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Abstract

Background: Impaired fertility in cattle limits the efficiency of livestock production systems. Unraveling the genetic
architecture of fertility traits would facilitate their improvement by selection. In this study, we characterized SNP
chip haplotypes at QTL blocks then used whole-genome sequencing to fine map genomic regions associated with
reproduction in a population of Nellore (Bos indicus) heifers.

Methods: The dataset comprised of 1337 heifers genotyped using a GeneSeek® Genomic Profiler panel (74677
SNPs), representing the daughters from 78 sires. After performing marker quality control, 64800 SNPs were retained.
Haplotypes carried by each sire at six previously identified QTL on BTAs 5, 14 and 18 for heifer pregnancy and BTAs
8, 11 and 22 for antral follicle count were constructed using findhap software. The significance of the contrasts
between the effects of every two paternally-inherited haplotype alleles were used to identify sires that were
heterozygous at each QTL. Whole-genome sequencing data localized to the haplotypes from six sires and 20 other
ancestors were used to identify sequence variants that were concordant with the haplotype contrasts. Enrichment
analyses were applied to these variants using KEGG and MeSH libraries.

Results: A total of six (BTA 5), six (BTA 14) and five (BTA 18) sires were heterozygous for heifer pregnancy QTL
whereas six (BTA 8), fourteen (BTA 11), and five (BTA 22) sires were heterozygous for number of antral follicles’ QTL.
Due to inadequate representation of many haplotype alleles in the sequenced animals, fine mapping analysis could
only be reliably performed for the QTL on BTA 5 and 14, which had 641 and 3733 concordant candidate sequence
variants, respectively. The KEGG “Circadian rhythm” and “Neurotrophin signaling pathway” were significantly
associated with the genes in the QTL on BTA 5 whereas 32 MeSH terms were associated with the QTL on BTA 14.
Among the concordant sequence variants, 0.2% and 0.3% were classified as missense variants for BTAs 5 and 14,
respectively, highlighting the genes MTERF2, RTMB, ENSBTAG00000037306 (miRNA), ENSBTAG00000040351, PRKDC,
and RGS20. The potential causal mutations found in the present study were associated with biological processes
such as oocyte maturation, embryo development, placenta development and response to reproductive hormones.
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Conclusions: The identification of heterozygous sires by positionally phasing SNP chip data and contrasting
haplotype effects for previously detected QTL can be used for fine mapping to identify potential causal mutations
and candidate genes. Genomic variants on genes MTERF2, RTBC, miRNA ENSBTAG00000037306,
ENSBTAG00000040351, PRKDC, and RGS20, which are known to have influence on reproductive biological processes,
were detected.
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Background
Fertility is a major determinant of female reproductive
efficiency, particularly in Zebu (Bos indicus) cattle, where
heifers take longer to reach puberty compared to Tau-
rine (Bos taurus) animals [1, 2]. Improvements in repro-
ductive rates can increase lifetime productivity, increase
the number of animals that can be harvested for meat,
reduce the number of replacement females that must be
retained, and collectively increasing whole system profit-
ability [3]. Direct assessment of fertility through compre-
hensive phenotypic observation is often a difficult task
[4], whereas indicator traits of fertility, such as number
of follicles, could allow for the collection of larger vol-
umes of reproductive data, resulting in more reliable es-
timation of breeding values for fertility traits, facilitating
selection [5].
Advances in genomic technologies have led to the

identification of thousands of DNA markers (single nu-
cleotide polymorphisms – SNPs) spread across the gen-
ome, which can be rapidly and inexpensively genotyped
[6]. Such SNP information is commonly reported as
unphased genotypes, which means that it is not immedi-
ately apparent which heterozygous allele was paternally
or maternally inherited. When a process of phasing is
performed with the genotype data, the unobserved hap-
lotypes can be reconstructed. Fine mapping of haplo-
types that span QTL regions can be performed to detect
possible causative mutations on traits of interest [7].
Haplotype blocks (haploblock) result from the joint inher-

itance of nearby loci without the occurrence of recombin-
ation events within blocks. At population level, there are
many possible combinations of alleles at nearby loci and
therefore many potential alternative haplotypes. Haplotype
alleles may exhibit major effects on animal performance,
often being associated with traits of economic interest [8, 9].
Knowledge of the haplotypes straddling a QTL in half-sib
families can be used to segregate offspring of parents that
are heterozygous for the QTL in that specific genomic re-
gion [10].
A deeper understanding of the effects of haplotype al-

leles on target phenotypes can be achieved by determin-
ing the causal quantitative trait nucleotides (QTN), i.e.
polymorphisms that explain the effect of a QTL. With
the advent of whole-genome sequencing technology,

tens of thousands of base pairs that are positional candi-
dates for the QTL can be readily compared between in-
dividuals known to be segregating the QTL [11].
Currently only a small number of QTN that affect poly-
genic traits have been identified [12]. Using causative
QTN rather than SNP markers has the potential to im-
prove the accuracy of genomic selection and aid in eluci-
dating the biological mechanism affecting variation on a
trait [13–15].
In this study, we phase genotypes to reconstruct hap-

lotypes in regions of previously reported QTL associated
with heifer pregnancy (HP) or number of antral follicles
(NF) in a Nellore cattle population. We contrast the two
haplotype alleles carried by each sire at each QTL to de-
termine those sires that are segregating the QTL effects
and therefore segregating the causal mutation. Positional
whole-genome sequence data were then used to identify
those sequence variants that were concordant with the
QTL segregation status.

