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Abstract

Background: Antibiotic growth promoters are widely used to improve weight gain. However, the abuse of antibiotics
can have many negative effects on people. Developing alternatives to antibiotics is an urgent need in livestock
production. We aimed to perform a meta-analysis and network meta-analysis (NMA) to investigate the effects of feed
additives as potential antibiotic substitutes (ASs) on bacteriostasis, growth performance, intestinal morphology and
immunity. Furthermore, the primary, secondary, and tertiary ASs were defined by comparing their results with the
results of antibiotics.

Results: Among 16,309 identified studies, 37 were summarized to study the bacteriostasis effects of feed additives, and
89 were included in the meta-analysis and NMA (10,228 pigs). We summarized 268 associations of 57 interventions
with 32 bacteria. The order of bacteriostasis effects was as follows: antimicrobial peptides (AMPs) ≈ antibiotics>organic
acids>plant extracts>oligosaccharides. We detected associations of 11 feed additives and 11 outcomes. Compared
with a basal diet, plant extract, AMPs, probiotics, microelements, organic acids, bacteriophages, lysozyme, zymin, and
oligosaccharides significantly improved growth performance (P < 0.05); organic acids, probiotics, microelements,
lysozyme, and AMPs remarkably increased the villus height:crypt depth ratio (V/C) (P < 0.05); and plant extracts, zymin,
microelements, probiotics, and organic acids notably improved immunity (P < 0.05). The optimal AMP, bacteriophage,
lysozyme, microelements, oligosaccharides, organic acids, plants, plant extracts, probiotics, and zymin doses were
0.100%, 0.150%, 0.012%, 0.010%, 0.050%, 0.750%, 0.20%, 0.040%, 0.180%, and 0.100%, respectively. Compared with
antibiotics, all investigated feed additives exhibited no significant difference in effects on growth performance, IgG, and
diarrhoea index/rate (P > 0.05); AMPs and microelements significantly increased V/C (P < 0.05); and zymin significantly
improved lymphocyte levels (P < 0.05). Furthermore, linear weighting sum models were used to comprehensively
estimate the overall impact of each feed additive on pig growth and health.

Conclusions: Our findings suggest that AMPs and plant extracts can be used as primary ASs for weaned piglets and
growing pigs, respectively. Bacteriophages, zymin, plants, probiotics, oligosaccharides, lysozyme, and microelements
can be regarded as secondary ASs. Nucleotides and organic acids can be considered as tertiary ASs. Future studies
should further assess the alternative effects of combinational feed additives.
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Background
Antibiotics are widely used in commercial pig produc-
tion for growth promotion and disease prevention [1].
Subtherapeutic doses of antibiotics are used as feed ad-
ditives to promote growth performance, improving aver-
age daily gain (ADG) and gain:feed ratio (G/F) through
alterations in intestinal morphology and digestion and
the suppression of harmful bacteria [2]. However, feed-
ing pigs subtherapeutic doses of antibiotics in the long
term leads to the development of antimicrobial resist-
ance, which is seriously endangering public health [3].
Considering its harm, in 1999, the European Union
banned the use of subtherapeutic doses of antibiotics in
livestock [3]. In 2017, the FDA reported that antibiotics
that are important for human medicine could no longer
be used for growth promotion in food animals [4]. Not-
ably, China will completely ban the use of antibiotics in
feed in 2020 [5]. Therefore, governments and world or-
ganizations have initiated a series of countermeasures
and encouraged the research and development of anti-
biotic substitutes (ASs). However, some questions about
ASs are the following. 1) How should ASs be defined? 2)
What are the effects of many feed additives on bacterio-
stasis, growth promotion, improvement of intestinal
morphology and immunity? 3) What is the optimal dose
for these feed additives? 4) Which additive is the most
powerful AS? In this study, we performed a set of meta-
analyses to investigate the effects of different feed addi-
tives regarded as ASs on growth performance, intestinal
morphology and immunity in pigs. Then, we used net-
work meta-analyses (NMAs) to assess and compare the
effects of antibiotics and different ASs that are superior
to the basal diet. Finally, we used a linear weighted
model to evaluate ASs. To the best of our knowledge,
this study is the first to comprehensively and systematic-
ally define ASs and investigate their effects.

Methods
This meta-analysis is reported according to the Preferred
Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) Statement [6] and the Approach of
Meta-analysis on Nonruminants [7, 8].

