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Abstract

Early colonization of intestinal microbiota during the neonatal stage plays an important role on the development of
intestinal immune system and nutrients absorption of the host. Compared to the normal birth weight (NBW)
piglets, intrauterine growth restricted (IUGR) piglets have a different intestinal microbiota during their early life,
which is related to maternal imprinting on intestinal microbial succession during gestation, at birth and via suckling.
Imbalanced allocation of limited nutrients among fetuses during gestation could be one of the main causes for
impaired intestinal development and microbiota colonization in neonatal IUGR piglets. In this review, we
summarized the potential impact of maternal imprinting on the colonization of the intestinal microbiota in IUGR
piglets, including maternal undernutrition, imbalanced allocation of nutrients among fetuses, as well as vertical
microbial transmission from mother to offspring during gestation and lactation. At the same time, we give
information about the current maternal nutritional strategies (mainly breastfeeding, probiotics and prebiotics) to
help colonization of the advantageous intestinal microbiota for IUGR piglets.
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Introduction
The gastrointestinal tract (GIT) of mammalian animals
contains a large microbial community [1]. Early
colonization of the intestinal microbiota is believed to be
paramount for maturation of the intestinal innate im-
mune system and barrier function, as well as health of
the host [2, 3]. At the same time, the intestinal micro-
biota in neonates is extremely turbulent and can be
shaped by the different physiological status of their host
[4], the dietary changes [5], and the feeding environ-
ments [6, 7]. A recent study has indicated that the intes-
tinal microbiota of IUGR piglets was significantly
different from that of the NBW piglets during their neo-
natal stages [8]. Considering the delivery transition from
relative sterile environment in uterus to the complex
bacterial environment in farrowing house, the impaired
small intestine of newborn IUGR piglets could be a
starting point for the postnatal dysbiosis of intestinal

microbial community. Therefore, the microbiota
colonization in IUGR piglets could be maternally
imprinted, due to malnutrition of sows or imbalanced allo-
cation of limited nutrients among fetuses during gestation.
Given these developmental deficits of the intestine and

their microbiota in IUGR piglets, the purpose of this re-
view article is to review the potential ways from the per-
spective of maternal imprinting. As well, the nutritional
strategies for improving colonization of the advantageous
intestinal microbiota in neonatal IUGR piglets are also
summarized, with a perspective of maternal intervention.

Maternal malnutrition as a reason for occurrence of the
IUGR piglets
During the mid and late gestation, the utero-placental
circulation and umbilical cord vein are mainly respon-
sible for delivering the nutrients from the mother to the
fetuses [9]. It has been reported that the transportation
of nutrients from mother to IUGR porcine fetuses was
altered during gestation due to the decreased blood flow
in placenta [10, 11]. Expression of several proteins re-
lated to energy metabolism was decreased in placenta
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and endometrium of the IUGR fetuses (d 60, 90, and
110 of gestation), which could contribute to the inad-
equate energy provision and insufficient nutrient transport
and thus the occurrence of IUGR [12]. One important fea-
ture was the insufficient amino acid transmission from the
sow to the IUGR fetuses [13]. Specifically, IUGR fetus had
a decreased supply of amino acids in the arginine family
such as arginine and glutamine, and also the branched
chain amino acids (valine, leucine, and isoleucine), as well
as glucose, while increased levels of ammonia in the um-
bilical cord vein [14]. In an obese sow model, maternal
malnutrition (50% standard grain-based diet) during the
last two-thirds of gestation induced asymmetryical growth
retardation and metabolic alterations in the newborn pig-
lets [15]. In addition, Mickiewicz et al. [16] and Metges
et al. [17] found that low protein diets (6.5% protein) ad-
ministrated to gilts led to IUGR, and even the delayed
catch-up growth in IUGR piglets, it was possibly a lack of
indispensable amino acids that led to injured lipoprotein
metabolism. Likewise, feeding a low-protein diet (50% of
standard-protein) to the sows during late-gestation re-
sulted in notable decrease in birth weight of newborn pig-
lets, as well as the reduced expression and activity of 11β-
hydroxysteroid dehydrogenase 2 in placenta with a sex-
dependent way [18].
Oocyte maturity might be a crucial factor of embry-