Material and methods
Dataset
The dataset used for this study was previously described
by Oliveira Júnior et al. [16], and consisted of HP re-
cords on 1337 Nellore heifers, with a subset of 940 of
these animals also being measured for NF. Both traits
were measured either using transrectal ultrasound or
palpation 40 days after insemination. Heifer pregnancy
was a binary trait, being analyzed using a threshold
model after assigning a value of 1 (success) to heifers
that were diagnosed pregnant and 0 (failure) to those
with a negative (not pregnant) diagnosis. The NF was a
count of all visible follicles (≥3 mm of diameter) in both
ovaries on day 4 of the synchronization protocol [16].
The animals were raised in three separate herds, with
the heifers being an average age of 16 months old when
phenotypes were collected.
The 1337 heifers were genotyped on a GGP Bos indi-

cus HD array (74677 SNPs), which is a subset of the
777962 SNPs from the Illumina® BovineHD BeadChip,
chosen for being particularly informative in Bos indicus
cattle. The heifers were the offspring from 78 sires,
among which 42 of these were previously genotyped
using the BovineHD BeadChip. The sire genotypes were
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reduced to the same filtered set of markers that passed
quality control for the heifers (64800 SNPs).
The genotypes of sire-offspring pairs as recorded in

the pedigree were tested for opposite homozygosity
using FImpute 2.2 [17] to detect pedigree errors consid-
ering a Mendelian error rate threshold of 0.1%. The sire
recorded in the pedigree was set to missing when a pedi-
gree error was detected.
Contemporary groups (CG), that represented the

group of animals that were born and managed together,
were formed as the subclass combinations of birth year
within herd, resulting in 12 herd-year groups. Records
from any CG without phenotypic variability were elimi-
nated from the analyses. Furthermore, animals with age
exceeding 3.5 standard deviations from the overall mean
age in the CG were excluded from the dataset. More de-
tails about the dataset and edits can be found in Oliveira
Júnior et al. [16].

Imputation of non-genotyped sires
Some 36 of the 78 sires with genotyped offspring were
not themselves genotyped. Among those, the 19 ungeno-
typed sires that had more than five genotyped progeny
[18, 19] were imputed to the SNP density of their off-
spring (64800 SNPs) using FImpute 2.2 software [17].
The accuracy of imputation was tested by similarly im-

puting the genotypes (64800 SNPs) of the 42 genotyped
sires that had more than five progeny. The accuracy of
their imputation was quantified as the correlation be-
tween observed and imputed genotypes [20].

Genomic analyses to phase markers and estimate
effects of haplotype blocks
Haploblocks considered in this paper were limited to
those reported in Oliveira Júnior et al. [16]. These repre-
sented those QTL that accounted for > 1% of the total
additive genetic variation for each trait (HP and NF).
Phasing of SNP chip alleles to reconstruct the haplotypes
was performed with half-sib pedigrees using version 3 of
findhap [21], considering the SNP chip genomic infor-
mation on both the heifers and their genotyped or im-
puted sires.
Haplotype mismatches were identified when supposed

half sib progeny did not receive either of the paternal
haplotype alleles carried by their putative sire at the
given haploblock region. Observations for heifers where
any haplotype allele did not match its sire, or any that
were observed in less than three offspring of any particu-
lar sire, were omitted from subsequent analyses.
The effects of all the paternal haplotypes were esti-

mated for each haploblock by fitting models with the
dosage of all the haplotype alleles in that haploblock as
fixed effects, using Gensel software [22]. In the same
model, to account for population structure, all the

panel-based SNPs except those in the haploblock being
fitted were simultaneously fitted as random effects in a
mixture model. The Bayes B [20] model was:

yi ¼ FbþHhþ
Xn

j¼1

xijks j þ ei ð1Þ

where yi is the trait record for heifer i; b is the vector
that includes class effects of the contemporary groups
and a regression coefficient for heifer age (months) at
artificial insemination; F is the incidence matrix relating
b to y; h is the vector of the fixed effects of each haplo-
type allele fitted, the incidence matrix H comprises a
column for each haplotype allele representing the dosage
(0, 1, 2) of the allele for each individual; n is the number
of SNP chip loci outside the QTL region (i.e. not in the
haploblock); xijk is the genotype covariate of animal i at
SNP chip locus j, with genotype allele dosage indicator k
(coded 0, 1 or 2); sj is the allele substitution effect of
SNP chip marker j, assuming s j j π; σ2j � δ jNð0; σ2j Þ ,
where σ2j is marker effect variances when δj = 1, and s j
¼ ð1−δ jÞ Nð0; σ2

si ¼ 0Þ when δj = 0; δj is an indicator
variable for locus j; and ei is the random residual effect
for animal i, assuming ei j σ2e � Nð0; σ2eÞ . The prior for
δj was:

