
SHORT REPORT Open Access

The GATK joint genotyping workflow
is appropriate for calling variants in
RNA-seq experiments
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Abstract

The Genome Analysis Toolkit (GATK) is a popular set of programs for discovering and genotyping variants from
next-generation sequencing data. The current GATK recommendation for RNA sequencing (RNA-seq) is to perform
variant calling from individual samples, with the drawback that only variable positions are reported. Versions 3.0 and
above of GATK offer the possibility of calling DNA variants on cohorts of samples using the HaplotypeCaller
algorithm in Genomic Variant Call Format (GVCF) mode. Using this approach, variants are called individually on
each sample, generating one GVCF file per sample that lists genotype likelihoods and their genome annotations. In
a second step, variants are called from the GVCF files through a joint genotyping analysis. This strategy is more
flexible and reduces computational challenges in comparison to the traditional joint discovery workflow. Using a
GVCF workflow for mining SNP in RNA-seq data provides substantial advantages, including reporting homozygous
genotypes for the reference allele as well as missing data. Taking advantage of RNA-seq data derived from primary
macrophages isolated from 50 cows, the GATK joint genotyping method for calling variants on RNA-seq data was
validated by comparing this approach to a so-called “per-sample” method. In addition, pair-wise comparisons of the
two methods were performed to evaluate their respective sensitivity, precision and accuracy using DNA genotypes
from a companion study including the same 50 cows genotyped using either genotyping-by-sequencing or with
the Bovine SNP50 Beadchip (imputed to the Bovine high density). Results indicate that both approaches are very
close in their capacity of detecting reference variants and that the joint genotyping method is more sensitive than
the per-sample method. Given that the joint genotyping method is more flexible and technically easier, we
recommend this approach for variant calling in RNA-seq experiments.
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Main text
Mainly designed to quantify gene expression, the
next-generation sequencing (NGS) of RNA samples (RNA
sequencing, or RNA-seq) also offers new opportunities for
the efficient detection of transcriptome variants (SNPs
and short indels). RNA-Seq notably represents a powerful
approach for discovering causal mutations underlying
quantitative trait loci [1]. Recent examples include the
transcriptome analysis of the bovine pituitary gland [2],
bovine blastocysts [3], pig hypothalamus and liver [4].
RNA-seq can also generate a large number of genotypes

required to test the association of polymorphisms with
traits of economic importance [5]. However, several pre-
cautions must be taken when calling variants from
RNA-seq data. The main challenges include handling
splice junctions, detecting variants in low-expressed re-
gions, and managing duplicated reads [6, 7]. Many of the
numerous strategies and tools proposed to overcome
these challenges rely on the Genome Analysis Toolkit
(GATK), which is a popular set of programs for discover-
ing and genotyping variants from next-generation sequen-
cing (NGS) data [8, 9]. The group behind GATK
published the GATK Best Practices for variant calling,
which are essentially a number of optional steps that were
proven to increase the quality of NGS-derived variants,
steps either upstream (preparatory) or downstream
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(filtering) of the variant calling process [10]. The current
GATK recommendation for RNA-seq data is to perform
variant calling from individual samples [11]. This ap-
proach has the drawback that only variable positions are
reported in variant calling format (VCF) files, because
otherwise too many positions would be reported. Thus,
homozygous genotypes for the reference allele are not
called and cannot be distinguished from missing data, a
major issue in the preparation of datasets for genome-
wide association study applications. Versions 3.0 and
above of GATK offer the possibility of calling germline
variants on cohorts of samples using the HaplotypeCaller
algorithm in GVCF mode [12]. This strategy is more flex-
ible and reduces computational time in comparison with
the traditional joint discovery workflow, especially when
large and growing cohorts of samples are being worked
with. Using a joint genotyping workflow with RNA-seq
can provide substantial advantages over the individual
calling method, including reporting all genotype types as
well as missing data in a single VCF file. The joint geno-
typing workflow consists of processing RNA-seq samples
in accordance with the GATK Best Practices workflow for
variant calling on RNA-seq data up to the variant calling
step and then switching to the joint variant workflow in
the HaplotypeCaller stage; this approach will be referred
as the “joint genotyping method” thereafter. The joint
genotyping method was validated using a pairwise com-
parison approach by evaluating its sensitivity, precision,
and accuracy in genotype calling. The per-sample method
was basically the GATK individual calling method for
RNA-seq data plus improvements to add homozygote
calls retrieved using a mpileup + BCFtools call pipeline
(Additional file 1: Figure S1).
The RNA-seq data from the 50 cows analyzed in this