onic uniformity and subsequent within-litter variation in
birth weight [19], therefore, nutritional supplies during
pre-mating or peri-implantation period may have signifi-
cant effects on within-litter uniformity of the birth
weight. Large numbers of evidences have suggested that
the maternal malnutrition before breeding and the peri-
implantation period posed a threat on the oocyte quality
and embryonic development [20, 21]. Feeding low-
energy diets to sows during the weaning-to-estrus inter-
val lowered ovulation rate, follicle size and litter homo-
geneity [22]. While appropriate increasing energy intake
(3.5 kg/d) for pre-mating sows can decrease the within-
litter variability in blastocyst size at d 12 of pregnancy,
compared with that from sows fed a maintenance diet
(1.15 kg/d) [23]. Moreover, the uniformity of birth
weight in the litter was decreased in sows on dextrose-
supplemented diets (150 g/d) compared to the sows fed
basal-diet during the weaning-to-estrus interval [24].
Therefore, modest energy requirements for sows prior to
mating have a crucial impact on within-litter uniformity.

The developmental defects in the intestine of IUGR
piglets
Recent studies identified an impairment of intestinal de-
velopment in IUGR piglets at birth [25, 26], and this in-
jury persisted during the whole suckling period [27, 28].
One of the causes of this damage was the abnormally
regulated DNA methylation [29, 30]. As well, the

intestinal barrier integrity were injured in the IUGR
newborn piglets, demonstrated as damaged villi, shorter
microvilli, reduced villus surface areas, fewer number of
epithelial goblet cells or lymphocyte, and the decreased
levels of the cytokines such as tumor necrosis factor-α
and interferon-γ as well as their gene expressions [31].
Additionally, the decreased intestinal immunity function
in IUGR piglets was connected with overexpression of
the heat shock protein 70, which impairs the nuclear
factor-kappa B signaling and upregulates forkhead box
O3a expression in the intestine [32]. One of the possible
mechanisms was targeted degradation of the proteins in
tight junction pathways and extracellular matrix by the
miRNA-29a, which then results in the impairment of in-
testinal epithelial integrity [33]. Taken all together, the
developmental defects in the intestine and intestinal im-
mune system of IUGR piglets are mainly mediated by
changes in the key cytokines, immune-related proteins
and inflammation-related cell signaling pathways, thus
resulting in poor nutritional absorption and high risk of
intestinal infection, as well as the higher morbidity and
mortality in their early postnatal life.

The altered intestinal microbiota in neonatal IUGR piglets
Accompanying the injured intestinal barriers in IUGR
piglets, the establishment and succession of their intes-
tinal microbiota is also changed. A previous study found
that the permeability of macromolecules through the in-
testinal barrier of IUGR piglets was increased [34], lead-
ing to higher counts of adherent bacteria to the
intestinal mucosa [35, 36]. Recent research has suggested
that IUGR piglets had lower diversity of Bacteroidetes
and Bacteroides in the jeunum at d 7, 21, and 28, Oscilli-
bacter in the jejunum at d 21, and there was a positive
correction between the Bacteroides and Oscillibacter
abundances and the body weight of IUGR piglets [37]. A
previous study also has indicated that the commensal
bacteria such as Lactobacillus and Streptococcus were
significantly decreased and the potential pathogens in-
cluding Fusobacterium and Campylobacter were in-
creased in the feces of IUGR piglets from d 7 to 21 of
age, along with the altered concentrations of metabolites
(e.g., fatty acid metabolism, bile acid biosynthesis and
amino acid metabolism) [8]. Specially, qPCR outcomes
revealed that the copy number of predominant Lactoba-
cillus species like L. salivarius on d 7 and L. amylovorus
on d 21 were significantly reduced in the colon of IUGR
piglets [38]. Similarly, two trials conducted on rats and
mice also reported that the cecocolic and fecal microbial
composition were changed in IUGR infancy [39, 40],
compared to their normal counterparts. In preterm in-
fants, facultative anaerobes like Enterococcus, Enterobac-
ter, and Lactobacillus spp., were prevalent, while
amounts of strict anaerobes and advantageous intestinal
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microbiota such as Bifidobacterium and Bacteroides
were uncommon [41, 42]. In addition, low diversity of
intestinal microbiota and prevalence of pathogenic bacteria
were usually present in the intestine of preterm infants,
which embodies a typical example of dysbiosis [43, 44].
More remarkably, recent experiments identified an in-
creased abundance of Escherichia-Shigella and a decreased
abundance of Clostridium_sensu_stricto_1 in IUGR piglets,
which was closely associated with the alterations of cyto-
kines (tumor necrosis factor-α, interleukin-6, interleukin-1β
and interferon-γ,) and plasma metabolites in the first 12 h
of life (unpublished data), suggesting early-life interactions
between intestinal microbiota and the intestinal immune
function in IUGR piglets.
The above results indicate that the IUGR piglets have

an intestinal dysbiosis, which is associated with the alter-
ation in intestinal adaptation and microbial composition
during the neonatal period.

