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Abstract

Background: Improving the feed efficiency would increase profitability for producers while also reducing the
environmental footprint of livestock production. This study was conducted to investigate the relationships among
feed efficiency traits and metabolizable efficiency traits in 180 male broilers. Significant loci and genes affecting the
metabolizable efficiency traits were explored with an imputation-based genome-wide association study. The traits
measured or calculated comprised three growth traits, five feed efficiency related traits, and nine metabolizable
efficiency traits.

Results: The residual feed intake (RFI) showed moderate to high and positive phenotypic correlations with eight
other traits measured, including average daily feed intake (ADFI), dry excreta weight (DEW), gross energy excretion
(GEE), crude protein excretion (CPE), metabolizable dry matter (MDM), nitrogen corrected apparent metabolizable
energy (AMEn), abdominal fat weight (AbF), and percentage of abdominal fat (AbP). Greater correlations were
observed between growth traits and the feed conversion ratio (FCR) than RFI. In addition, the RFI, FCR, ADFI, DEW,
GEE, CPE, MDM, AMEn, AbF, and AbP were lower in low-RFI birds than high-RFI birds (P < 0.01 or P < 0.05), whereas
the coefficients of MDM and MCP of low-RFI birds were greater than those of high-RFI birds (P < 0.01). Five narrow
QTLs for metabolizable efficiency traits were detected, including one 82.46-kb region for DEW and GEE on Gallus
gallus chromosome (GGA) 26, one 120.13-kb region for MDM and AMEn on GGA1, one 691.25-kb region for the
coefficients of MDM and AMEn on GGA5, one region for the coefficients of MDM and MCP on GGA2 (103.45–
103.53 Mb), and one 690.50-kb region for the coefficient of MCP on GGA14. Linkage disequilibrium (LD) analysis
indicated that the five regions contained high LD blocks, as well as the genes chromosome 26 C6orf106 homolog
(C26H6orf106), LOC396098, SH3 and multiple ankyrin repeat domains 2 (SHANK2), ETS homologous factor (EHF), and
histamine receptor H3-like (HRH3L), which are known to be involved in the regulation of neurodevelopment, cell
proliferation and differentiation, and food intake.
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Conclusions: Selection for low RFI significantly decreased chicken feed intake, excreta output, and abdominal fat
deposition, and increased nutrient digestibility without changing the weight gain. Five novel QTL regions involved
in the control of metabolizable efficiency in chickens were identified. These results, combined through nutritional
and genetic approaches, should facilitate novel insights into improving feed efficiency in poultry and other species.
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Introduction
Feed efficiency is the most important trait in the poultry
industry because feed accounts for approximately 70% of
the total production cost [1]. In poultry production, feed
efficiency is generally defined as the relative ability of an
animal to convert feed to product. The most widely used
indexes for evaluating feed efficiency are the feed con-
version ratio (FCR) and residual feed intake (RFI). FCR
is the ratio between feed intake and body weight gain
during the measurement period. RFI, which was first
used by Koch et al. [2] for cattle, is generally defined as
the difference between actual and expected feed intake,
the latter of which is based on an animal’s requirements
for maintaining body weight and for production [3].
Genetic selection for RFI has been reported to lead to
reductions in true metabolizable energy intake and diet-
induced thermogenesis in chickens [4]. Digestive effi-
ciency is defined as the proportion of dietary intake
minus feces, and metabolizable efficiency is defined as
the proportion of dietary intake minus feces and urine
[5]. In cattle, digestive efficiency is one of the five major
physiological processes controlling RFI, and it conserva-
tively explains 10% of the variation in RFI [6]. In poultry,
metabolizable efficiency is easier to determine and is a
more practical measure than digestive efficiency, because
feces and urine are voided together via the single channel
of the cloaca [5]. The heritability values of metabolizable ef-
ficiency, such as nitrogen corrected apparent metabolizable
energy (AMEn), are moderate to high, ranging from 0.33 to
0.47 [7, 8]. Selection for metabolizable efficiency is accom-
panied by improved feed efficiency and reduced environ-
mental impact [7, 9].
Quantitative trait loci (QTLs) for economically important

traits in animals have been studied for more than 20 years.
In chickens, 587 and 40 QTLs associated with FCR and
RFI, respectively, have been detected in the Animal QTL
Database (Animal QTLdb; https://www.animalgenome.org/
cgi-bin/QTLdb/GG/index, 10/24/2019). To our knowledge,
only three studies have reported 22 QTLs significantly asso-
ciated with metabolizable efficiency traits, such as AMEn,
dry excreta weight (DEW), and crude protein excretion
(CPE) [8, 10, 11]. Few studies have been conducted in other
chicken populations and most previous studies have been
performed on two broiler lines divergently selected for low
or high AMEn on a wheat-based diet.

A genome-wide association study (GWAS) is a powerful
tool that can be used to explore the genomic variation as-
sociated with complex traits in farm animals. GWAS stud-
ies for RFI have been performed in broilers [12] and layers
[13]. To date no GWAS for metabolizable efficiency traits
has been reported in chickens. This study was conducted
to clarify the relationships among feed efficiency traits and
metabolizable efficiency traits, and identify significant loci
and genes affecting metabolizable efficiency traits in fast-
growing white-feathered broiler chickens.