study yielded 3,628,035 unique variants for the per-sam-
ple method and 3,196,373 for the joint genotyping
method, while 2,771,566 variants were detected by both
methods (Fig. 1a). This result is not particularly surpris-
ing since it is well known that different SNP calling algo-
rithms always find unique sets of variants [13, 14]. In
addition, one should keep in mind that the number of
variants reported in Fig. 1a refer to variants that were
not validated. One can suspect that many of these vari-
ants are false positives. Notwithstanding, to tentatively
explain why the number of variants reported by the
joint-genotyping approach is lower we examine the hy-
pothesis that the joint-genotyping approach can miss a
small fractions of singletons, i.e. variants unique to indi-
viduals samples [15, 16]. We tested this hypothesis by
simply counting the number of singletons present in
each datasets. Results indicate that the joint-genotyping
actually detect less singletons than the per-sample
method (400,597 vs 702,289). In variants private to the
per-sample method, the proportion of singletons reach

32% (263,650/856,466), more than the 19% (83,355/
424,804) found in variants private to the joint-genotyp-
ing method. This factor contribute to the lower number
of variants reported by the joint-genotyping. However in
many applications like GWAS, singletons are not much
important and are likely to be filtered out owing to their
very low call rate values. We also performed pairwise
comparisons of the two sets of RNA-seq variants to sets
of variants identified from the same 50 cows using two
other sources: those genotyped using the BovineSNP50
Beadchip and imputed to the BovineHD Beadchip (Fig.
1b), and those identified through a previously described
two-enzyme genotyping-by-sequencing (GBS) assay (Fig.
1c) [17]. Of the 777,962 markers present on the Bovi-
neHD array, 135,562 were identified by the per-sample
method, and 135,201 were identified by the joint geno-
typing method (Fig. 1b) in conditions were genotypes
call with less than 5 reads were removed. GBS-derived
variants were also found in the two RNA-seq datasets:
47,187 variants were common with the per-sample
method, and 46,831 were also detected using the joint
genotyping method (Fig. 1c). Together, these results
clearly illustrate that both approaches are very close in
their capacity of detecting reference variants, either
BovineHD or GBS variants.
Because we genotyped the same 50 animals with ‘three’

methods, we have a unique opportunity to validate the
variants and the genotypes detected by RNA-SEQ. DNA
variants obtained by GBS and those from the BovineHD
Beadchip were used as reference for evaluating the sensi-
tivity, the precision, and the accuracy of genotype calls of
the two variant calling approaches. The calculation of the
sensitivity, precision and accuracy of genotypes was per-
formed for each variant calling method, using one sample
at a time and at minimum read depth (minRD) coverage
of 5 and 10. The definition of the parameters (sensitivity,
precision and accuracy) and scripts can be found in
Additional file 2 and Additional file 3, respectively. Results
indicate that at relatively high read depth coverages
(minRD = 5, or 10), the joint genotyping method had a
slightly but significantly better capacity to detect varia-
tions than the per-sample method had, although the geno-
types produced with the joint genotyping method were
less accurate (Fig. 2c; P < 0.05).
The sensitivity was consistently lower when the

Genotyping-by-Sequencing (GBS) variants were used as
references (Fig. 2a). BovineHD variants are considered
to be the “gold standard” for assessing the sensitivity and
accuracy of genotype calls [13]. In this study, imputed
BovineHD genotypes were used instead. However, the
imputation was expected to be highly accurate, with
both average concordance rate and allelic r2 higher than
0.99 [18]. In contrast, the GBS-derived variants were as-
sumed to be more suitable for assessing precision, which
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is a measure of false positives, because GBS variants
make it possible to test not ascertained sites for the
presence of variations.
We found that the most striking differences between

the two methods were observed in conditions where
very low-coverage regions (minRD < 5) were included in
the analysis (data not shown), a situation corresponding
to the default output of the GATK workflows. However,
regions supported by only one or two reads should be
considered with caution for variant calling. Indeed,
low-coverage sequencing introduces uncertainty into the
results and makes SNP detection and genotype calling
difficult [19, 20]. Our analyses indicate that gains in sen-
sitivity, in the precision of variant calling, and in the