Maternal imprinting on intestinal microbiota of the IUGR
piglets by vertical microbial transition during gestation
It is widely accepted that the microbiota in neonates was
firstly established at birth, along with the exposure to
microbes existing in the maternal vaginal canal during
natural labor or the maternal skin during a cesarean.
However, the conventional idea of ‘sterile womb’ has
been questioned with an increasing attention of vertical
microbial transition from mother to offspring [45]. In-
creased number of scientific studies from healthy full-
term women have shown that there was bacterial DNA
in placenta [46], amniotic fluid [47], umbilical cord
blood [48], and meconium [49, 50]. Also, a recent ex-
periment by meta-genomic analysis revealed that the hu-
man utero including cervical canal and peritoneal fluid
contains microbiota [51]. However, some opposite
arguments have been put forward, mainly because the
research results above could not exclude the contamin-
ation [52]. Correspondingly, some suggestions to reduce
the impact of contaminations in low biomass microbial
studies have been made [52, 53]. All these results remind
us that the effects of maternal imprinting on intestinal
microbiota of the neonates might start from the intra-
uterine environments, but whether the colonization of
intestinal microbiota happened in fetal stage requires
more work to get verification.
It is clear that the fetuses absorb the nutrients from

the umbilical cord vein during their fetal stage. Conse-
quently, the early microbial colonization in neonatal in-
testine is possibly influenced by the microbial
metabolites in uterus. A study in sows found that the
microbiota community in umbilical cord vein, ultim-
ately, impacted the microbiota and fermentative end-
products profile including short-chain fatty acids and
branched-chain fatty acids of the neonatal piglets [54].

In humans, the relative richness of dominant phylum
such as Firmicutes in placenta was significantly lower in
the IUGR neonates [55]. Similarly, another study re-
ported that the reduced microbial richness of placenta
was accompanied with spontaneous preterm neonates
[46]. Above two outcomes in human revealed that the
close associations of the decreased placental microbiome
with IUGR neonates. However, the effects of microbiota
from the intrauterine environment on IUGR progeny are
scant. More clinical trials and experimental animal stud-
ies are required to explore it further.

Maternal imprinting on intestinal microbiota of the IUGR
piglets during the perinatal and lactation period
Besides intrauterine environment during gestation, some
other factors including delivery mode, gestational ages at
delivery, as well as the feeding patterns and environmental
factors during lactating period could also affect the micro-
biota colonization of the neonatal IUGR piglets [56].
The delivery mode could be one of the important

drivers for establishment of the intestinal microbiota in
neonates [57]. Compared to the caesarean-delivered pig-
lets, vaginally-delivered piglets had higher bacterial dens-
ities including Bacteroides, Prevotella at d 7 and
Clostridium XIVa at d 14, which was consistent with the
relatively abundant Bacteroides in vaginal microflora of
the healthy sows [58]. At the same time, the vaginally-
delivered piglets had higher propionate in ileum and bu-
tyrate in the ascending colon [59], which could be used
as energy sources and believed to be health-enhancing
for host [60, 61]. Therefore, maternal delivery mode
might be regarded as a possible factor for affecting early-
life microbial structure of neonatal IUGR piglets.
Maternal gestational age at delivery is also an import-

ant variable contribution to the preterm births. By com-
paring the preterm and full-term piglets, Kamal
et al. [62] found that colonization of the dominant bac-
teria, Enterobacteriaceae, at d 5 was delayed in preterm
piglets. Similar reports for fecal microbial differences be-
tween human preterm and full-term neonates also sug-
gested that the preterm neonates had delayed gut
colonization of commensal anaerobe microbes and in-
creased levels of pathogenic microorganisms [42, 63, 64].
The maternal impacts on the neonatal intestinal