Materials and methods
Experimental birds
In the present study, the workflow for the experiment is
illustrated in Fig. 1, and all chickens were obtained from
the fast-growing white-feathered pure line B. Line B is a
synthetic line produced by Foshan Gaoming Xinguang
Agricultural and Animal Industrials Co., Ltd. (Foshan,
China), and it has been selected for high body weight
and growth rate traits for seven generations. In gener-
ation 6, a total of 189 male broiler breeders at 24 d of
age, which were produced in the same hatch from 68
sires and 127 dams in generation 5, were randomly se-
lected. They were housed in identical individual cages
and provided with water and feed ad libitum. Each day,
the amount of fresh feed provided was recorded indi-
vidually, and residual feed was recorded daily and re-
moved for an intervening period at 28 d of age. The
broilers were fed a common corn-soybean meal diet
until the end of the trial (42 d of age). The diet con-
tained 2,900 kcal/kg metabolic energy and 183 g/kg
crude protein, and detailed information about the diet is
summarized in Table 1. The birds were slaughtered at
43 d of age after a 12-h overnight fast to obtain records
of carcass traits, including abdominal fat weight (AbF).

Metabolism trial and chemical analysis
A metabolism trial was conducted on 189 male broilers
subjected to an adaptation period of 4 d followed by a
subsequent collection period from 28 to 42 d of age. A
total excreta collection method was used. During the
collection period, the individual body weight and total
feed intake were measured, and the daily (24 h) excreta
was collected in white enamel trays. Contaminating ma-
terials (e.g., feathers, scales, and debris) were carefully
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removed. Then a small amount of 10% hydrochloric acid
solution was sprayed to prevent nitrogen loss [14]. Ex-
creta were collected daily for a fixed period of time and
immediately placed in forced-air ventilation ovens at
65 °C for 24 h.
At the end of the collection period, dried excreta were

weighted, ground through a 40-mesh screen, and stored
in airtight plastic bags at − 20 °C for dry matter (DM),
gross energy (GE), and crude protein (CP) analyses. The
moisture content of the feed and excreta was removed
by drying in forced-ventilation ovens at 105 °C until a
constant weight was reached (AOAC method 934.01)
[15]. GE values were determined through bomb calorim-
etry with a Parr 6400 adiabatic calorimeter (Parr Instru-
ment Company, Illinois, USA), with benzoic acid used as

the standard. CP content in samples was determined
with the Kjeldahl method (AOAC method 984.13) using
a Foss Kjeltec 2300 semiautomatic analyzer (Foss Teca-
tor AB, Höganäs, Sweden) [15].

Phenotypic measurements
Seventeen traits were measured or calculated: body
weight at 28 d (BW28), BW42, average daily feed intake
(ADFI), average daily gain (ADG), FCR, RFI, DEW, gross
energy excretion (GEE), CPE, metabolizable dry matter
(MDM), AMEn, metabolizable crude protein (MCP), co-
efficients of MDM, AMEn, and MCP, AbF, and percent-
age of abdominal fat (AbP). The total feed intake for
each broiler was calculated by summing the feed con-
sumption during the test period, which was then used to
calculate the ADFI. The individual body weight gain was
calculated on the basis of BW28 and BW42, and was
then used to derive the ADG. The FCR was obtained by
using the total feed intake divided by the total weight
gain. For AMEn, 8.22 kcal/g of nitrogen was used as the
correction factor [16]. The coefficients of MDM, AMEn,
and MCP were calculated as input in feed minus output
in excreta, divided by input in feed and multiplied by
100. The AbP was calculated as the ratio of AbF to
BW42. The metabolic body weight at mid-test (MWT)
was calculated as the average of BW28 and BW42
(MBW), raised to the power of 0.75 (MBW0.75) for each
bird. RFI was computed as the difference between the
observed and predicted ADFI. The predicted ADFI was
calculated as:

ADFI ¼ μþ β1MWTþ β2ADGþ e

where μ represents the intercept, MWT represents the
metabolic body weight at mid-test. ADG represents the
average daily gain, β1 and β2 represent partial regression

Table 1 Ingredient and nutrient composition of the
experimental diet

Ingredients, % Nutrients composition

Corn 67.35 Metabolizable energy, kcal/kg 2,900

Soybean meal 28.00 Crude protein, % 18.30

Soybean oil 0.40 Arginine, % 1.14

Limestone 1.90 Lysine, % 1.07

Monocalcium phosphate 1.00 Methionine, % 0.47

Salt 0.40 Methionine + Cystine, % 0.77

Lysine 0.22 Threonine, % 0.73

Methionine 0.17 Tryptophan, % 0.24

Choline chloride 0.14 Calcium, % 1.01

Premix1 0.42 Available phosphorus, % 0.31

Total 100
1Premix supplied per kilogram of diet: vitamin A, 13,200 IU; vitamin D3, 5,000
IU; vitamin E, 60 IU; vitamin K3, 8.0 mg; thiamine, 4.0 mg; riboflavin, 12.0 mg;
pyridoxine, 12.0 mg; cobalamin, 0.4 mg; nicotinic acid, 80 mg; pantothenic acid,
24 mg; folic acid, 2.0 mg; biotin, 3.0 mg; iron, 70.0 mg; copper, 8.5 mg; zinc,
45.0 mg; manganese, 60.0 mg; iodine, 0.85 mg; selenium, 0.20 mg;
cobalt, 0.25 mg

Fig. 1 The workflow for the experiment in the current study
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coefficients, and e represents the residual. The estimated
e was taken as the measure of RFI.
Quality control of phenotypes was applied to RFI,

FCR, and the coefficients of MDM, AMEn, and MCP,
and data that deviated more than three standard devia-
tions from the mean were removed. Nine birds were ex-
cluded from the analysis, and the remaining 180 records
were available for further analyses.