Search strategy
We performed a series of meta-analyses of studies on
potential ASs indexed on PubMed from January 1, 2000
to April 31, 2019, and the language was restricted to
English. The complete search strategy is shown in Table
S1. Moreover, studies on antimicrobial peptides (AMPs)
were identified by searches in the Antimicrobial Peptide
Database (http://aps.unmc.edu/AP/, accessed on April
31, 2019). In addition, a manual search was performed
to obtain additional potential studies.

Selection criteria
The inclusion criteria were as follows: 1) studies investi-
gating the effects of ASs on bacteriostasis; 2) studies in-
vestigating the effects of potential ASs as feed additives
on pig growth performance, the villus height:crypt depth
ratio, blood haematology, or diarrhoea; and 3) studies in
which the breeding background was commercial pigs.
The exclusion criteria were as follows: 1) studies on anti-
bacterial effects that did not report minimum inhibitory
concentrations (MICs) or animal-specific bacteria; 2)
studies without a basal diet or a positive control group;
3) studies where pig growth was not assessed in stages;
4) studies in which pigs were challenged with pathogenic
bacteria, viruses, or lipopolysaccharide; 5) studies that
included multiple factors; and 6) studies in which pigs
exhibited an oxidative stress status or a heat stress state.
Three investigators (B. Xu, L. Zhu and J. Fu) reviewed

study titles, abstracts, and full texts to ensure studies sat-
isfied the inclusion criteria, and disagreements were re-
solved by two investigators (M. Jin and Y. Wang).

Information extraction
The following data were extracted from each selected
study: author information (first author, year, country),
interventions, control group, breeding background,
amount of additive, growth stages (weaned piglets, grow-
ing pigs, finishing pigs), sample size, initial and final
body weight, experimental duration, and outcome data
and corresponding errors, such as standard deviations or
standard errors. The initial body weight of weaned pig-
lets was lower than 15 kg, the initial body weight of
growing pigs was more than 15 kg, and the initial body
weight of finishing pigs was more than 45 kg. Outcomes
were as follows: MIC; ADG; average daily feed intake
(ADFI); G/F; V/C of duodenum, jejunum, and ileum; im-
mune globulin (Ig), including IgA, IgM, and IgG;
lymphocyte levels, diarrhoea rate, and diarrhoea index.
For studies involving multiple interventions, we
extracted data from all relevant interventions. For stud-
ies involving multiple concentrations, we extracted all
the experimental groups with an addition amount less
than 1%. When extractions from different plant tissues
were used, we chose leaf extractions.

Study quality assessment
We conducted a study quality assessment on non-
ruminants (SQANR) to assess the quality of existing
studies [7]. The potential risk of bias was derived from
missing within-group error, repeated reports, informa-
tion completeness, sample size, and experimental ration-
ality. Two investigators (B. Xu and L. Zhu) performed
independent study quality assessments.
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Statistical analysis
We aimed to compare which ASs were most suitable in
terms of bacteriostasis, growth promotion and disease
resistance effects. First, we compared the effects of basal
diet with those of feed additive supplementation on a
range of outcomes. We used a random-effects model to
compute the pooled estimate of standardized mean dif-
ference (SMD) with the 95% confidence interval (CI). If
the 95% CI contained a zero value, that result indicated
that there was no difference. The heterogeneity was
assessed with the I2 statistic [9] and Cochran’s Q test
[10]; I2 > 50% and Pheterogeneity < 0.1 was regarded as a
substantial heterogeneity.
We used sensitivity analyses to remove individual data

values with large deviations from the overall level. If 10
or more trials were available, we conducted subgroup
analyses and meta-regression to explore potential
sources of heterogeneity. Publication bias was evaluated
using Egger’s tests, for which the significance level was
defined at P < 0.1 [11]. Second, if the data were suffi-
cient, we used the dose-effect model to find the optimal
amount of added feed additives. When the same effect
size occurred at different concentrations, we chose the
lowest concentration to reduce the cost. Third, we per-
formed an NMA to further study feed additives that,
when compared with basal diet, had a significant effect
on growth performance. We aimed to compare the
growth performance effects of feed additives with the
optimal amount of ASs added. NMA enables the incorp-
oration of indirect comparisons constructed from two
trials with the same control group. NMA combined all
available comparisons among ASs and provided a rank-
ing of suitable alternatives to antibiotics [12]. To explore
evidence of within-network inconsistency, the loop-
specific approach was used [13].
We used Stata 14.0 (Stata Corp., USA) to perform the

meta-analysis. We used R 3.6.1 (The R Foundation Con-
ference Committee, USA) to examine the dose-effect re-
lationship and perform the NMA.