microbiota continue with lactation. The different effects
between nursing and other feeding patterns such as milk
replacer or compound feed on the intestinal microbiota
of neonatal piglets have been reported [65, 66]. Com-
pared to the sow-reared piglets, relative abundance of
the Lactobacillus and Escherichia in colon of the neo-
natal piglets with commercial milk-replacer was notably
decreased [67]. Feeding formula could predispose the
piglets to necrotizing enterocolitis (NEC), and to be
prone to Clostridium perfringens infection [68, 69].
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Likewise, the changed microbial composition and en-
hanced concentrations of short-chain fatty acids in re-
sponse to early milk-feeding in neonatal piglets have
also been revealed by others [70, 71]. So, we can see the
important role of sow’s milk in colonization of the neo-
natal intestinal microbiota. One of the studies has
showed that the bacteria populations in milk might be a
source of intestinal bacteria [72].
In addition, environmental factors during lactation

also show clear links with the intestinal microbiota of
neonates. Lactating sows contain large amounts of bac-
teria and can be easily obtained by the nursing piglets. A
study has demonstrated that the fecal microbial compos-
ition and function in neonatal piglets on d 1 were in-
clined to be analogous with those in sow’s milk and
nipple surface [73]. Also, when the neonatal piglets were
transferred from one sow to another, their intestinal mi-
crobial communities would be closer to the subsequent
nursing sow’s [74, 75]. Since the variations in rearing en-
vironment could be complex, more trials are required to
determine the corresponding variables and their contri-
butions to the colonization of intestinal microbiota dur-
ing suckling piglets.

Maternal nutritional intervention during lactation to
improve colonization of the advantageous intestinal
microbiota in neonatal IUGR piglets
It is obvious that the lactating sows require a diet that
could supply enough energy and nutrients to support
their individual maintainence and also the growth of
their offspring through milk production. As an import-
ant nutritional source, colostrum and milk could influ-
ence the establishment and succession of intestinal
microbiota in neonates [76]. Thus, an enhanced mater-
nal microbiota might provide advantageous microbes for
either direct colonization or for indirect influence on the
succession of indigenous intestinal microbiota in neo-
nates. There were many studies showing the supplemen-
tation of probiotics and prebiotics for sows that could
improve the colonization of beneficial intestinal micro-
biota in neonatal piglets [77, 78]. Here we mainly fo-
cused on discussing the effects and advancements of
breastfeeding, probiotics and prebiotics supplementation
for improving the intestinal health and colonization of
intestinal microbiota in IUGR piglets.

Breastfeeding
Milk is the first diet source of neonates. It has a variety
of biological functions, including supply of nutrients,
protective Ig, antimicrobial and anti-inflammatory fac-
tors, which could enhance the early GIT development
[79, 80]. It is worth noting that pigs have a very re-
stricted transference of maternal Ig through the pla-
centa, and thus, colostrum is the only source of Ig for

neonatal piglets [81, 82]. Previous data confirmed that
the multiple bioactivities (mainly Ig) of colostrum could
regulate the innate immune reaction of intestinal epithe-
lial cells [83]. Of note, IUGR piglets had delayed and
lower amounts of colostrum intake than the NBW pig-
lets [84, 85], which might be an important reason for in-
testinal immune deficiency and impairment. A recent
research has evidenced that colostrum feeding partially
ameliorated the inferior status of jejunal mucosa in
IUGR piglets [86], thus probably leading to the change
of establishment and composition of their intestinal
microbiota. Moreover, 16S rRNA sequencing outcomes
noted that the diversity of sow milk microbiota altered
markedly in colostrum but remains relatively stable in
transitional milk and mature milk [87], these results are
line with the results of Liu et al. [88]. Cross-fostering
could be a helpful practice to promote the quantity of
colostrum received by the IUGR piglets. Maradiaga et al.
has proposed that cross-fostering did not influence mi-
crobial composition present in the piglets GIT, but there
was a notably correction between microbial communi-
ties of maternal colostrum and feces of piglets [89].
In addition, there is growing data suggesting that