Genotyping, imputation, and quality control
Genomic DNA was extracted from blood samples with
the phenol-chloroform method. The 189 broilers were
genotyped with the customized chicken 55 K SNP array
from Beijing Compass Biotechnology Co., Ltd. (Beijing,
China) [17]. To improve the accuracy of imputation, in
the following procedure we introduced a larger genotyp-
ing data for 3,449 broilers (1,926 males and 1,523 fe-
males) from three generations (generation 5, 6, and 7) of
line B using 55 K SNP arrays previously acquired by our
group.
For the target panel, a total of 3,638 broilers (2,115

males and 1,523 females) were used for genotype imput-
ation. Quality control criteria were applied to the target
panel: individual call rate ≥ 90%, SNP call rate ≥ 90%, and
minor allele frequency (MAF) ≥ 0.01. In addition, SNPs
located on the sex chromosomes were removed. Ultim-
ately, 41,856 autosome variants and 3,607 broilers (2,097
males and 1,510 females) remained for further analyses.
For the reference panel, 230 broilers (101 males and

129 females) in generation 7 were randomly selected
from 3,449 birds and re-sequenced with 150 bp paired-
end reads on an Illumina NovaSeq 6000 platform with
an average depth of approximately 10×1 L coverage. The
sequencing was performed by Zhejiang Annoroad Bio-
technology Co., Ltd. (Zhejiang, China). Variant calling
was performed according to a standardized bioinformat-
ics pipeline for all samples [18, 19]. Specifically, clean se-
quencing data were aligned to the chicken reference
genome (GRCg6a/galGal6; ftp://ftp.ncbi.nlm.nih.gov/ge-
nomes/all/GCF/000/002/315/GCF_000002315.6_GRCg6
a/) with the Burrows-Wheeler Aligner (BWA)-MEM al-
gorithm [20]. Then, PCR duplicates were removed and
local indel realignment and base-quality score recalibra-
tion were performed with the Genome Analysis Toolkit
(GATK version 3.5) [21]. Variant calling was then per-
formed via the HaplotypeCaller in GVCF mode with
joint genotyping on all samples. Finally, SNPs were fil-
tered with the GATK VariantFiltration protocol. The fil-
tering settings were as follows: variant confidence score
(QUAL) < 30.0, QualByDepth (QD) < 2.0, ReadPosRank-
Sum < − 8.0, total depth of coverage (DP) < 4.0, Fisher-
Strand (FS) > 60.0. SNPs on Gallus gallus chromosome
(GGA) 16 were omitted because there were fewer com-
mon SNPs between the target panel and the reference

panel. The sex chromosomes were also removed. In
addition, quality control of the reference panel was con-
ducted with the criteria of individual call rate ≥ 90%,
SNP call rate ≥ 90%, and MAF ≥ 0.01. After filtering, a
total of 12,377,431 autosome variants remained for the
230 sequenced birds.
Genotype imputation of the 55 K genotypes of the

broilers to the imputed whole-genome sequence (WGS)
level was performed with Beagle 5.0 [22]. Before imput-
ation, inconsistencies between the target panel and the
reference panel were checked with conform-gt software
(http://faculty.washington.edu/browning/conform-gt.
html). Subsequently, 40,342 autosomal SNPs from the
target panel were retained. One factor, the effective popu-
lation size [23], affects the accuracy of genotype imput-
ation, because it is much smaller in livestock than in
humans [24]. The effect of this factor on imputation from
55K SNP chip data to WGS data was investigated to
achieve higher accuracy. The microchromosome GGA28
was selected to improve computational efficiency.
The reference panel was pre-phased with Beagle 5.0

(default settings) [22]. Then the imputation from 55 K to
WGS level was also executed in Beagle 5.0 with default
parameters, except for setting the effective population
size to 61,500 instead of the default of 1 million (Add-
itional file 1: Fig. S1). To assess the accuracy of imput-
ation from the target panel to the reference panel, we
assessed the genotype concordance rate and allelic R2

measures for each variant. The genotype concordance
rate was calculated by comparing the imputed and real ge-
notypes for the 230 birds analyzed with both panels. The
allelic R2 was calculated as the estimated squared correl-
ation of the imputed sequence genotype on the true se-
quence, which was given by Beagle 5.0. We applied strict
post-imputation filtering criteria per SNP: allelic R2 ≥ 0.9
and MAF ≥ 0.05. Finally, 1,279,346 autosomal variants and
180 samples remained for the GWAS analyses (Add-
itional file 2: Table S1).

Estimation of phenotypic correlation and genome-wide
association study
Pairwise phenotypic correlations of two feed efficiency
traits (RFI and FCR) with metabolizable efficiency traits
were analyzed in the Hmisc R package. To better under-
stand the relationships between RFI and metabolizable
efficiency traits, the lowest and highest 20% of the RFI
(low-RFI and high-RFI) birds were selected from 180
chickens and compared with Tukey’s test in SAS 9.4
(SAS Institute, NC) [25]. P < 0.05 (*) or P < 0.01 (**) was
considered significant.
The GWAS for metabolizable efficiency traits was per-

formed using the univariate linear mixed model (LMM) im-
plemented in GEMMA version 0.98.1 software (https://
github.com/genetics-statistics/GEMMA/releases) [26]. The
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genotype was set as the fixed factor and the additive poly-
genic effect as the random effect. Except for the coefficients
of MDM, AMEn, and MCP, BW28 was considered as a co-
variate in the LMM for other traits. The statistical model
was as follows:

y ¼ Wαþ xβþ uþ ϵ;u � MVNn 0; λτ−1K
� �

; ϵ � MVNn 0; τ−1In
� �

;

where y represents the vector of phenotypic values; W
represents the vector of covariates, including a column
of 1 s; α represents the vector of the corresponding coef-
ficients including the intercept; x represents the vector
of marker genotypes; β represents the effect size of the
marker; u represents the vector of random polygenic ef-
fects; ϵ represents the vector of errors; τ−1 represents the
variance of the residual errors; λ represents the ratio be-
tween the two variance components; K represents the
centered relatedness matrix estimated from 1,279,346
variants and In represents the identity matrix. MVNn