accuracy of genotype calls can be obtained by slightly in-
creasing the minimal threshold of reads required for
variant calling (Fig. 2).
On the other hand, being too stringent about the min-

imal number of reads required for variant calling would
be counterproductive, since too many variants would be
filtered out. Notwithstanding, a greater precision can be
reached using the Per-sample method at minRD = 10
(Fig. 2b). There is no conclusive explanation, but it can
be speculated that the difference observed at high ex-
pression levels could have been induced by a differential
allelic expression in some individuals that was missed
with the joint genotyping method missed. Although GBS
does not account for the abundance of the genotyped
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Fig. 1 Common variants found in different datasets. a Comparison of RNA-seq variants detected using the per-sample and the joint genotyping
approaches. b Comparison of the two sets of RNA-seq variants with those detected by the BovineHD BeadChip. c Comparison of the two sets of
RNA-seq variants with those detected by GBS
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alleles, the RNA-seq reads reflect this abundance. Fur-
ther investigation will be needed to clarify this matter,
which was not the goal of this communication. The tra-
deoff between the number of variants retained after fil-
tration (e.g. minRD = 5) and the variant quality has
been observed in GBS [17, 21] and in many NGS appli-
cations that rely on the principle that sequencing a
large number of individuals at low-coverage depths is a
better approach than sequencing fewer individuals at
high-coverage depths [22].

Analyzing samples together is almost always consid-
ered a better strategy than analyzing them individu-
ally, because the former method is expected to take
advantage of population-wide information and lead to
improved sensitivity in variant detection and a higher
accuracy of genotype calls [10]. The sensitivity mea-
surements reported here (Fig. 2a at minRD = 5, or 10)
are consistent with this idea and are in line with previous
studies that have shown a slight improvement in sen-
sitivity (1% to 4%) when variant calling was

Fig. 2 Effect of the minimum read depth (minRD) on the (a) sensitivity, (b) precision, and (c) accuracy of genotype calls of two RNA sequencing
(RNA-seq) calling approaches. While the precision is a measure of true positives, accuracy is considered as a false negative measurement. The
analysis was performed at different minRD on each sample. Error bars represent two times the individual standard error at each minRD. Asterisks
indicate a significant effect at P < 0.05 using a Wilcoxon nonparametric test. The minRD is the minimum number of reads that need to be present in
an RNA-seq or genotyping-by-sequencing (GBS) region in order for the region to be considered in the analysis
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performed using multi-sample methods rather than
single-sample methods [23].

Conclusion
In summary, the GATK joint genotyping approach with
RNA-seq data was validated using a large number of
samples genotyped with alternative techniques. The joint
genotyping method can be used with confidence in most
contexts, since researchers will generally want to exclude
poor-quality genotypes called with only one or two reads
and not restricting SNP calling to only highly expressed
SNP (minRD ≥10). In these conditions, the joint geno-
typing method has a greater capacity to call with good
sensitivity a substantially higher number of variants than
the per-sample method. The tradeoff is to have lower ac-
curacy but higher sensitivity using an approach that is
technically simpler and much less computationally de-
manding. Furthermore, as shown in [14], there is a tra-
deoff between accuracy and objectives of downstream
analysis. Should the objective be GWAS analysis, then
combining several variant callers and taking advantage
of the long-range linkage disequilibrium in dairy cattle
to impute the missing genotypes has been reported as a
viable option [24, 25].

Additional files

Additional file 1: Figure S1. Schematic representation of the method
used for adding homozygote calls (0/0) corresponding to the reference
allele to the RNA-seq per-sample dataset. (PDF 159 kb)

Additional file 2: Materials and Methods. (DOCX 24 kb)

Additional file 3: Bioinformatics scripts used in this study. (DOCX 18 kb)

Abbreviations
GATK: Genome Analysis Toolkit; GBS: Genotyping-by-sequencing;
GVCF: Genomic variant call format; minRD: Minimum read depth; NGS: Next-
generation sequencing; RNA-seq: Ribonucleic acid sequencing; SNPs: Single
nucleotide polymorphisms

Acknowledgements
We thank Steve Methot for his help with the statistical analysis, and the
veterinarians and dairy producers for their valuable collaboration. This
research was enabled in part by support provided by Calcul Quebec
(www.calculquebec.ca) and Compute Canada (www.computecanada.ca).

