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Abstract

Fluoroacetate producing plants grow worldwide and it is believed they produce this toxic compound as a defence
mechanism against grazing by herbivores. Ingestion by livestock often results in fatal poisonings, which causes
significant economic problems to commercial farmers in many countries such as Australia, Brazil and South Africa.
Several approaches have been adopted to protect livestock from the toxicity with limited success including fencing,
toxic plant eradication and agents that bind the toxin. Genetically modified bacteria capable of degrading
fluoroacetate have been able to protect ruminants from fluoroacetate toxicity under experimental conditions but
concerns over the release of these microbes into the environment have prevented the application of this technology.
Recently, a native bacterium from an Australian bovine rumen was isolated which can degrade fluoroacetate. This
bacterium, strain MFA1, which belongs to the Synergistetes phylum degrades fluoroacetate to fluoride ions and
acetate. The discovery and isolation of this bacterium provides a new opportunity to detoxify fluoroacetate in the
rumen. This review focuses on fluoroacetate toxicity in ruminant livestock, the mechanism of fluoroacetate toxicity,
tolerance of some animals to fluoroaceate, previous attempts to mitigate toxicity, aerobic and anaerobic microbial
degradation of fluoroacetate, and future directions to overcome fluoroacetate toxicity.
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Background
Sodium monofluoroacetate (referred to as fluoroacetate
hereafter), has the chemical formula FCH2COO−Na+,
and is a highly toxic compound primarily used as a
pesticide known commercially as Compound 1080.
Despite having a strong carbon-fluorine bond (one of
the strongest bonds in nature), fluoroacetate appears to
be rather labile in the environment being readily
degraded by different microorganisms [1] or anabolised
by higher organisms. This is in contrast to polyfluorinated
compounds (such as Teflon) which are very recalcitrant
and can persist in the environment for many years [2]. It
is well suited as a pesticide because it is virtually tasteless
and odourless, which enables it to be easily disguised
within bait material targeted towards a specific pest

species [3]. However, due to its non-specific poisoning of
other animals and accidental human ingestion, this pesti-
cide is currently used under strict control by governments
around the world.
Fluoroacetate was first synthesised in the laboratory in

1896 but it was only first isolated from “gifblaar” (a
South African plant) by Marais in 1943 [4]. These plants
were believed to naturally produce this toxic compound
as a defence mechanism against grazing by herbivores.
Ingestion by livestock often results in fatal poisonings,
which causes significant economic problems to commercial
farmers in many countries such as Australia, Brazil and
South Africa [5–8]. In Brazil, 60% of the cattle losses are
due to fluoroacetate poisoning from grazing fluoroacetate-
producing plants [9]. Fluoroacetate toxicity costs the
Australian livestock industry around 45 million dollars
(AUD) annually due to the increased death rates and asso-
ciated productivity impacts [10]. In this paper, we will
focus on the natural fluoroacetate found in plants impact-
ing ruminant livestock industries, mechanism of its
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toxicity, previous attempts to mitigate toxicity, aerobic
and anaerobic microbial degradation of fluoroacetate,
tolerance of some animals to fluoroaceate, and future
directions to overcome fluoroacetate toxicity.

Fluoroacetate in the environment
Fluoroacetate containing plants grow worldwide and
cause sudden death in livestock. The southern continents
of Africa, Australia and South America are the common
locations of these plants. All of the plants containing
fluoroacetate belong to the families Fabaceae, Rubiaceae,
Bignoniaceae, Malpighiaceae and Dichapetalaceae [11].
Fluoroacetate is found in these tropical and subtropical

plants generally at low concentrations although some are
able to accumulate fluoroacetate in high concentrations
[12]. These plants grow on a variety of soil types, including
acidic, heavier soils or sandy loams but rarely in deep sandy
soil [7]. In Africa, most fluoroacetate-accumulating plants
belong to the genus Dichapetalum. The seeds of D. braunii
can contain levels of fluoroacetate up to 8000 mg/kg, which
is the highest ever recorded [13]. Fluoroacetate is also
present in plants from South America, particularly Pali-
courea marcgravii, which can contain levels up to 500 mg/
kg [14]. Other South American plants that are known to
contain fluoroacetate are from the Amorimia genus, which
has lower concentration of fluoroacetate than P. marcgravii
[15]. Although plants from South America may not contain
high concentration of fluoroacetate, they are still

responsible for many livestock deaths due to the high
toxicity of fluoroacetate.
In Australia, about 40 species of plants can generate fluor-

