, targeting these
mechanisms may be a potential strategy to improve ap-
petite regulation through dietary intervention [186].
Findings on satiety-related effects of RS or SCFA in
pigs are rather limited and inconsistent. Rapidly digest-
ible starch stimulated insulin release that consequently
inhibited feed intake and increased adiposity [187]. In
contrast, slowly digestible starch facilitated protein ac-
cretion resulting in leaner and faster growing pigs [187].
Growth performance and feed intake, were reduced in
weaned pigs fed slowly digestible starch containing 63%
amylose [51] or a diet with 20% RS [188]. In contrast, re-
sults from another study showed that 7% of RPS reduced
post weaning diarrhea in weaned piglets without affect-
ing growth performance [15]. In other studies, growth
performance of weaned [167] and finishing pigs [189]
was unaffected by dietary inclusion of 30% amylose, indi-
cating that such variations may exist due to the different
RS sources and amounts consumed [190]. Incremental
intake of 40% rapidly digestible starch increased fat de-
position but did not affect feed efficiency when com-
pared with feeding 40% slowly digestible starch [166]. In
a study with pigs having ad-libitum access to feed, 30%
greater RS intake did not affect feed intake pattern and
growth rate of pigs likely because microbial-produced
SCFA were absorbed and available as energy source
thereby sparing glucose from oxidation [191]. In grower
pigs, feeding diets containing 34% RS showed induced
behavioral signs of increased satiety despite lack of in-
creased plasma GLP-1 and PYY concentrations. The sa-
tiety effects observed were likely because of increased
SCFA production and decreased postprandial glucose
concentration and thus insulin response [192]. Separ-
ately, increased PYY secretion in response to RS supple-
mentation is not caused by increased SCFA but rather
by increased flow of intestinal digesta and neural reflexes
[193]. Overall, results of the reviewed experiments
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indicate that dietary inclusion of up to 30% RS did not
affect growth performance in growing or finishing pigs.
However, dietary inclusion of RS above 30% may reduce
feed intake in growing pigs. In addition, the mixed re-
sults observed for weaned pigs indicate that the overall
outcome of dietary RS inclusion may also depend on
starch source or the age of pigs. Combined, dietary in-
clusion of RS may regulate satiety and reduce feed intake
in pigs without affecting growth performance, thus, im-
proving feed efficiency.

Conclusions

Resistant starch is the proportion of starch that escapes
small intestine digestion producing mostly glucose but
instead undergoes microbial fermentation in the distal
small intestine and colon producing SCFA. Results of
in vitro and in vivo studies support the view that RS acts
as prebiotic to modulate gut microbiota by changing the
intestinal microbial composition and function. In
addition, specific bacteria phyla are associated with fer-
mentation of RS and increased SCFA production par-
ticularly butyrate. Results of experiments with humans,
rats, and pigs demonstrated that benefits of dietary RS
on gut health may include increased markers of mucosal
barrier function, immune tolerance, and increased abun-
dance of beneficial gut bacteria. This area of research
has progressed considerably; however, its benefits during
disease challenge remain unclear. Indeed, additional
in vivo experiments are required to provide stronger evi-
dence linking prebiotic effects of RS with reduced PWD
and mortality. Despite the potential benefits of RS fer-
mentation in the hindgut, utilization of SCFA resulting
from RS fermentation reduces energetic efficiency com-
pared with mostly glucose from digested starch and may
thus reduce growth. To achieve a balance between in-
creased prebiotic activity and sustained growth perform-
ance of pigs, the optimum dietary inclusion of RS, most
appropriate source(s) of RS, and duration of supplemen-
tation of RS need to be determined. Nevertheless, the
current state of knowledge indicates that RS as a pre-
biotic can enhance gut health of weaned pigs, thereby
reducing the incidence of PWD. The evidence linking
certain bacterial taxa and its functionality to growth and
feed efficiency indicates that manipulation of gut micro-
biota with dietary inclusion of RS may affect pig growth
performance. However, reduced PWD and especially re-
duced mortality following such diarrhea due to dietary
RS as prebiotic is more relevant economically than diet-
ary inclusion of RS to improve feed efficiency. Effects of
feeding RS on pig performance may differ depending on
the health status of pigs (healthy vs. disease challenged)
and gut development, thus, different optimum levels
may have to be established for each growth phase and
physiological stage (e.g., growth, gestation, lactation).
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