Assessment of antibiotic substitutes
We aimed to use a linear weighting sum model to com-
prehensively assess the efficacy of feed additives. In
terms of bacteriostasis, according to the order of occur-
rences, 4 bacteria were chosen from gram-positive/nega-
tive bacteria for analysis. We used the rank score of the
interventions to assess their bacteriostasis effects based
on MICs. We used the P-score value, which evaluates
and ranks the strength of the intervention from the
NMA, to grade available interventions. Each P-score
value of feed additives was subtracted by that of the cor-
responding basal diet, which was performed to guarantee
a consistent background. When feed additives were not
included in the NMA or were not observed in the

outcomes, the feed additives were rated zero in the cor-
responding outcomes. For growth performance, the
weights of ADG, ADFI, and G/F were 30%, 10%, and
60%, respectively. For intestinal morphology, the weights
of V/C of the duodenum, jejunum, and ileum were 30%,
10%, and 60%, respectively. For immunity, the weights of
IgA, IgM, IgG, and lymphocyte levels and diarrhoea
index/rate were 10%, 10%, 10%, 10%, 60%, respectively.
The overall score was equal to the sum of the score of
bacteriostasis, growth performance, intestinal morph-
ology, and immunity effects multiplied by the corre-
sponding weight (bacteriostasis = 10%; growth
performance = 50%; intestinal morphology = 10%; im-
munity = 30%). Furthermore, we also conducted the
stage scores based on the growth stage to provide a spe-
cial strategy. Feed additives that were superior to antibi-
otics on the stage scores were regarded as primary ASs.
Feed additives that were superior to antibiotics on one
outcome were regarded as secondary ASs. Finally, the
remaining feed additives were regarded as tertiary ASs.

Results
We identified 16,309 articles in PubMed, of which 89
were included in the meta-analyses [14–102], including
10,228 pigs, and 37 were summarized to investigate the
antibacterial effects of feed additives [103–139]. The
characteristics of the studies are shown in Table S2. The
study quality assessed by SQANR is shown in Table S3.
The number of studies rated as “high” and “moderate”
were 7 and 61, respectively. The mean initial body
weights of weaned piglets, growing pigs, and finishing
pigs were 7.7 kg, 28.4 kg, and 57.6 kg, respectively. Feed
additives included plant extracts, plants, probiotics, mi-
croelements, organic acids, bacteriophages, lysozyme,
zymin, AMPs, nucleotides, and oligosaccharides. The re-
sults of the meta-regression are shown in Table 1. The
different growth stages had a significant influence on
ADFI and G/F (P < 0.05), while the type of feed additives
and dose did not have a significant effect on the out-
comes of interest (P > 0.05). Therefore, when we per-
formed meta-analyses for growth performance, the
growth stages were divided into weaned piglets, growing
pigs, and finishing pigs.

Effects of feed additives on bacteriostasis
We summarized 268 associations of 57 interventions
with 32 bacteria (Table S4). Due to the number of asso-
ciations, Staphylococcus aureus and Bacillus subtilis
were used to represent gram-positive bacteria, and
Escherichia coli and Pseudomonas aeruginosa were used
to represent gram-negative bacteria. Overall, based on
the rank score, bacteriostasis effects of interventions
were as follows (Table 2): AMPs≈ASs> organic acids>
plant extracts> oligosaccharides, which were in
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accordance with bacteriostasis effects of those interven-
tions on gram-positive or gram-negative bacteria.