oacetate and most of them belong to the genus Gastrolo-
bium [16]. Later these plants were classified as three genera
Gastrolobium, Oxylobium and Acacia. After reclassification,
many of the “nontoxic” Gastrolobium spp. haven been
transferred to the genus Nemcia and the “toxic” Oxylobium
spp. have all been placed in Gastrolobium [17, 18]. These
fluoroacetate-containing plants are widely distributed in
Australia (Fig. 1). Heart-leaf bush, Gastrolobium grandi-
forum, can contain as much as 2600 mg/kg fluoroacetate,
while the 50% lethal dose (LD50) of fluoroacetate is only
0.4 mg/kg of cattle body weight [12]. Although it contains
less fluoroacetate than some other species, they are respon-
sible for most of the livestock deaths in Australia because of
their high abundance in cattle-producing regions [19].
In South America, especially in Brazil, around 500,000

cattle die every year by poisonous plants which cause
sudden death [20]. Palicourea marcgravii and Amorimia
rigida are the two most common toxic plants in Brazil
[21]. Fluroacetate was found to be the principle toxin in
these two plants [22]. In South Africa, Dichapetalum
cymosum is the third most important poisonous plant
causing livestock deaths particularly during spring and
episodes of drought [23]. The biosynthesis pathway of
fluoroacetate by these plants is still largely unknown. This
is the result of the inability to produce stable fluoroacetate-

Fig. 1 Distribution of fluoroacetate bearings plants in Australia. Black dots Gastrlobium spp., grey dots Acaia georginae, generated from the Atlas
of Living Australia 15/05/2017 (http://www.ala.org.au/)
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degrading plant cell lines [24, 25]. Although a cell-free
extract of Dicepatalum cymosum is able to convert fluoro-
pyruvate to fluoroacetate, researchers could not identify
the mechanism and enzymes required [26]. Analysis of
soils in which some fluoroacetate-accumulating plants are
found show that biosynthesis of fluoroacetate occurs even
when total soil inorganic fluoride is very low [14].
Fluoroacetate biosynthesis seems to be relatively wide-
spread, however some plants clearly have evolved to
accumulate high concentrations, giving them a selective
advantage from predation by animals.
This review will focus mainly on toxicity of fluoroace-

tate but some plants also contain fluorocitrate, fluoroa-
cetone and fluorofatty acid compounds. Fluorinated
natural products, for example, the seeds of Dichapetalum
toxicarium, an indigenous shrub of West Africa, cause
death of animals after ingestion and the symptoms are
similar to fluoroacetate poisoning [27]. The seeds of
D. toxicarium contain up to 1800 μg/g organic fluorine
and the main fluorinated component was ω-fluorooleic
acid (C18:1 F) [28]. Additional fluorofatty acids including
o ~ −fluoro-palmitoleic, -stearic, -linoleic, -arachidic and
-eicosenoic acids and 18-fluoro-9,10-epoxystearic acid
have since been identified [29].
Some bacteria have been identified that can produce

fluoroacetate in the environment. For example the soil
bacterium S. cattleya, possess fluorinase (fluorination
enzyme) which catalyses a nucleophilic substitution re-
action between fluoride ion and S-adenosyl-L-methio-
nine to produce 5′-fluorodeoxyadenosine (FDA). FDA is
then processed to fluoroacetate and 4 -fluorothreonine
(4-FT). By incorporating isotopically labelled glycerol it
has been determined that the C5′ fluoromethyl and C4′

carbon of FDA are converted to fluoroacetate and C3
and C4 of 4-FT. It has also been established that both
hydrogens of the fluoromethyl group of FDA are re-
served in the conversion to the fluoromethyl groups of
fluoroacetate and 4-FT [30] (Fig. 2).

Fluoroacetate toxicity mechanism
The tricarboxylic acid (TCA) cycle is central to cellular
energy production in the mitochondria of higher organ-
isms and fluoroacetate interrupts the TCA cycle. Fluor-
oacetate poisoning has been well-documented in
animals since its application as a pesticide. Following
oral administration and absorption through the gut,
fluoroacetate is converted to fluorocitrate by citrate syn-
thase (EC 4.1.3.7) [31] which strongly binds to the aconi-
tase enzyme (EC 4.2.1.3), that converts citrate to
succinate in the citric acid cycle [31]. This results in the
termination of cellular respiration due to a shortage of
aconitase [32, 33], and an increase in concentration of
citrate in body tissues including the brain [32]. The
build-up of citrate concentration in tissues and blood
also causes various metabolic disturbances, such as acid-
osis which interferes with glucose metabolism through
inhibition of phosphofructokinase, and citric acid also
binds to serum calcium resulting in hypocalcaemia and
heart failure [32, 34–37] (Fig. 3).
Despite a common mechanism of poisoning in all verte-

brates, there are differences in the signs and symptoms of
fluoroacetate toxicity. In general, carnivores (dogs) show
primarily central nervous system (CNS) signs including
convulsions and running movements with death due to
respiratory failure. Herbivores (rabbit, goat, sheep, cattle,
horse) show mostly cardiac effects with ventricular