represents the n-dimensional multivariate normal distri-
bution. The Wald test was used as a criterion to select
SNPs associated with metabolizable efficiency traits.
The genome-wide significance was assessed using the

simple M method [27], to infer effective independent
tests. A total of 85,247 independent tests over the entire
chromosomal SNPs were obtained, and then genome-
wide significant and suggestive thresholds were set to
5.87e-7 (0.05/85,247) and 1.17e-5(1/85,247), respectively.
Manhattan and Q-Q plots were constructed for each
trait by the qqman package (https://cran.r-project.org/
web/packages/ qqman/) in R (version 3.6.0). Linkage dis-
equilibrium (LD) blocks of target regions were performed
using the Haploview version 4.2 software [28]. SNP posi-
tions were updated according to the newest release from
UCSC (GRCg6a/galGal6 genome version). Identification of
the closest genes to genome-wide significant and suggestive
variants was obtained using UCSC annotation of the
GRCg6a/galGal6 genome version (http://genome-asia.ucsc.
edu/cgi-bin/hgGateway?hgsid=472768848_
otkBtCHKhHMTV1xrxHuq737iivJ1). Boxplots were pro-
duced by the ggplot2 package in R (version 3.6.0).

Results
Descriptive statistics of traits
We determined the descriptive statistics for the traits as-
sociated with growth, feed efficiency, and metabolizable
efficiency (Table 2). In this study, the ranges of RFI were
− 16.72 g/d to 17.03 g/d, and the average FCR was 1.89
during the growing period from 28 to 42 d of age. The
average BW28 was 1,254.67 g and reached 2,499.08 g of
BW42. Birds digested an average of 167.95 g/d of feed,
absorbed approximately 103.35 g/d of MDM, produced
approximately 88.89 g/d of ADG, and excreted nearly
40.65 g/d of DEW. The coefficients of MDM, AMEn, and

MCP averaged 71.80%, 71.42%, and 60.81%, respectively.
The coefficients of variation of these traits in the popula-
tion ranged from 1.36% to 33.96%.

Phenotypic correlation analysis
Pearson correlation coefficients for feed efficiency traits
(RFI and FCR) with other traits are shown in Table 3
and Additional file 3: Table S2. The positive phenotypic
correlations of RFI with FCR, ADFI, DEW, GEE, CPE,
MDM, AMEn, AbF, and AbP were moderate to high,
ranging from 0.29 to 0.76 (P < 0.01). RFI showed a
low correlation with MCP (r = 0.18; P < 0.05) and the
coefficient of MDM (r = − 0.17; P < 0.05). RFI was
phenotypically independent of BW28, BW42, and
ADG (r = 0.00; P > 0.05). FCR was positively corre-
lated with BW28 (r = 0.28; P < 0.01) and CPE (r =
0.18; P < 0.05), and negatively correlated with BW42,
ADG, and MCP, ranging from − 0.49 to − 0.20
(P < 0.01). The relationships of FCR with ADFI,
DEW, GEE, MDM, AMEn, AbF, and AbP were close
to zero (P > 0.05). The same negative relationships
existed between the coefficient of MCP and the two
feed efficiency traits (RFI and FCR). Poor phenotypic
correlations were found between the coefficient of
AMEn and the two traits (RFI and FCR) (P > 0.05).

Table 2 Descriptive statistics for growth, feed efficiency, and
metabolizable efficiency traits of broilers

Traits1 N Mean SD Min Max CV, %

RFI, g/d 180 0.00 5.69 −16.72 17.03 –

FCR, g:g 180 1.89 0.09 1.62 2.23 4.59

ADFI, g/d 180 167.95 14.46 119.07 198.36 8.61

BW28, g 180 1254.67 91.02 970.00 1530.00 7.25

BW42, g 180 2499.08 166.43 2020.00 2855.00 6.66

ADG, g/d 180 88.89 8.55 61.43 107.86 9.61

DEW, g/d 180 40.65 3.84 29.24 50.20 9.45

GEE, kcal/d 180 155.63 14.84 110.07 196.19 9.54

CPE, g/d 180 11.90 1.40 8.33 16.41 11.78

MDM, g/d 180 103.35 9.04 72.84 123.29 8.75

AMEn, kcal/d 180 448.94 39.37 317.20 532.27 8.77

MCP, g/d 180 18.38 1.64 12.84 22.82 8.91

Coefficient of MDM, % 180 71.80 1.09 68.67 75.71 1.52

Coefficient of AMEn, % 180 71.42 0.97 68.34 74.57 1.36

Coefficient of MCP, % 180 60.81 2.57 53.15 67.12 4.23

AbF, g 180 30.66 10.41 7.70 61.90 33.96

AbP, % 180 1.22 0.39 0.38 2.27 32.12
1RFI residual feed intake; FCR feed conversion ratio; ADFI average daily feed
intake; BW28 body weight at 28 d of age; BW42 body weight at 42 d of age;
ADG average daily gain; DEW dry excreta weight; GEE gross energy excretion;
CPE crude protein excretion; MDM metabolizable dry matter; AMEn nitrogen
corrected apparent metabolizable energy; MCP metabolizable crude protein;
AbF weight of abdominal fat; AbP percentage of abdominal fat; CV coefficient
of variation
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Phenotypic differences between the low- and high-RFI
broilers
Descriptive statistics for growth, feed efficiency, and
metabolizable efficiency traits compared between the
high- and the low-RFI broiler chickens are presented in
Table 4. No significant difference was observed between
high-RFI birds and low-RFI birds for BW28, BW42,
ADG, MCP, and the coefficient of AMEn (P > 0.05). RFI
and FCR were significantly lower for low-RFI birds than
for high-RFI birds (P < 0.01). ADFI, DEW, GEE, CPE,
MDM, AMEn, and AbP were 7.79%, 9.70%, 8.59%,
14.09%, 7.03%, 7.73%, and 20.90% lower, respectively, in
low-RFI birds than high-RFI birds (P < 0.01). AbF was
18.97% lower in low-RFI chickens than high-RFI chickens
(P < 0.05). Interestingly, the coefficients of MDM and
MCP were greater for low-RFI birds than for high-RFI
birds (P < 0.01).