δ jjπ
� �f 1; probability 1−πð Þ

0; probability πð Þ ;where π was 0:999; as in Oliveira Junior; et al: ½16�

ð2Þ

Heifer pregnancy was analyzed using a threshold
model, which related the observed categorical success or
failure scores to an underlying continuous normal scale,
whereas NF was modeled as a continuous variable. Sam-
ples from the first 2000 iterations of the Markov chain
were discarded (burn-in) and every 100th sample from
the following 88000 samples were used for inference.
The posterior distribution of the contrast between the
effects of the two haplotype alleles for each sire was
constructed from the Markov chain samples of each
haplotype allele to identify sires that were segregating al-
ternative QTL alleles at the haploblock, using a poster-
iori probability (alpha) < 0.10 as the threshold level.
The haplotype alleles were identified in further sec-

tions using the notation Trait_BTA_Allele, (where Trait
is HP or NF; BTA is 5, 8, 11, 14, 18, or 22; Allele is 1,2,
3…number of alleles).

QTL fine mapping using whole-genome sequence
data
Whole-genome sequencing (WGS) data of 26 Nellore
sires was available, comprising of six bulls that were
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among the 42 genotyped sires included in the previous
analyses, and another 20 bulls that had more distant de-
grees of relationships with the heifers, mainly as grand-
sires. The WGS data was obtained using paired-end
sequencing from an Illumina HiSeq 2500 platform, fol-
lowing recommended manufacturer protocols (Illumina,
Inc., San Diego, CA). A total of 26115176 variants were
identified to be segregating in these 26 animals, includ-
ing 91.6% that were SNPs and another 8.4% that were
genomic insertions or deletions. The overall average
depth of sequencing coverage was 14.7X.
A visual quality control (QC) of raw data was done

using the FastQC package [23]. Sequence reads were
aligned to the Bos taurus reference genome assembly
(UMD 3.1) using BWA-MEM software (v0.7.15) [24]. The
PCR duplicates were identified and filtered using Picard
tools v2.6.0 (http://picard.sourceforge.net/). Mapped re-
gions were analyzed in the variant calling process using
GATK v3.6 Haplotype caller [25]. The identified variants
were then filtered using GATK v3.6 VariantFiltration,
considering the quality of called variant (QUAL) ≥ 20 and
read depth (DP) ≥ 4. The remaining positional variants
(after QC) were imputed into each of the haplotype alleles
carried by the sires of the heifers with phenotypic fertility
observations. Any particular positional sequence variant
must either be present, or absent, in each of the haplotype
alleles. The presence or absence of each variant in each
haplotype allele was determined by linear regression. That
involved constructing phenotypic vectors of length equal
to the number of sequenced sires, one vector for each
sequence variant, that contained the values 0, 1 or 2,
representing the number of non-reference sequence alleles
observed in the sequence reads of that sire.

Regression analysis to imputing sequence
variants into known haplotypes
The presence or absence of any positional sequence
variants in every sire haplotype allele at a QTL were
imputed using linear regression. The dosage of the se-
quenced variant (i.e. 0, 1, or 2 according to the num-
ber of allele copies) at each locus in the QTL region
was regressed on the dosage of the haplotype alleles
at that QTL. This regression was repeated for every
sequence variant that was mapped in any of the six
QTL regions. For this purpose, haploblocks that
spanned several Mb were partitioned into narrower
fragments (~ 1Mb) otherwise it was rare for se-
quenced sires to share the same haplotype alleles.
These analyses were only undertaken for haplotype
fragment (~ 1Mb) that had been observed on at least
three occasions. The following model was fitted sep-
arately at each sequence locus within its correspond-
ing QTL region:

y ¼ Qd þ e; ð3Þ

where y is a vector of length equal to the total number
of sequenced sires and contained the dosage of the alter-
nate allele (coded 0, 1 or 2) at a sequenced locus consid-
ered as a phenotype; Q is a matrix containing haplotype
allele dosages (coded 0, 1 or 2) for each sequenced sire
for all N haplotype fragments at the QTL; d is the vector
of regression coefficients for the sequenced allele in each
of the N haplotype alleles, which is expected to be 0 or 1
providing there were no errors in the sequencing calls,
no phasing errors in the QTL haplotypes, and all copies
of each haplotype allele carried the same sequence SNP;
and e is the vector of residual imputation error. There
were six different Q matrices representing the six differ-
ent QTL regions. There were many vectors of pheno-
types representing sequence variants for each QTL
region. Regression coefficients that were exactly 0 or 1
and with standard errors < 0.0001 were used to impute
the sequence SNPs to haplotype alleles whereas se-
quence loci with regression coefficients of intermediate
values or with larger standard errors were assumed to be
unreliably imputed and were therefore not considered in
any further analyses.

Imputed sequence variants concordant with
segregation status of sires
As in Weller et al. [12], it was assumed that there were
not multiple QTN in a single QTL. That is animals that
were homozygous for a QTL were assumed to be homo-
zygous at the QTN, and animals that were heterozygous
for a QTL were assumed heterozygous at the QTN. This
implies that each QTL has only one biallelic QTN,
shared by all sires that were segregating that QTL. As
we were interested in the difference between the signifi-
cant (based on the contrast analyses) haplotype alleles,
only sequence variants that were heterozygous were
retained to construct the list of concordant positional se-
quence variants for further analysis. The absence (pre-
dicted value close to zero) or the presence (predicted
value close to one) of a particular SNP allele in the
haplotype was used to fine map the likely mutations re-
sponsible for the difference between alleles. Although
causative mutations may result from indels, or copy
number variations, only SNPs were considered [26].