breastfeeding is one of the most key determinants of
neonatal intestinal colonization. Not only because of the
abundant bacterial communities in milk [90], but be-
cause a rich and natural source of oligosaccharide (OS)
that regarded as a prebiotic activity, although the origin
composition of milk microbita and OS are relatively
complex and not completely illuminated [91]. Results in
preterm infants have pointed out human milk OS could
enhance the initial bacterial diversity and decrease the
occurrence of NEC [92, 93]. By comparing the
characterization of porcine milk OS and their relation to
the fecal microbiota, Salcedo et al. investigated that
fucose-consuming bacterial taxa in the intestinal micro-
biota of piglets were qualitatively but not quantitatively
different between suckling and weaning stages [94], indi-
cating that the composition and structure of milk OS
may be important in shaping the intestinal microbiota of
piglets. Besides, from the aspects of vertical transfer of
sow’s microbiota, recent data suggested that the mi-
crobes from teats or the milk canal and feces are primar-
ily responsible for the initial colonization of neonatal
intestinal microbiota [88]. So, Further studies detecting
the composition and function of milk-associated OS,
might be useful to the development of intestinal health
of IUGR piglets.

Probiotics/prebiotics
Most often, probiotics with the highest positive effects on
human and animal GIT health are believed to be Lactoba-
cillus species, Bifidobacterium species, Enterococcus fae-
cium strains (commonly habitat in gastrointestinal tract),
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Bacillus genus spores (commonly habitat in soil), Saccha-
romyces cerevisiae yeast strains, etc. [95]. In the model of
preterm/very low birth weight infants, a growing number
of data has revealed that maternal supplementation with
probiotic bacteria could reduce the occurrence of NEC
and improve the infant weight [96, 97]. A meta-analysis
even evidenced that combination of probiotics seems to
be more effective than a single probiotics in preventing
NEC and mortality of preterm/very LBW infants [98]. For
example, supplementing combined probiotic milk (Lacto-
bacillus rhamnosus GG, Lacidophilus La-5, and Bifidobac-
terium animalis subsp. Lactis Bb-12) from 36weeks of
gestation up to 3months postnatally, can notably elevate
the relative abundance of administrated probiotics in
mothers, but only the Lactobacillus rhamnosus GG bac-
teria colonized the infant at 10 days and at 3 months of
age [99], which indicates that different probiotic bacteria
appear to have different ability to transfer from the
mother to their offspring, thereby having different effects
on their progeny. Either administrating the Bacillus or En-
terococcus faecium probiotic strain to sows significantly
increased the counts and quantity of Lactobacillus species
[100, 101], and decreased the Clostridium spp. in the feces
of neonatal piglets [101, 102]. Also, oral supplementation
of nine microbial species supplements to lactating sows
made the Clostridium cluster IV and subcluster XIVa par-
ticularly increased in their weaned piglets [103]. Above in-
formation suggests that probiotics or their combination
during lactation period might be a potential intervention
for reshaping the intestinal microbiota in IUGR piglets,
but attention should be paid to the type of probiotics.
Prebiotics can selectively provoke the beneficial

growth or activity of advantageous bacteria [104]. Previ-
ous results have proposed that inulin addition during
the gestation and lactation can enhance the numbers of
enterococci in sows. Also, a higher level of enterococci
were detected in the cecal content of the suckling piglets
[105]. Feeding diets with high-resistant starch (amylose
corn) to sows from gestation to lactation increased milk
nutrients probably via changing maternal intestinal
microbiota composition, thus improving growth trait of
offspring [78]. These emphasized that maternal prebiotics
supplementation might be a useful method to modulate
the intestinal microbiota and health in IUGR piglets. On
the contrary, supplementation of resistant starch (pea
starch) during gestation and lactation affected the fecal
microbiota of the sows, but not that of their progeny, and
neither the body weight or frequency of diarrhea of the
piglets [106]. This attributes to the characteristics of the
different types of fibers. On the whole, because of the
complexity and diversity of fiber types, little understanding
on corresponding metabolic condition of sows and the
microbial imprinting on next generation exist nowadays.
Therefore, relevant work needs to be pushed forward.

Conclusion
In conclusion, intestinal development and microbiota
colonization in the piglets were negatively affected by
IUGR, due to imbalanced allocation of limited nutrients
among fetuses during gestation. This is connected with
the maternal microbial influences during gestation, at
delivery or during lactation, and even at the pre-
gestational stage through imprinting of the oocyte mat-
uration. Maternal nutritional interventions with breast-
feeding, probiotics or prebiotics could also help the
colonization of advantageous intestinal microbiota in
IUGR piglets.
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