Imputation accuracy
The average imputation accuracies of different effective
population sizes on GGA28 are shown in Additional file
1: Fig. S1. As the effective population size increased from
50 to the default of 1 million, the genotype concordance
rate slightly increased first and then decreased. The ef-
fective population size was set as 61,500 to obtain the
highest accuracy of imputation.

The number of SNPs in different MAF classes for dif-
ferent datasets are shown in Fig. 2a. In general, the MAF
distribution from the four datasets showed the same
trend, in which the number of SNPs per class slightly de-
clined with increasing of MAF. Consistency was observed
in the distribution of SNPs between 55 K array data and
imputed WGS data after post-imputation filtering, and be-
tween WGS data and imputed WGS data after imputation
(MAF ≥ 0.05). In addition, the MAF distribution based on
55 K array data was not significantly different from that
based on WGS data (χ2-test, P = 0.15).
To evaluate the imputation accuracy for imputed

WGS data for 3,607 birds after imputation in detail, we
determined the average genotype concordance rate and
R2 according to the MAF and chromosome, as shown in
Fig. 2b, c. With increasing MAF, the genotype concord-
ance rate decreased from 0.97 to approximately 0.69,
whereas R2 increased from 0.12 to 0.75. At the chromo-
some level, the genotype concordance rate slightly

Table 3 Pearson correlation coefficients between feed
efficiency traits with growth and metabolizable efficiency traits

Traits1 RFI FCR

FCR 0.76** –

ADFI 0.39** −0.06

BW28 0.00 0.28**

BW42 0.00 −0.20**

ADG 0.00 −0.49**

DEW 0.43** 0.00

GEE 0.39** −0.03

CPE 0.52** 0.18*

MDM 0.36** −0.08

AMEn 0.39** −0.05

MCP 0.18* −0.25**

Coefficient of MDM −0.17* −0.14

Coefficient of AMEn −0.01 0.02

Coefficient of MCP −0.41** −0.41**

AbF 0.29** 0.05

AbP 0.31** 0.09
1RFI residual feed intake; FCR feed conversion ratio; ADFI average daily feed
intake; BW28 body weight at 28 d of age; BW42 body weight at 42 d of age;
ADG average daily gain; DEW dry excreta weight; GEE gross energy excretion;
CPE crude protein excretion; MDM metabolizable dry matter; AMEn nitrogen
corrected apparent metabolizable energy; MCP metabolizable crude protein;
AbF weight of abdominal fat; AbP percentage of abdominal fat;
*P < 0.05, **P < 0.01

Table 4 Means (±SD) for growth, feed efficiency, and
metabolizable efficiency traits compared between the high- and
low-RFI broiler chickens1

Traits2 Low-RFI High-RFI Low-RFI /High-
RFI, %3

RFI, g/d −7.52 ± 2.71 8.17 ± 3.31** − 192.04

FCR, g:g 1.81 ± 0.06 1.99 ± 0.08** −9.05

ADFI, g/d 161.39 ± 13.13 175.02 ± 14.33** −7.79

BW28, g 1261.39 ± 112.43 1245.28 ± 81.29 1.29

BW42, g 2513.06 ± 174.62 2481.94 ± 166.53 1.25

ADG, g/d 89.40 ± 7.31 88.33 ± 9.53 1.21

DEW, g/d 38.63 ± 3.26 42.78 ± 4.04** −9.70

GEE, kcal/d 148.96 ± 12.91 162.95 ± 15.29** −8.59

CPE, g/d 11.10 ± 1.19 12.92 ± 1.40** −14.09

MDM, g/d 99.74 ± 8.31 107.28 ± 8.53** −7.03

AMEn, kcal/d 431.56 ± 35.86 467.73 ± 37.64** −7.73

MCP, g/d 18.00 ± 1.43 18.64 ± 1.51 −3.43

Coefficient of
MDM, %

72.11 ± 0.86** 71.52 ± 0.89 0.82

Coefficient of
AMEn, %

71.44 ± 0.80 71.40 ± 0.73 0.06

Coefficient of
MCP, %

61.97 ± 1.93** 59.17 ± 2.21 4.73

AbF, g 27.03 ± 9.5 33.36 ± 11.4* −18.97

AbP, % 1.06 ± 0.34 1.34 ± 0.43** −20.90
1low-RFI from male broilers with the 20% lowest RFI, n = 36 and high-RFI with
the 20% highest RFI, n = 36; *P < 0.05, **P < 0.01
2RFI residual feed intake; FCR feed conversion ratio; ADFI average daily feed
intake; BW28 body weight at 28 d of age; BW42 body weight at 42 d of age;
ADG average daily gain; DEW dry excreta weight; GEE gross energy excretion;
CPE, crude protein excretion; MDM metabolizable dry matter; AMEn nitrogen
corrected apparent metabolizable energy; MCP metabolizable crude protein;
AbF weight of abdominal fat; AbP percentage of abdominal fat
3Relative difference between low-RFI and high-RFI calculated as 100×(low-RFI
mean/high-RFI mean − 1)
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fluctuated between 0.81 and 0.90, whereas R2 fluctuated
between 0.20 and 0.69. The distribution of SNPs used in
the GWAS analyses after post-imputation filtering is
summarized in Additional file 2: Table S1. The geno-
typic concordance rate and R2 reached an average of
0.924 and 0.937, respectively.