Gene search and functional enrichment
The candidate causal mutations were annotated using
Ensembl v.88 Variant Effect Predictor (VEP) [27] and
assigned to bovine genes based on the UMD3.1 assembly
[28] using the Bioconductor R package biomarRt [29, 30].
The candidate causal mutations were only assigned to a
particular gene if they were located within the genomic se-
quence of the gene. The effect of amino acid changes were
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predicted for non-synonymous mutations using the SIFT
score [31], a sequence homology-based algorithm that can
determine whether an amino acid substitution in a protein
is likely to be deleterious (scores < 0.05) or tolerated
(scores ≥0.05).
Functional terms, defined as groups of genes that share a

biological process or molecular function, can be used to
categorize genes using over-representation analysis (ORA).
We evaluated ORA considering two databases: Medical
Subject Headings (MeSH) [32] and Kyoto Encyclopedia of
Genes and Genomes (KEGG) [33]. The significance (P-
value < 0.05) for reporting g significant genes in a certain
functional term was estimated by:

P−value ¼ 1−
Xg−1

i¼0

� S
i

��N−S
k−i

�

�N
k

� ð4Þ

where S is the total number of target genes, N is the
total number of genes that were analyzed, and k is the
total number of genes in the term considered [34, 35].
The MeSH analysis was carried out using the R package
meshr [36] while the KEGG analysis was performed
using the ppiPre package [37]. Semantic similarities
among MeSH terms were estimated using the R package
MeSHSim [38].

Results
Pedigree inconsistencies were detected from the pres-
ence of opposite homozygous SNP chip genotypes in
about 9% of the sire-offspring pairs. All genotyped sires
had genotyped offspring that were consistent with the
pedigree-records, suggesting there had not been any
sample mismatch errors in the sires’ genotypes. The
average (±standard deviation) SNP chip imputation
accuracy for the 42 genotyped sires was 0.96 (±0.03). Ac-
cordingly, a total of 19 non-genotyped sires with at least
five genotyped progeny were imputed for the 64800
SNPs.
The average width for the three HP and the three NF

haploblocks was 4.04Mb and 3.91Mb, respectively. This
represented around 4.6% of the bovine chromosomes on
which they were located. The six haploblocks harbored
on average 98 SNPs (Table 1). The posterior distribu-
tions for the contrasts between the predicted effects of
the sires’ haplotype alleles identified 15 different alleles
(alpha < 0.10) that were associated with HP and 20 al-
leles that were associated with NF (Table 2).
For HP, the haplotype allele labeled 1 on BTA 5 (HP_

5_1) was present in three sires (sires 1, 2, and 3). For all
these sires, HP_5_1 had a favorable effect on HP when
compared to those sires’ alternate haplotype alleles.

Similarly, alleles HP_5_5, HP_5_7 and HP_5_9 in sires 4,
5 and 6 had favorable effects on HP in relation to their
alternate alleles (Additional file 1: Figure S1).
Six sires (sires 7 to 12) had significant differences be-

tween their haplotype alleles for HP at the BTA 14 QTL
(Additional file 2: Figure S2). The allele labeled 14 (HP_
14_14) had a smaller effect in two different sires (sires 8
and 9), suggesting it contained an unfavorable allele for
this trait.
In addition to segregating the QTL on BTA 14 for HP,

sires 11 and 12 were segregating the QTL on BTA 18
(Additional file 3: Figure S3). Although the allele labeled
23 of BTA 18 (HP_18_23) had a favorable result when
contrasted with HP_18_24 in sire 12, it was inferior to
HP_18_22 in sire 11. The HP_18_24, in turn, had infer-
ior values in both sires 12 and 14, where it was con-
trasted with HP_18_27, suggesting that it was an
unfavorable allele for HP.
For NF, the contrast analyses for the BTA 8 QTL resulted

in the identification of six sires (sires 8, 6, 11, 16, 17 and 18)
with haplotype alleles significantly different from their cor-
responding alternate alleles (Additional file 4: Figure S4).
Two of these, sires 8 and 11, were also segregating the HP
QTL on BTA 14, while sires 6 and 17 reported segregating
on BTA 5 and 22 for HP and NF, respectively. Allele 30
(NF_8_30) had positive effects on NF in sires 16 and 8,
whereas allele 34 (NF_8_34) had negative effects in sires 17
and 18.
Of the 20 haplotype alleles that positively affected

NF, half were on BTA 11, carried by 14 different sires
(Additional file 5: Figure S5). Allele labeled 40 (NF_
11_40) had a positive effect on five animals (sires 2,
4, 19, 20 and 21), suggesting the haplotype carried a
favorable sequence for NF. In contrast, allele 45 (NF_
11_45) showed inferior results in five different ani-
mals (sires 1, 2, 15, 22 and 23), suggesting it har-
bored an unfavorable allele for NF. Moreover, alleles
41 (NF_11_41) and 42 (NF_11_42) had inferior effects
on the alternative alleles in three (sires 19, 25 and
26) and two (sires 20 and 24) animals, respectively.