Funding
This study was funded by Agri-Food and Agriculture Canada (Project AAFC
J0000–75).

Availability of data and materials
The SNP variant datasets generated and/or analysed during the current study
were deposited in the European Variation Archive (EVA) available at https://
www.ebi.ac.uk/eva under the project name PRJEB32108. The HD, GBS,
per-sample, and the joint-genotyping method (jgm) datasets can be
retrieved by downloading VCF files under the accession No. ERZ858078,
ERZ858080, ERZ858079, and ERZ858081, respectively.

Authors’ contributions
JSB – Experimental design, performed the bioinformatics analysis, and wrote
the initial manuscript. FS – Experimental design and technical support. AM –
Contributed to the interpretation of the results and revised initial manuscript.

NB – Secured funding, contributed to study design, wrote manuscript. All
authors read and approved the final manuscript.

Ethics approval and consent to participate
All animal procedures were carried out according to the Canadian Council
on Animal Care guidelines for institutional animal use, and ethical approval
for the study was obtained from the Agriculture and Agri-Food Canada
Animal Ethics Committee (document no. 466). All the respective herd owners
of the animals used in this study have signed a Collaborative Agreement to
allow use of their animals.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Sherbrooke Research and Development Centre, Agriculture and Agri-Food
Canada, Sherbrooke, QC J1M 0C8, Canada. 2Center of Genetic Improvement
of Livestock, University of Guelph, Guelph, ON N1G 2W1, Canada.

Received: 26 December 2018 Accepted: 28 April 2019

References
1. Majewski J, Pastinen T. The study of eQTL variations by RNA-seq: from SNPs

to phenotypes. Trends Genet. 2011;27:72–9.
2. Pareek CS, Smoczynski R, Kadarmideen HN, Dziuba P, Blaszczyk P, Sikora M,

et al. Single nucleotide polymorphism discovery in bovine pituitary gland
using RNA-Seq technology. PLoS One. 2016;11:e0161370.

3. Chitwood JL, Rincon G, Kaiser GG, Medrano JF, Ross PJ. RNA-seq analysis of
single bovine blastocysts. BMC Genomics. 2013;14:350.

4. Martinez-Montes AM, Fernandez A, Perez-Montarelo D, Alves E, Benitez RM,
Nunez Y, et al. Using RNA-Seq SNP data to reveal potential causal mutations
related to pig production traits and RNA editing. Anim Genet. 2017;48:151–
65.

5. Suarez-Vega A, Gutierrez-Gil B, Klopp C, Tosser-Klopp G, Arranz JJ. Variant
discovery in the sheep milk transcriptome using RNA sequencing. BMC
Genomics. 2017;18:170.

6. Piskol R, Ramaswami G, Li JB. Reliable identification of genomic variants
from RNA-seq data. Am J Hum Genet. 2013;93:641–51.

7. Quinn EM, Cormican P, Kenny EM, Hill M, Anney R, Gill M, et al.
Development of strategies for SNP detection in RNA-seq data: application
to lymphoblastoid cell lines and evaluation using 1000 genomes data. PLoS
One. 2013;8:e58815.

8. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.
The genome analysis toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res. 2010;20:1297–303.

9. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A
framework for variation discovery and genotyping using next-generation
DNA sequencing data. Nat Genet. 2011;43:491–8.

10. The Broad Institute. GATK | Best Practices Workflows | Introduction to the
GATK Best Practices. https://software.broadinstitute.org/gatk/
documentation/article.php?id=7363. Accessed 26 Mar 2019.

11. The Broad Institute. GATK | Methods and Algorithms | Doc #3891 | Calling
variants in RNAseq. https://software.broadinstitute.org/gatk/documentation/
article.php?id=3891. Accessed 26 Mar 2019.

12. The Broad Institute. GATK | Methods and Algorithms | Doc #7363 | Calling
variants on cohorts of samples using the HaplotypeCaller in GVCF mode.
https://software.broadinstitute.org/gatk/documentation/article.php?id=3893.
Accessed 26 Mar 2019.