Genome-wide association study of metabolizable
efficiency traits
We focused on analysis of metabolizable efficiency traits
in the current study. The Manhattan and quantile-
quantile (Q-Q) plots are presented in Figs. 3, 4 and 5,
and Table 5.
For DEW and GEE, the same 95.17-kb region in

GGA26 (4.26–4.36Mb) was identified, which contained
61 significant SNPs. LD analysis showed that one high
LD block was detected in this region (Fig. 6a). The most
significant SNP in this region, rs14300817, had a nega-
tive effect (β < 0) of DEW and GEE, respectively. These
SNPs on GGA26 were located either within or near the
nearest genes, including chromosome 26 C6orf106
homolog (C26H6orf106).
For MDM and AMEn, four significant SNPs were clus-

tered within a 120.13-kb region (GGA1: 93.26–93.38
Mb). The region with one strong block contained four
significant SNPs (Additional file 4: Fig. S2a). The top
SNP in this region, rs732655996, was located near a
novel gene, LOC396098.

For the coefficients of MDM and AMEn, a common
691.25-kb region (GGA5: 18.31–19.00Mb) was de-
tected, which contained 34 and 53 significant SNPs,
respectively. LD analysis revealed one strong block in
this significant region (Fig. 7a). The top SNP for the
coefficient of MDM, rs741135348, was located in the
17th intron of SH3 and multiple ankyrin repeat do-
mains 2 (SHANK2). The SNP rs315854959 was lo-
cated near the ETS homologous factor (EHF). In
addition, four significant SNPs associated with the co-
efficient of MDM were detected, which clustered
within a 0.38-kb region in GGA2 (103.48Mb). These
SNPs were located near histamine receptor H3-like
(HRH3L).
For the coefficient of MCP, 251 significant SNPs were

located in GGA2 and GGA14. The 45 significant SNPs
were clustered within a 74.62-kb region (GGA2: 103.45–
103.53Mb), and four of these SNPs were the same as
those found for the coefficient of MDM; 206 SNPs were
clustered within a 690.50-kb region (GGA14: 10.02–
10.71Mb). Extremely strong LD status was found in the
two regions (Fig. 8a and Additional file 5: Fig. S3a). The
top variant on GGA2, rs15137100, was located near the
HRH3L gene.
The effects of the most significant SNPs resulted in

observed differences in the DEW, GEE, MDM, AMEn,
and coefficients of MDM, AMEn, and MCP, as shown
in Figs. 6, 7 and 8, and S2–S3. These results indicate

Fig. 2 Distribution of MAF and imputation accuracy. (a) Percentage of SNPs in each MAF class for 55 K array data for 3607 birds, WGS data for
230 birds, and imputed WGS data for 3607 birds after imputation and post-imputation filtering. Post-imputation SNP filtering criteria: allelic R2 ≥
0.9 and MAF≥ 0.05. The imputation accuracy for imputed WGS data for 3607 birds after imputation according to MAF (b) and per chromosome
(c) is also shown. MAF represents minor allele frequency
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Fig. 4 Manhattan and quantile-quantile plots of GWAS for metabolizable traits. Each dot represents a SNP in the dataset. The horizontal red and
blue lines indicate the thresholds for genome-wide significance (P value = 5.87e-7) and suggestive significance (P value = 1.17e-5), respectively.
MDM, AMEn, and MCP represent metabolizable dry matter, nitrogen corrected apparent metabolizable energy, and metabolizable crude
protein, respectively

Fig. 3 Manhattan and quantile-quantile plots of GWAS for excreta traits. Each dot represents a SNP in the dataset. The horizontal red and blue
lines indicate the thresholds for genome-wide significance (P value = 5.87e-7) and suggestive significance (P value = 1.17e-5), respectively. DEW,
GEE, and CPE represent dry excreta weight, gross energy excretion, and crude protein excretion, respectively
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that the lowest and highest phenotypic values belonged to
homozygotes, whereas the intermediate values belonged to
heterozygotes. Broilers with homozygous GG (rs14300817)
excreted more DEW and GEE than did those with homozy-
gous AA (Fig. 6b, c). MDM and AMEn were higher in the
homozygous CC (rs732655996) than the homozygous TT

broilers (Additional file 4: Fig. S2b–c). The coefficients of
MDM, AMEn, and MCP were higher for broilers with
homozygous CC (rs741135348), AA (rs315854959), GG
(rs740788104), TT (rs15137100), and GG (rs738484580)
than AA, GG, AA, CC, and AA (Figs. 7 and 8b–c, and
Additional file 5: Fig. S3b).

Fig. 5 Manhattan and quantile-quantile plots of GWAS for the coefficients of metabolizable traits. Each dot represents a SNP in the dataset. The
horizontal red and blue lines indicate the thresholds for genome-wide significance (P value = 5.87e-7) and suggestive significance (P value =
1.17e-5), respectively. The coefficients of MDM, AMEn, and MCP represent the coefficients of metabolizable dry matter, nitrogen corrected
apparent metabolizable energy, and metabolizable crude protein, respectively

Table 5 Overview of the significant QTLs associated with metabolizable efficiency traits in broilers

Traita GGAb Base-pair region nSNP Lead SNP
(rsname)

Base pair Alleles MAF βc P-value Candidate/
nearest
gene

Distance,
kbdStart End

DEW 26 4,260,169 4,355,341 61 rs14300817 4,342,629 G/A 0.16 −2.66 3.91E-07 C26H6orf106 Exon 5

GEE 26 4,260,169 4,355,341 61 rs14300817 4,342,629 G/A 0.16 − 10.19 4.86E-07 C26H6orf106 Exon 5