Table 1 Position, size and number of SNPs of the estimated
haplotype blocks for heifer pregnancy (HP) and the number of
antral follicles (NF)

Trait BTA Position, bp Size, Mb #SNPs

HP 5 70,420,628 – 74,518,588 4.10 99

14 20,344,343 – 24,418,370 4.07 97

18 54,016,934 – 57,969,493 3.95 97

NF 8 4,159,163 – 7,663,923 3.50 99

11 69,411,914 – 73,659,167 4.24 99

22 11,935,606 – 15,926,677 3.99 95

BTA = chromosome number; Position = start and end position in base pair (bp);
Size = QTL size in megabases (Mb); #SNPs = number of SNP markers within the
QTL region.
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Some sires were also heterozygous for QTL associated
with HP. Sires 1, 2, 4 and 5 were segregating the
QTL on BTA 5, and sires 8 and 15 were segregating
the QTL on BTA 14 and 18, respectively.
On BTA 22, the contrast analyses identified five alleles

(NF_22_56, 59, 60, 62 and 64) positively affecting NF
(Additional file 6: Figure S6). Those five alleles were
present in five different animals (sires 17, 20, 22, 27 and
28), where sires 20 and 22 were also heterozygous for
the QTL on BTA 11, and sire 18 for the QTL on BTA 8.

Sequence variant-haplotype regression analysis
The average number of positional mapped reads per
sample before and after filtering for the HP QTL were:
49717 and 49559 for BTA 5; 53936 and 53750 for BTA
14; 51524 and 51246 for BTA 18, respectively. The
haplotype alleles identified to be segregating for NF were

not well represented in the sequenced sires. Conse-
quently, fine mapping for those NF QTL was not able to
be performed.
The results of the regression analyses for the signifi-

cant haplotype alleles on BTA 5 identified 641 variants
(0.015% of the sequence SNP in the window) as possible
causal mutations affecting HP. From these, 527 variants
were in sire 1 and 468 in sire 4, with 354 common to
both. Among these 354 common variants to both sires,
202 fell within genes. For the alleles on BTA 14, there
were 3733 variants (0.09% of the sequence SNP in the
window) that were detected, being 3432 variants from
sire 7, another 3184 from sire 8 and 3709 from sire 10.
The majority of the identified variants where shared be-
tween them. Some of those variants (1128) were anno-
tated as being within genes (Table 3). None of the
regression coefficients on the BTA 18 variants reached

Table 2 QTL alleles of heterozygous sires (alpha < 0.10) for heifer pregnancy (HP) and number of antral follicles (NF)

Sire HP_BTA5 HP_BTA14 HP_BTA18 NF_BTA8 NF_BTA11 NF_BTA22

1 1 vs. 2 NS NS NS 49 vs. 45 NS

2 1 vs. 3 NS NS NS 40 vs. 45 NS

3 1 vs. 4 NS NS NS NS NS

4 5 vs. 6 NS NS NS 40 vs. 44 NS

5 7 vs. 8 NS NS NS 52 vs. 53 NS

6 9 vs. 10 NS NS 36 vs. 37 NS NS

7 NS 11 vs. 12 NS NS NS NS

8 NS 13 vs. 14 NS 30 vs. 32 50 vs. 51 NS

9 NS 15 vs. 14 NS NS NS NS

10 NS 16 vs. 17 NS NS NS NS

11 NS 18 vs. 19 22 vs. 23 38 vs. 39 NS NS

12 NS 20 vs. 21 23 vs. 24 NS NS NS

13 NS NS 25 vs. 26 NS NS NS

14 NS NS 27 vs. 24 NS NS NS

15 NS NS 28 vs. 29 NS 48 vs. 45 NS

16 NS NS NS 30 vs. 31 NS NS

17 NS NS NS 33 vs. 34 NS 60 vs. 61

18 NS NS NS 35 vs. 34 NS NS

19 NS NS NS NS 40 vs. 41 NS

20 NS NS NS NS 40 vs. 42 62 vs. 63

21 NS NS NS NS 40 vs. 43 NS

22 NS NS NS NS 46 vs. 45 59 vs. 58

23 NS NS NS NS 47 vs. 45 NS

24 NS NS NS NS 54 vs. 42 NS

25 NS NS NS NS 55 vs. 41 NS

26 NS NS NS NS 44 vs. 41 NS

27 NS NS NS NS NS 56 vs. 57

28 NS NS NS NS NS 64 vs. 65

BTA = chromosome number; NS = non-significant.
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the imposed imputation threshold, and were therefore
not considered to be reliable enough for concordance
testing.