Effect of feed additives on growth performance
As shown in Fig. 1a-i and Table S5, compared with a
basal diet, plants and probiotics had significant effects
on ADG at all stages (P < 0.05), plant extracts and zymin
improved weaned and growing pigs’ ADG (P < 0.05),
and bacteriophages, lysozyme, and AMPs had significant
effects on weaned piglets’ ADG (P < 0.05), while only
microelements and organic acids had no significant ef-
fect on growing pigs’ ADG (P > 0.05). With regard to
ADFI, probiotics, microelements, organic acids, bacterio-
phages, lysozyme, AMPs, and oligosaccharides had a
notable effect on weaned piglets (P < 0.05), while we de-
tected that organic acids improved ADFI in growing pigs
(P < 0.05) and that probiotics had a negative impact on
finishing pigs’ ADFI (P < 0.05). In terms of G/F, plants
remarkably improved weaned and growing pigs’ G/F
(P < 0.05), probiotics had a significant effect on weaned
and finishing pigs’ G/F (P < 0.05), and microelements,
organic acids, bacteriophages, lysozyme, zymin, AMPs,
and oligosaccharides had considerable effects on weaned
piglets’ G/F (P < 0.05).
Figure 2 show the dose-effect relationship among the

feed additives and growth performance. The optimal doses
of AMPs, bacteriophages, lysozyme, microelements,

oligosaccharides, organic acids, plants, plant extracts, pro-
biotics, and zymin were 0.100%, 0.150%, 0.012%, 0.010%,
0.050%, 0.750%, 0.20%, 0.040%, 0.180%, and 0.100%,
respectively.
Figure 3 and Table 3 show the comparison between an-

tibiotics and feed additives based on NMA. Compared
with those of antibiotics, feed additives that had a positive
significant effect on growth performance compared with
the basal diet had no difference in growth performance.
For weaned piglets’ ADG, the P-score values of bacterio-
phages, AMPs, lysozyme, and probiotics were greater than
those of antibiotics. For weaned piglets’ ADFI, the P-score
value of AMPs was greater than that of antibiotics. For
weaned piglets’ G/F, the P-score values of AMPs, zymin,
bacteriophages, and oligosaccharides were greater than
those of antibiotics. For growing pigs’ ADG, the P-score
values of probiotics, plants, and plant extracts were greater
than those of antibiotics. For finishing pigs’ ADG, the P-
score value of plants was greater than that of antibiotics.
However, we did not observe a P-score value of feed addi-
tives greater than that of antibiotics for ADFI and G/F of
growing and finishing pigs.

Effect of feed additives on intestinal morphology
As shown in Fig. 1j-l and Table S5, probiotics, organic
acids, microelements, lysozyme, AMPs, plant extracts
significantly improved the V/C of duodenum and ileum

Table 1 Regression analyses of the covariates

Outcomes Type of feed additive Growth stage Dose

Average daily gain 0.986 0.064 0.954

Average daily feed intake 0.105 0.001 0.466

Gain: feed ratio 0.414 0.009 0.082

Villus height: crypt depth of the duodenum 0.474 0.974 0.949

Villus height: crypt depth of the jejunum 0.168 0.514 0.409

Villus height: crypt depth of the ileum 0.021 0.989 0.397

IgA 0.278 0.196 0.597

IgM 0.552 0.591 0.886

IgG 0.354 0.449 0.976

Lymphocytes 0.156 0.661 0.978

Diarrhoea rate 0.587 NA NA

Diarrhoea index 0.535 NA 0.053

Table 2 The rank of bacteriostasis effects

Interventions Staphylococcus aureus Bacillus subtilis Escherichia coli Pseudomonas aeruginosa

Antimicrobial peptides 1 2 1 2

Antibiotics 2 1 2 1

Organic acids 3 2 3 3

Plant extracts 4 4 5 4

Oligosaccharides 5 5 4 NA
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Fig. 1 (See legend on next page.)
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(See figure on previous page.)
Fig. 1 Summary forest plots of the effects of feed additives. a Feed additives and weaned piglets’ average daily gain. b Feed additives and growing pigs’
average daily gain. c Feed additives and finishing pigs’ average daily gain. d Feed additives and weaned piglets’ average daily feed intake. e Feed
additives and growing pigs’ average daily feed intake. f Feed additives and finishing pigs’ average daily feed intake. g Feed additives and weaned piglets’
gain:feed ratio. h Feed additives and growing pigs’ gain:feed ratio. i Feed additives and finishing pigs’ gain:feed ratio. j Feed additives and villus
height:crypt depth ratio of the duodenum. k Feed additives and villus height:crypt depth ratio of the jejunum. i Feed additives and villus height:crypt
depth ratio of the ileum. m Feed additives and IgA level. n Feed additives and IgM level. o Feed additives and IgG level. p Feed additives and
lymphocytes. q Feed additives and diarrhoea index/rate