MDM 1 93,262,479 93,382,604 4 rs732655996 93,382,604 C/T 0.07 −7.85 1.37E-06 LOC396098 D 35.93

AMEn 1 93,262,479 93,382,604 4 rs732655996 93,382,604 C/T 0.07 −34.04 1.53E-06 LOC396098 D 35.93

Coefficient of MDM 2 103,477,795 103,478,174 4 rs740788104 103,477,977 G/A 0.11 −0.77 3.27E-06 HRH3L D 63.26

Coefficient of MDM 5 18,309,115 19,000,369 34 rs741135348 18,309,115 C/A 0.17 −0.73 2.17E-06 SHANK2 Intron 17

Coefficient of AMEn 5 18,309,115 19,000,369 53 rs315854959 18,992,840 A/G 0.19 −0.68 4.04E-07 EHF U 5.96

Coefficient of MCP 2 103,454,037 103,528,655 45 rs15137100 103,454,067 T/C 0.08 −2.36 6.52E-07 HRH3L D 39.35

Coefficient of MCP 14 10,016,503 10,707,002 206 rs738484580 10,067,812 G/A 0.13 −1.75 6.84E-06 NA NA
aDEW dry excreta weight; GEE gross energy excretion; MDM metabolizable dry matter; AMEn nitrogen corrected apparent metabolizable energy; MCP
metabolizable crude protein
bGallus gallus chromosome
cAllele substitution effect was the additive effect estimated by GEMMA
dU and D indicate that the SNP is upstream and downstream of a gene, respectively
eNA represents not available
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Discussion
Phenotypic analysis
Metabolizable efficiency in classical animal nutrition can
be used not only to evaluate the nutrient values of diets
but also to directly account for individuals’ abilities to
digest and absorb nutrients. For poultry, the index and
total collection methods have been widely used for the
determination of metabolizable efficiency. Although
these methods involve laborious quantitative records of
feed intake and output, the total collection method was
chosen in the current study because it is more accurate,
precise, and reproducible than the index method [5, 29].

To date there is no ideal inert indicator that has a uni-
form distribution in the diet and can be easily chemically
determined [5]. In our study, feed intake and excreta
were recorded for a 14-d test period consistent with
poultry production, a period generally longer than those
in previous studies, which have used a 2-d to 5-d period
[10, 29, 30]. The coefficients of AMEn and MCP ranged
from 68.34% to 74.57% (mean 71.42%) and from 53.15%
to 67.12% (mean 60.81%), respectively, in agreement
with findings by Wu et al. [31], who found that the coef-
ficients of AMEn and MCP averaged 73% and 62% with
ranges of 66–80% and 51–71%, respectively, in Ross 308

Fig. 6 Association results of the candidate region on GGA26 (4.26–4.36 Mb) for DEW and GEE. (a) Linkage disequilibrium (LD) analysis of the 61
significant SNPs on GGA26. (b) Box plot for the effect of the SNP rs14300817 on DEW. (c) Box plot for the effect of the SNP rs14300817 on GEE.
DEW and GEE represent dry excreta weight and gross energy excretion, respectively
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broilers fed 19 diets formulated with varying nutrient
composition. Our results showed significant phenotypic
correlations between growth traits (BW28, BW42, and
ADG) and FCR in juvenile broilers, but not RFI, which
have also been observed in slow-growing chickens [32]
and ducks [33]. Therefore, selection for lower FCR fo-
cused on improving growth performance without de-
creasing feed intake.

Poultry excreta has always been of concern because it
is associated with environmental pollution. Nutritional
techniques such as reduction of dietary CP content have
been used to decrease pollution, but these techniques
have some undesirable effects on performance and appe-
tite [34]. Therefore, genetic solutions should be deter-
mined. The heritability values of excretion traits from 17
to 23 d of age were low to moderate and ranged from

Fig. 7 Association results of the candidate region on GGA5 (18.31–19.00 Mb) with the coefficients of MDM and AMEn. (a) Linkage disequilibrium
(LD) analysis of the 53 significant SNPs on GGA5. (b) Box plot for the effect of the SNP rs741135348 on the coefficient of MDM. (c) Box plot for
the effect of the SNP rs315854959 on the coefficient of AMEn. The coefficients of MDM and AMEn represent the coefficients of metabolizable dry
matter and nitrogen corrected apparent metabolizable energy, respectively
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0.09 to 0.30 [9]. Tran et al. [10] detected nine QTLs sig-
nificantly associated with metabolizable efficiency traits
and selection for these traits should decrease excreta. In
the current study, RFI presented a favorable phenotypic
correlation with ADFI, DEW, GEE, CPE, MDM, and
AMEn with moderate or high values, whereas weak cor-
relations (almost zero) were observed between FCR and

these traits. Different results for correlations between
AMEn and the two traits (RFI and FCR) have been re-
ported by Mignon-Grasteau et al. [7] and de Verdal
et al. [30]; these studies used birds of the D+ and D-
lines and found strongly negative genetic correlations
between AMEn (kcal/kg) with FCR and RFI. Mignon-
Grasteau et al. [35] estimated the heritability for AMEn

Fig. 8 Association results of the candidate region on GGA2 (103.45–103.53 Mb) with the coefficients of MDM and MCP. (a) Linkage disequilibrium
(LD) analysis of the 45 significant SNPs on GGA2. (b) Box plot for the effect of the SNP rs740788104 on the coefficient of MDM. (c) Box plot for
the effect of the SNP rs15137100 on the coefficient of MCP. The coefficients of MDM and MCP represent the coefficients of metabolizable dry
matter and metabolizable crude protein, respectively
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on a corn-based diet and AMEn on a wheat-based diet
to be 0.15 and 0.32, respectively, thereby indicating that
the variability in the heritability of AMEn is largely influ-
enced by diet composition. Thus, a reasonable explan-
ation for the differences is that AMEn is an extremely
complex trait affected by multiple factors including diet
composition, test period, and calculation methods.
In addition, low-RFI birds had significantly lower ADFI,