Gene set analysis
The over-representation analysis, based on the MeSH
database, did not detect any terms associated with the
gene list from BTA 5. However, 32 significant MeSH
terms were identified in the “Chemicals and Drugs” cat-
egory based on the gene list of BTA 14 (Additional file 7,

Table S1). Considering the KEGG database, the terms
“Circadian rhythm” and “Neurotrophin signaling pathway”
were significantly associated with the genes present in the
gene list of BTA 5, whereas “Non-homologous end-
joining” and “RNA polymerase” were present for BTA 14.
Based on the VEP analyses, the majority (close to 62%

for both QTL regions) of the genomic variants were in
intergenic regions which can control genes nearby [39]
(Figs. 1 and 2). Otherwise, 0.2% (one locus) and 0.3% (11
loci) were classified as missense variants for BTAs 5 and

Table 3 Number of the sequenced variants (#SNPs) within genes annotated in the heifer pregnancy QTL of chromosomes (BTA) 5
and 14

Ensembl ID Gene (#Entrez) Position* #SNPs

BTA 5

ENSBTAG00000014411 TMEM263 (539347) 70,573,524 – 70,593,134 6

ENSBTAG00000010144 MTERF2 (782988) 70,596,429 – 70,602,003 6

ENSBTAG00000010149 CRY1 (535947) 70,606,115 – 70,701,030 8

ENSBTAG00000037306 – 70,793,315 – 70,793,420 1

ENSBTAG00000027064 BTBD11 (539986) 70,923,456 – 71,257,389 111

ENSBTAG00000004654 PWP1 (514147) 71,280,815 – 71,300,027 1

ENSBTAG00000012999 PRDM4 (540731) 71,324,566 – 71,347,630 1

ENSBTAG00000011070 RTCB (525106) 71,366,686 – 71,388,046 1

ENSBTAG00000011071 BPIFC (516784) 71,391,550 – 71,427,743 1

ENSBTAG00000020636 SYN3 (100138309) 71,475,847 – 71,926,718 19

ENSBTAG00000021953 LARGE1 (506466) 72,157,229 – 72,769,395 47

BTA 14

ENSBTAG00000040351 – 20,717,785 – 20,720,429 2

ENSBTAG00000044106 SPIDR (512910) 20,740,960 – 20,987,465 197

ENSBTAG00000017016 H3F3C (512741) 21,033,277 – 21,034,329 1

ENSBTAG00000017019 PRKDC (512740) 21,038,513 – 21,164,037 197

ENSBTAG00000046325 – 21,164,873 – 21,192,165 6

ENSBTAG00000023218 UBE2V2 (286803) 21,225,303 – 21,245,522 10

ENSBTAG00000008693 EFCAB1 (505272) 21,456,452 – 21,464,699 16

ENSBTAG00000038286 PPDPFL (100126183) 21,617,777 – 21,622,267 11

ENSBTAG00000002448 SNTG1 (517353) 22,212,868 – 22,350,058 334

ENSBTAG00000017492 PCMTD1 (521261) 22,669,363 – 22,717,576 2

ENSBTAG00000005560 ST18 (536336) 22,815,477 – 22,872,779 10

ENSBTAG00000000878 RB1CC1 (539858) 23,147,992 – 23,177,073 26

ENSBTAG00000000914 OPRK1 (540519) 23,373,836 – 23,395,443 8

ENSBTAG00000003450 ATP6V1H (282657) 23,511,301 – 23,558,678 66

ENSBTAG00000003454 RGS20 (614441) 23,561,303 – 23,613,020 60

ENSBTAG00000003460 TCEA1 (505722) 23,620,858 – 23,637,730 7

ENSBTAG00000004243 LYPLA1 (539992) 23,651,477 – 23,668,800 16

ENSBTAG00000011203 RP1 (280916) 23,990,193 – 23,999,338 6

ENSBTAG00000047303 – 24,019,278 – 24,100,855 38

ENSBTAG00000044050 XKR4 (517598) 24,295,567 – 24,610,955 115

#Entrez = Entrez gene ID; Position = gene start and end position in base pair; * = position based on UMD 3.1 assembly.
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14 respectively, being non-synonymous mutations
resulting in a codon for different amino acids (Table 4).
The missense variant found for the QTL on BTA 5 is

the SNP rs137779125 located at base pair 70,597,511,
and is present on the Illumina® BovineHD BeadChip,
with MAF of 0.19 in a sample of genotyped sires. The
marker is in a coding region of the MTERF2 (Mitochon-
drial Transcription Termination Factor 2) gene.
The 11 missense variants identified on the QTL of BTA

14 were located within coding region of the genes
ENSBTAG00000040351 (1), PRKC (3), PPDPFL (1), RB1CC1
(1), RGS20 (1) and RP1 (4). Of these, the markers
rs137722134 (23998860 bp – MAF: 0.22) and rs109065397

(21104637 bp) are present on the BovineHD BeadChip and
BovineSNP50 BeadChip, respectively.

Discussion
Weller et al. [40] proposed the use of the daughter de-
sign as a method for QTL detection in dairy cattle. In
that approach, genotypic information is recorded for
sires and their daughters, with phenotypic observations
made on the daughters. In this study, a similar approach
was used, and a sire was deemed to be heterozygous for
the QTL if the difference between its two haplotype al-
leles was greater than the given threshold (alpha < 0.10).
Israel et al. [41] similarly reported that sires can be

Fig. 2 Frequency of VEP consequences terms of the 3732 variants of chromosome 14. The upstream and downstream distance to transcript
considered were five kilobases