Fig. 2 Dose-effect relationship between feed additives and growth performance. a Zymin. b Antimicrobial peptides. c Lysozyme. d Microelement.
e Oligosaccharides. f Organic acids. g Plant. h Plant extract. i Probiotics
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Fig. 3 Forest plots of network meta-analysis. a Feed additives and weaned piglets’ average daily gain. b Feed additives and growing pigs’
average daily gain. c Feed additives and finishing pigs’ average daily gain. d Feed additives and weaned piglets’ average daily feed intake. e Feed
additives and weaned piglets’ gain:feed ratio. f Feed additives and villus height:crypt depth ratio of the duodenum. g Feed additives and villus
height:crypt depth ratio of the ileum. h Feed additives and lymphocytes. i Feed additives and IgG level. j Feed additives and diarrhoea index/rate
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in weaned piglets (P < 0.05), while plant extracts notably
improved the V/C of jejunum and ileum in growing and
finishing pigs (P < 0.05).
As shown in Fig. 3f-g and Table 3, in weaned piglets,

microelements were greater than AS on V/C of the duo-
denum and ileum, plant extracts and AMPs were greater
than AS on V/C of the ileum, and probiotics, organic
acids, lysozyme, and AMPs had no difference with AS
on V/C of the duodenum. Specifically, the P-score value
of microelements and AMPs was greater than that of AS
on V/C of ileum.

Effect of feed additives on immunity
As shown in Fig. 1m-q and Table S5, plant extracts,
zymin, and microelements were associated with im-
proved Ig levels (P < 0.05); plants, plant extracts, and
zymin were associated with improved lymphocyte levels
(P < 0.05); and probiotics, organic acids, zymin, plant ex-
tracts, and microelements were associated with reduced
diarrhoea index/rate (P < 0.05).
Figure 3h-j and Table 3 show that compared with ASs,

zymin significantly improved lymphocyte levels. In terms
of P-score value, plant extracts and zymin were better
than ASs at reducing and alleviating diarrhoea; plant ex-
tracts, zymin, and plants were better than ASs at in-
creasing lymphocyte levels; and plant extracts, zymin,
and microelements were better than ASs at increasing
IgG levels.

Feed additives assessment
Table 4 shows the assessment score of feed additives.
The findings suggest that AMPs could be regarded as
primary ASs in weaned piglets and that plant extracts
could be considered ASs in growing pigs. Secondary ASs
included bacteriophages, zymin, plants, probiotics, oligo-
saccharides, lysozyme, and microelements. In terms of

bacteriostasis, AMPs were observed to have an antibac-
terial effect similar to that of antibiotics. For growth per-
formance, AMPs, bacteriophages, zymin, and
oligosaccharides could replace antibiotics in weaned pig-
lets; probiotics, plants, and plant extracts could replace
antibiotics in growing pigs; and plants could replace an-
tibiotics in finishing pigs. With regard to intestinal
morphology, AMPs, plant extracts, and microelements
were superior to antibiotics. Zymin and plant extracts
were better than antibiotics at improving immunity.

Discussion
We used meta-analysis and NMA to define ASs. We de-
tected the associations of 11 feed additives and 11 out-
comes. The findings suggest that AMPs and plant
extracts can be used as ASs for weaned piglets and
growing pigs, respectively and that bacteriophages,
zymin, plants, probiotics, oligosaccharides, lysozyme,
and microelements can be regarded as secondary ASs
(Fig. 4). Based on current data, the optimal AMPs, bac-
teriophage, lysozyme, microelements, oligosaccharides,
organic acids, plants, plant extracts, probiotics, and
zymin doses were 0.100%, 0.150%, 0.012%, 0.010%,
0.050%, 0.750%, 0.20%, 0.040%, 0.180%, and 0.100%,
respectively.
To determine whether a feed additive is an eligible AS,

it is necessary to measure its alternative effects on
growth promotion, intestinal morphology improvement,
bacteriostasis and immunity. Chief among these effects
is growth promotion dependent on G/F. Feed additives
enhance growth performance through improving intes-
tinal morphology, reducing pernicious bacteria, reducing
anti-nutritional factors, or improving nutrient digestibil-
ity. We did not investigate the effects of feed additives
on the latter two mechanisms because antibiotics have
not been reported to have these effects in the primary

Table 3 P-score value table

Interventions ADG-w ADG-g ADG-f G/F-w ADFI-w V/C (duodenum) V/C (ileum) Lymphocytes IgG Diarrhoea rate/index