DEW, GEE, CPE, MDM, and AMEn, and higher the coef-
ficients of MDM and MCP than the high-RFI birds. Simi-
lar results for low-RFI and high-RFI animals have been
observed by Metzler-Zebeli et al. [36], who reported that
low-RFI male broilers have lower DEW and CPE than
high-RFI male broilers. Furthermore, Harris et al. [37] re-
ported that low-RFI pigs have higher digestibility values
for DM (87.3% vs. 85.9%), nitrogen (88.3% vs. 86.1%), and
GE (86.9% vs. 85.4%) than high-RFI pigs. Mauch et al. [38]
used divergent RFI lines and found that under a low-
energy, high-fiber diet, low RFI pigs have greater digest-
ibility of DM, GE, nitrogen, and neutral detergent fiber
(7%, 7%, 10%, and 32%) than high RFI pigs (P < 0.05).
Excess AbF deposition is undesirable in the poultry in-

dustry because AbF is considered a waste product [39].
In the current study, AbF and AbP had moderate, posi-
tive phenotypic correlations with RFI but not with FCR.
This is in agreement with findings from Wen et al. [32],
in which abdominal fat had a moderate positive pheno-
typic correlation with RFI and not with FCR in slower
growing chickens. In addition, we found that the low-
RFI birds had significantly lower AbF and AbP than the
high-RFI birds. This result suggests that selection for
lower RFI animals could decrease fat deposition in grow-
ing animals.

Genotype imputation
Genotype imputation has been widely used in GWAS to
boost power [40]. This method can aid in identifying
many novel SNPs and QTLs associated with phenotypes
of interest. In previous GWAS-based studies, imputation
from low density SNP chip genotypes to the WGS level
had been implemented in chickens [41], pigs [42], and
cattle [43]. Imputed genotypes with sufficiently high im-
putation accuracy are necessary for reliable results in
follow-up analyses such as GWAS. In the current study,
the genotypic concordance rate and R2 between imputed
and true genotypes reached an average of 0.924 and
0.937, respectively, values that were higher than those
reported by Huang et al. [41], who used sequence data
imputed from a SNP array for GWAS in chickens and
achieved an average imputation accuracy of 0.914. Hayes
et al. [44] reported that the accuracy of mimic imput-
ation from the 50 K panel to WGS was 83–93% in
Beagle (version 3) for sheep breeds. Ni et al. [45] re-
ported that the post-imputation filtering criterion for

imputation accuracy should be 0.80 to ensure the high
quality of the imputed WGS data.

Genome-wide association study of metabolizable
efficiency traits
Loci and genes for DEW, GEE, MDM, and AMEn
The genomic region of 95.17 kb on GGA26 (4.26–4.36
Mb) was detected to be associated with DEW and GEE.
Previous studies have reported QTLs on GGA26 for DEW
(2.4–3.2Mb) and excreta nitrogen to phosphorus ratio
(3.2–4.2Mb) in an F2 resource population of medium-
growth broilers [11]. The most significant SNP associated
with DEW and GEE was located in the fifth exon of the
C26H6orf106 gene. Its homolog, C6orf106, has been inves-
tigated for activation of extracellular-signal-regulated kin-
ase signaling pathways to accelerate cell proliferation [46].
A genomic region (GGA1: 93.26–93.38Mb) was found

to be associated with MDM and AMEn, and has also
been found to be included in a feed efficiency QTL
(GGA1: 90.35–123.03Mb) in a meat-type × egg-type re-
source population by Hansen et al. [47]. The highly sig-
nificant SNP is located in the unannotated gene
LOC396098, which has no known function in chickens.

Loci and genes associated with the coefficients of MDM,
AMEn, and MCP
We detected one important QTL region (GGA5: 18.31–
19.00Mb) associated with the coefficients of MDM and
AMEn, which was not previously reported. The top
SNPs associated with DEW and GEE were within the
SHANK2 and EHF genes. SHANK2 (also known as Pro-
SAP1) is the second member of the Shank protein family
and is involved in neurodevelopmental and psychiatric
disorders [48]. SHANK2 plays a key role in regulating
transepithelial salt and water transport by modulating
Na+/H+ exchanger 3 (NHE3) expression and activity in
epithelial cells, including those in the gastrointestinal
tract [49]. SHANK2-knockout mice show hyperactivity
and repetitive behaviors [50]. EHF is a member of the
epithelium-specific ETS transcription factor family,
which is highly expressed in multiple epithelial cell types
including intestinal epithelium [51]. EHF plays an im-
portant role in the regulation of epidermal proliferation
and differentiation [52].
Two novel regions (GGA2: 103.45–103.53 Mb and

GGA14: 10.02–10.71 Mb) associated with the coeffi-
cient of MCP were detected and the top variant was
located near the HRH3L gene. Very few studies on
HRH3L are available in the literature. HRH3 is an
autoreceptor on numerous neurons that inhibits the
synthesis and release of histamine [53, 54]. Previous
studies have shown that HRH3 negatively regulates
food intake in rodents, in a manner independent of
its histaminergic tone modulation [55].
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Conclusions
In summary, selection for low RFI significantly decreased
chicken feed intake, excreta output, and abdominal fat
deposition, and increased nutrient digestibility without
changing weight gain. In addition, five novel QTL re-
gions involved in the control of metabolizable efficiency
in chickens were identified. These results, obtained from
both nutritional and genetic approaches, should facilitate
novel insights into improving feed efficiency in poultry
and other species.
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