Fig. 1 Frequency of VEP consequences terms of the 643 variants of chromosome 5. The upstream and downstream distance to transcript
considered were five kilobases
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accurately identified as heterozygous for a QTL when
the difference between their two haplotype alleles was
greater than a given threshold.
The reconstructed haploblocks spanned the previously

reported significant genomic windows of each chromo-
some and trait presented in Oliveira Junior et al. [16].
The number of haplotype alleles identified in a popula-
tion is sensitive to the width used to define the haplo-
blocks. This width could be reduced with the inclusion
of more genotyped heifers in the dataset. Narrower hap-
loblocks are likely to increase the frequency of common
haplotype alleles among sires, giving more statistical
power to the analysis.
The detection of haplotype alleles associated with the

impairment of female fertility can have an important
economic impact. Adams et al. [42] reported a loss of
approximately $420 million in Holstein dairy cattle due
to a mutation in the APAF1 (apoptotic protease activat-
ing factor 1) gene located in the haplotype HH1 on BTA
5 (~ 63Mb). In addition to HH1, Cole et al. [43] re-
ported the presence of seven others haplotypes related
to fertility traits in Holsteins, with a known causative
mutation having been reported for three of these (HH3
[44], HH4 [45] and HH5 [46]). Moreover, the knowledge
of haplotype regions associated with traits of interest is
essential to a better understanding of these traits, identi-
fying genes and biological pathways underlying these
QTL.
In the present study, the strategy of regressing the

sequence variants present on the SNP chip haplotype
alleles in QTL regions of heterozygous sires has been
used. The haplotype alleles identified to be segregating
for NF were not well represented in any of the

sequenced sires, and consequently, no fine map se-
quence variants were able to be reported for that trait.
For HP, the fine mapping the QTL regions identified
641 sequence variants on BTA 5, and 733 sequence vari-
ants on BTA 14, that were associated with the trait.
Among those, one was classified as missense variants for
BTA 5, and eleven had the same classification for BTA
14. These variants were detected in the genes MTERF2,
RTBC, miRNA ENSBTAG00000037306, ENSBTAG000
00040351, PRKDC, and RGS20, which are known to in-
fluence reproductive biological processes.
The identification of new genetic variants allows us to

better understand the biological complexity of traits of
interest. Knowledge of causal mutations should increase
accuracy of genomic predictions as well as the genetic
progress of the population [8]. According to Brondum
et al. [47], a gain of up to 4% in reliability can occur if
causative loci are fitted in genomic prediction models.
Weller et al. [15] argued that investments in QTN detec-
tion are worth it even if these new variants lead to an in-
crease of only 1% in the rate of genetic gain. The
identification of new genetic variants is also key informa-
tion for identifying targets for gene editing.
Imputation procedures are normally used to increase

SNP density for fine mapping studies [48, 49]. However,
we did not consider conventional imputation approaches
due to the small number of available sequenced animals
which would limit the accuracy of phasing the sequence
alleles. The use of the 1000 Bulls Genomes Project [50]
sequence database was not a viable option since most of
the animals within that dataset are taurine, whereas the
animals in this experiment were indicine. All available
animals were used for the prediction of haplotype effects
and for the association between sequence variant and
the haplotypes allelic with major effects. However, it is
important to note that, even considering a conservative
threshold for estimation, the small number of sequenced
sires could underrepresent the real heterozygosity status
of the variant and lead us to have excluded that variant
from further consideration.
The over-representation analyses were used to identify

classes of genes or proteins that are over-represented in a
large set of genes or proteins and that may have an associ-
ation with the phenotypes. Among the detected MeSH
terms associated with HP, “Prolactin” (D011388) is well
known to be related to mammary tissue development, im-
mune function, heat tolerance, and reproduction. Polymor-
phisms of prolactin gene have been associated as mediators
of physiological responses of heat stress on cattle, playing a
role in the reproductive performance of dairy cows man-
aged in tropical environmental conditions [51, 52]. Leyva-
Corona et al. [53] have suggested the use of genomic
markers associated with prolactin could help the genetic
improvement of fertility traits of cattle raised in warm

Table 4 Missense sequence variants concordant with the sires’
QTL status of the chromosomes (BTA) 5 and 14

BTA Variant ID Position Allele Gene AA SIFT

5 rs137779125 70,597,511 A MTERF2 R/C tol (0.16)

14 rs1116146729 20,718,306 A – R/W del (0.00)

rs518797951 21,079,097 C PRKDC E/G del (0.01)

rs41718998 21,100,385 C PRKDC K/R del (0.01)

Novel 21,620,454 A PPDPFL R/Q tol (0.09)

rs109800133 23,161,253 C RB1CC1 T/A tol (1.00)

Novel 23,612,293 C RGS20 L/P del (0.00)

rs461823670 23,996,758 A RP1 G/S tol (0.47)

rs450031362 23,997,203 G RP1 D/G tol (0.11)

rs137722134 23,998,860 G RP1 I/R tol (0.07)

rs439817527 23,998,899 T RP1 T/I tol (1.00)

rs109065397 21,104,637 C PRKDC S/G tol (0.50)