Antibiotics 0.552 0.589 0.628 0.493 0.723 0.542 0.037 0.366 0.337 0.664

Antimicrobial peptides 0.852 0.000 0.000 0.796 0.820 0.615 0.841 0.000 0.000 0.000

Bacteriophages 0.898 0.000 0.000 0.980 0.299 0.000 0.000 0.000 0.000 0.000

Basal diet 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Lysozyme 0.790 0.000 0.000 0.454 0.412 0.467 0.000 0.000 0.000 0.000

Microelements 0.331 0.000 0.000 0.319 0.568 0.937 0.686 0.000 0.370 0.327

Oligosaccharides 0.524 0.000 0.000 0.622 0.500 0.000 0.000 0.000 0.000 0.000

Organic acids 0.256 0.000 0.000 0.244 0.311 0.519 0.000 0.000 0.000 0.433

Plants 0.235 0.647 0.914 0.286 0.000 0.000 0.000 0.385 0.000 0.000

Plant extracts 0.515 0.646 0.252 0.000 0.000 0.000 0.399 0.856 0.496 0.735

Probiotics 0.625 0.843 0.531 0.371 0.587 0.139 0.000 0.000 0.000 0.000

Zymin 0.334 0.266 0.000 0.755 0.001 0.000 0.000 0.893 0.740 0.807

w Weaned piglets, g Growing pigs, f Finishing pigs
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studies included in this meta-analysis. We measured in-
testinal morphology through V/C, as V/C is positively
correlated with nutrient absorption capacity, such as that
of carbohydrates and fatty acids [140]. We measured im-
munity through Ig and lymphocyte levels and the diar-
rhoea index/rate, which are the secondary phenotype
outcomes. Consequently, antimicrobial and anti-
inflammatory properties also contribute to promotion of
growth performance. Bacteriostasis is measured by
in vitro MIC experiments that are considered to provide
reliable and stable results. Meanwhile, bacteriostasis ef-
fects of interventions are linked to antidiarrhoeal proper-
ties to some extent.
Our findings, together with mechanisms and possible

speculations reported in articles, provide rational inter-
pretations for growth promotion, immunity enhance-
ment, and antidiarrhoeal properties for ASs.
Interpretations of primary ASs are as follows. 1) AMPs
can promote growth performance (ADG, ADFI, G/F) by
improving intestinal morphology (V/C of the duodenum
and ileum), nutrient digestibility, and antimicrobial ac-
tivity [141]. AMPs can improve the duodenum and
ileum by stimulating intestinal epithelial cell prolifera-
tion because AMP receptors may be rich in the duode-
num and ileum [142]. AMPs are more likely to

guarantee intestinal integrity and barrier function to
protect from bacterial and toxin infections, which may
be due to upregulation of the expression of tight junc-
tion proteins [102, 142, 143]. AMPs are critical compo-
nents of the innate immune system, but evaluations of
immune outcome associations were not conducted due
to limitation by the lack of data. 2) Plant extracts can
improve immunity (IgA, IgM, IgG, and lymphocyte
levels) through their antimicrobial and anti-
inflammatory properties [65]. Changing the microbiota
and regulating intestinal permeability contribute to their
antidiarrhoeal properties. The effects of plant extracts
on growth performance (ADG and G/F) exhibit substan-
tial heterogeneity because numerous plant extracts were
included, and there is no feasible subgroup. Growth pro-
motion associated with improving nutrient digestibility
and amino acid metabolism also occurred [14]. Our pre-
analyses identified a subgroup based on whether it is a
plant essential oil, which cannot influence the substantial
heterogeneity. A plant essential oil inhibits the opening
of calcium channels and stimulates that of potassium
channels in smooth muscles, which increases motility of
the small intestine and produces a significant shortening
of the food transit time [64, 144, 145]. However, several
studies have suggested that a positive effect of plant

Fig. 4 Summary of findings of meta-analyses
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essential oils seems to occur in challenged piglets rather
than healthy piglets [64, 98]. Future meta-analyses
should study the effects of plant extracts in pigs with dif-
ferent health statuses and the main sources of hetero-
geneity based on a feasible subgroup.
Interpretations of secondary ASs are as follows. 1)