13. Baes CF, Dolezal MA, Koltes JE, Bapst B, Fritz-Waters E, Jansen S, et al.
Evaluation of variant identification methods for whole genome sequencing
data in dairy cattle. BMC Genomics. 2014;15:948.

14. Rogier O, Chateigner A, Amanzougarene S, Lesage-Descauses MC, Balzergue
S, Brunaud V, et al. Accuracy of RNAseq based SNP discovery and
genotyping in Populusnigra. BMC Genomics. 2018;19:909.

15. The Broad Institute. GATK | FAQ | doc #7363 | can I apply the germline
variant joint calling workflow to my RNAseq data? https://software.

Brouard et al. Journal of Animal Science and Biotechnology           (2019) 10:44 Page 5 of 6

https://doi.org/10.1186/s40104-019-0359-0
https://doi.org/10.1186/s40104-019-0359-0
https://doi.org/10.1186/s40104-019-0359-0
http://www.calculquebec.ca
http://www.computecanada.ca
https://www.ebi.ac.uk/eva
https://www.ebi.ac.uk/eva
https://software.broadinstitute.org/gatk/documentation/article.php?id=7363
https://software.broadinstitute.org/gatk/documentation/article.php?id=7363
https://software.broadinstitute.org/gatk/documentation/article.php?id=3891
https://software.broadinstitute.org/gatk/documentation/article.php?id=3891
https://software.broadinstitute.org/gatk/documentation/article.php?id=3893
https://software.broadinstitute.org/gatk/documentation/article.php?id=7363


broadinstitute.org/gatk/documentation/article.php?id=7363. Accessed 26
Mar 2019.

16. The Broad Institute. GATK | FAQ | Doc #4150 | Should I analyze my samples
alone or together? https://software.broadinstitute.org/gatk/documentation/
article?id=4150. Accessed 26 Mar 2019.

17. Brouard JS, Boyle B, Ibeagha-Awemu EM, Bissonnette N. Low-depth
genotyping-by-sequencing (GBS) in a bovine population: strategies to
maximize the selection of high quality genotypes and the accuracy of
imputation. BMC Genet. 2017;18:32.

18. Larmer SG, Sargolzaei M, Schenkel FS. Extent of linkage disequilibrium,
consistency of gametic phase, and imputation accuracy within and across
Canadian dairy breeds. J Dairy Sci. 2014;97:3128–41.

19. Nielsen R, Paul JS, Albrechtsen A, Song YS. Genotype and SNP calling from
next-generation sequencing data. Nat Rev Genet. 2011;12:443–51.

20. Liu Q, Guo Y, Li J, Long J, Zhang B, Shyr Y. Steps to ensure accuracy in
genotype and SNP calling from Illumina sequencing data. BMC Genomics.
2012;13(Suppl 8):S8.

21. Torkamaneh D, Belzile F. Scanning and filling: ultra-dense SNP genotyping
combining genotyping-by-sequencing, SNP array and whole-genome
resequencing data. PLoS One. 2015;10:e0131533.

22. Kim SY, Li Y, Guo Y, Li R, Holmkvist J, Hansen T, et al. Design of association
studies with pooled or un-pooled next-generation sequencing data. Genet
Epidemiol. 2010;34:479–91.

23. Liu X, Han S, Wang Z, Gelernter J, Yang BZ. Variant callers for next-
generation sequencing data: a comparison study. PLoS One. 2013;8:e75619.

24. Brondum RF, Guldbrandtsen B, Sahana G, Lund MS, Su G. Strategies for
imputation to whole genome sequence using a single or multi-breed
reference population in cattle. BMC Genomics. 2014;15:728.

25. Fang L, Sahana G, Su G, Yu Y, Zhang S, Lund MS, et al. Integrating sequence-
based GWAS and RNA-Seq provides novel insights into the genetic basis of
mastitis and milk production in dairy cattle. Sci Rep. 2017;7:45560

Brouard et al. Journal of Animal Science and Biotechnology           (2019) 10:44 Page 6 of 6

https://software.broadinstitute.org/gatk/documentation/article.php?id=7363
https://software.broadinstitute.org/gatk/documentation/article?id=4150
https://software.broadinstitute.org/gatk/documentation/article?id=4150

	Abstract
	Main text
	Conclusion
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References