Position = variant position in base pair; Allele = the variant allele used to
calculate the consequence; Gene = gene symbol; AA = reference and variant
amino acids; Codons = the alternative codons with the variant base in upper
case; SIFT = SIFT prediction score; tol = tolerated; del = deleterious.
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climates. The “Circadian rhythm” KEGG term was signifi-
cantly associated with HP, being related to the circadian
rhythm, which is an internal biological clock regulating the
timing observed in many physiological phenomena, such as
sleep and wakefulness, changes in metabolic activity, and
cell cycle transition [54, 55]. The gene CRY1 (cryptochrome
circadian regulator 1) is one of the circadian genes which
are known to encode transcription-suppressing factors that
control the circadian clock in mammals [56]. Of the 643
variants that were detected to significantly affect HP, eight
were within intronic regions of the CRY1 gene (Table 3).
Amano et al. [57, 58] concluded that CRY1 transcripts
(such as other circadian genes) are important for the devel-
opment of oocytes and preimplantation embryos in cattle.
Reiter et al. [59] also discussed the importance of circadian
rhythms, highlighting the regulation role of daily melatonin
secretion. The authors [59] concluded that melatonin plays
a key role in oocyte maturation, success ovulation and the
development of corpus luteum.
The VEP classification identified a missense variant

(G/A) at 70597511 base pair of BTA 5. This mutation is
a known SNP (rs137779125), included in Bovine HD
Illumina BeadChip, and within a codon region of the
MTERF2 gene. Although this gene is not well character-
ized, other genes of this family (MTERF3 and MTERF4)
have been related to embryonic death and a phenotype
that is lethal to mouse embryos [60, 61].
Two novel putative causal variants were detected on

BTA 5. The first one was in the upstream region
(5’UTR, promoter region) of the RTBC gene, which is
associated with biological processes such as utero em-
bryonic development and placenta development [62].
The second was in the downstream gene region, where
the biotype was annotated as novel miRNA (ENSBTA
G00000037306). Such miRNAs are small RNA molecules
that function in post-transcriptional regulation of gene
expression [63].
There were 11 missense-variants identified in protein

coding regions in the haploblock of BTA 14 (Tables 3
and 4). Six of them were classified as deleterious accord-
ing to the SIFT score and were within the genes
ENSBTAG00000040351, PRKDC, and RGS20. The SIFT
approach uses sequence homology to predict whether a
substitution affects protein function and consequently
the phenotypes [64].
The gene ENSBTAG00000040351 encodes Vomerona-

sal type-1 receptor protein, which presents the molecular
function of G-protein coupled receptor and transducer.
G-protein coupled receptors mediates most of the
physiological responses to hormones, neurotransmitters
and environmental stimulants being directly related to
reproductive hormones mainly in females [65]. There is
evidence that an orphan G protein-coupled receptor is
involved in estrogen signaling in the brain and plays a

function as a membrane estrogen receptor [66]. Cur-
rently, it is known that G protein-coupled receptors are
widely expressed in mammalian tissues [67], suggesting
that it may have an important regulatory role in repro-
ductive traits.
Protein kinase, DNA-activated, catalytic polypeptide

(PRKDC) gene encodes DNA-dependent protein kin-
ase (DNA-PK), which is a nuclear protein serine/
threonine kinase that is a molecular sensor of DNA
damage. A previous study demonstrated that PRKDC
expression increases due to embryonic genome activa-
tion and acts enzymatically activating the existing pro-
teins in blastocysts [68]. Based on their findings, the
authors indicated this gene had a key role on the rate
of embryo development, interferon tau expression,
and trophoblast development. They also suggested
that PRKDC is needed during early bovine embryo
development.
The family of regulators for G protein signaling (RGS)

contains regulatory and structural components of G
protein-coupled receptor complexes, which mediate sev-
eral cellular processes. RGS20 was previously identified
as a hub gene in a transcriptional profile study on pre-
implantation of bovine embryos developed in vivo.
RGS20 have been described as an important regulator of
gene expression and stage transition in early embryo de-
velopment [69].
Haplotype alleles related to HP and NF and also new

variants affecting HP have been identified. The KEGG
term “Circadian rhythm” was associated with HP, and
variants on genes MTERF2, RTBC, and the miRNA
ENSBTAG00000037306 were reported as significantly
affecting the trait. There were 11 novel variants identi-
fied on BTA 14, with six of them spread on genes
ENSBTAG00000040351, PRKDC, and RGS20. Based on
the literature [70], these genes are known to have influ-
ence on reproductive biological processes. Sequence data
represents a useful resource in biological research, sup-
porting the identification of novel variants and the fine
mapping of causative mutations for traits of interest.

Conclusion
The identification of heterozygous sires for QTL and
the use of whole-genome sequencing data allowed for
the identification of potential causal mutations and
candidate genes associated with reproductive traits in
a Nellore population. Genomic variants on genes
MTERF2, RTBC, miRNA ENSBTAG00000037306,
ENSBTAG00000040351, PRKDC, and RGS20, which
are known to have influence on reproductive bio-
logical processes, were detected. Given the limitations
of the datasets used for the present study, further
studies considering expression analyses and other
“omics” approaches could support an improved ability

Oliveira Júnior et al. Journal of Animal Science and Biotechnology           (2019) 10:97 Page 10 of 13



to infer the causality of sequence variants identified.
Nevertheless, these findings could contribute to a bet-
ter understanding of the genetic control and bio-
logical processes involved in female fertility and could
lead to innovative DNA-based selection strategies.
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