Zymin can improve growth performance (ADG and G/F),
enhance immunity (IgA, IgM, IgG, and lymphocyte levels),
and reduce and relieve diarrhoea. The reason for the
above phenotype is that zymin can increase digestive en-
zyme activities and nutrient digestibility and decrease
Escherichia coli and Salmonella populations [100]. 2)
Lysozyme can increase growth performance (ADG, ADFI,
and G/F), improve intestinal morphology (V/C of the duo-
denum and jejunum), and increase lymphocyte levels.
Lysozyme increases protein deposition and decreases the
turnover rate of intestinal epithelial cells [25, 85]. 3) Bacte-
riophages promote growth performance (ADG, ADFI, and
G/F) through a reduction in coliforms and Clostridium
[32]. 4) Plants can improve growth performance (ADG
and G/F) and enhance immunity (IgG and lymphocyte
levels). 4) Plants, specifically herbs, have antioxidant activ-
ity and pharmaceutical effects, providing additional bene-
fits. Our previous meta-analysis indicated that fermented
plants promoted growth performance and digestibility at
all stages [8]. Additionally, fermented plants significantly
improved marbling and decreased redness of the meat in
finishing pigs but had no effect on lightness, yellowness,
drip loss, and flavour [7]. 5) Probiotics can increase
growth performance (ADG, ADFI, G/F) by improving nu-
trient digestibility and the microbiota structure, enhancing
osmotic balance and reducing pernicious bacteria to con-
tribute to the remission of diarrhoea [31]. Immunity pro-
motion of probiotics was not observed; hence, the effect of
probiotics on immunity is unclear. 6) Oligosaccharides
can increase growth performance (ADG, ADFI, and G/F)
and have no association with intestinal morphology,
lymphocyte levels, or the diarrhoea rate. We speculate that
oligosaccharides may increase nutrient digestibility, and
the categories of oligosaccharides are related to the diar-
rhoea rate. 7) Microelements can increase growth per-
formance (ADG, ADFI, and G/F), improve immunity (IgG
levels), and reduce the risk of diarrhoea, which are linked
to their bacteriostatic properties and improvement of the
microbiota structure [74].
According to the results of the NMA, the effects of all

feed additives investigated showed no significant differ-
ence from those of antibiotics on ADG, ADFI, IgG, and
diarrhoea rate or index. The effects of bacteriophages
are superior to those of antibiotics on weaned piglets’
G/F; the effects of microelements, plant extracts, and
AMPs are superior to those of antibiotics on improve-
ment of intestinal morphology; and the effects of plant
extracts and zymin are superior to those of antibiotics

on lymphocyte level enhancement. All of the ASs have
potential uses in animal health. However, the high cost
for many ASs, such as AMPs and bacteriophages, may
be prohibitive for animal use. Future studies should fur-
ther investigate high-efficiency bacterial engineering,
purification technology, and the design of novel AMPs
to expedite progress in reducing and alternating antibi-
otics. Commitment to substantial subsidies might be
needed to incentivize development of ASs for animal
health, in which their use could contribute to a reduc-
tion in antibiotic use [146].
A major strength of the present study is that we inves-

tigated all feed additives mentioned as ASs, which thus
comprehensively demonstrated the effects of each feed
additive on outcomes for which producers and animal
nutritionists are interested. A major innovation is that
we used a rational approach, the linear weighting sum
model, to estimate the overall impact of each feed addi-
tive and antibiotics on pig health and growth. The limi-
tation of the present study is that we failed to further
investigate the main sources of heterogeneity of every
AS and effects of combinational feed additives, such as
combinations of plant essential oils and organic acids
and those of prebiotics and probiotics. Some ASs were
downgraded due to lack of some outcomes data. Future
studies should investigate effects of feed additives on
various aspects beyond growth performance.

Conclusions
Here, we recommend supplementing 0.1% AMPs in the
weaned stage, adding 0.04% plant extract in the growing
stage and feeding 0.2% plants, especially fermented plants,
in the finishing stage, which may have an approximate ef-
fect compared with antibiotics on all stages. Our research
is the first to define and overall assess ASs through meta-
analysis and NMA. Although further research should sup-
plement unobserved data for a more comprehensive as-
sessment, our research clearly and systematically
investigates AS candidates. However, it is important to
note that there is no single alternative to completely sub-
stitute antibiotics in feed, and a combination of different
alternatives to antibiotics may be the most promising
method to reduce or replace antibiotics in animal feeds.
Future meta-analyses should further study the alternative
effects of combinational feed additives.
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