Fig. 2 Production of 5´-fluorodeoxyyadenosine (FDA) from S-adenosyl-L-l-methionine (Adomet) by Fluorinase reaction (3–4). Formation of Fluoroaceate
(FAc) and 4-fluorothreonine (4-FT) from (4 to 1–2). Incorporation of Isotope labelled Glycerol (5 and 8 to 3)
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fibrillation and little or no CNS signs. The clinical symp-
toms of omnivores similarly consist of both cardiac and
respiratory failure and central nervous system depression
[38].
In the pig (omnivores), the clinical symptoms consist of

ventricular fibrillation, tremors, violent myotonic convul-
sions, and respiratory depression [39]. Moreover, the onset
of these symptoms can vary between animals of the same
species [3]. The symptoms of fluoroacetate poisoning in
cattle consist of urinary incontinence, loss of balance,
muscle spasms, and in-place running lasting 3 to 20 min
or convulsion followed by death of the animal [40]. In
Robison’s [40] report, symptoms were undetected for up
to 29 h following ingestion of fluoroacetate and occurred
just before death, hence the term “sudden death” de-
scribed by some researchers [5]. The clinical symptoms of
fluoroacetate poisoning in sheep are relatively similar to
cattle, including abnormal posturing, urinary incontin-
ence, muscle spasms and convulsions. They are also
known to have severe respiratory distress and extremely
rapid heart rate [39, 41].
Diagnosis is generally made on the basis of verified ex-

posure, clinical signs, necropsy findings and chemical
analysis. Samples for analysis are, vomitus, liver, stomach
or rumen contents and kidney. Increased citric acid
levels in kidney and serum is an indicator of fluoroace-
tate poisoning when correlated with clinical history.
Differential diagnosis can be made amongst compounds
such as strychnine, chlorinated hydrocarbons, plant alka-
loids and lead. A number of other non-specific biochem-
ical changes are suggestive including hyperglycaemia,
hypocalcaemia, hypokalaemia and metabolic acidosis [10].

Fluoroacetate tolerance
Many species of animal possess an innate tolerance to
fluoroacetate even when there is no evidence of evolution-
ary exposure. Dogs and other carnivores and rodents and
many wildlife species are highly susceptible. Mammalian
herbivores have intermediate sensitivity. Reptiles and

amphibians are the most tolerant within the animal king-
dom. Fish are generally more resistant. This tolerance is
likely due to the reduced metabolic rate of these animals.
It has been demonstrated that a lower metabolic rate
results in less fluoroacetate being converted to fluorocitrate
thus allowing more time for excretion and detoxification
[42]. The skink (Tiliqua rugosa) has a metabolic rate about
10 fold less than a rat of similar size, but has approximately
100 fold greater tolerance to fluoroacetate [43]. Mammals
with lower metabolic rate such as the bandicoot also
possess a greater tolerance to fluoroacetate [44].
Interestingly, some Australian animals that live in

areas where there are fluoroacetate accumulating plants
have acquired a remarkable tolerance to fluoroacetate
[45, 46]. The degree of tolerance is most apparent in
herbivores, especially seed eating birds, which are most
likely to have more direct exposure to the toxin com-
pared to carnivorous animals [47]. Other factors which
influence the degree of tolerance within a species or
population may include the length of time exposed to
toxic vegetation, the broadness of both diet and habitat,
the size of the resident habitat and the degree of mobility.
The emu, which is Australia’s oldest seed eating bird, can
be up to 150-times more tolerant than the same species of
emu outside of areas with fluoroacetate-accumulating
plants [48]. This phenomenon has also been observed in
other animals such as the possum [42]. Tolerance to fluor-
oacetate is also demonstrated in insects. Some insects not
only utilise the vegetation in their diet, but some actually
store the toxin, probably in vacuoles, and use it as defence
against predation [49].
The biochemical nature of acquired tolerance to fluor-

oacetate in animals is not fully understood. It is pro-
posed that there are four obvious biochemical factors
that may affect the metabolism of fluoroacetate: (1) the
rate of conversion of fluoroacetate to fluorocitrate; (2)
the sensitivity of aconitase to fluorocitrate; (3) the citrate
transport system in mitochondria, and; (4) the ability to
detoxify fluoroacetate [42, 43]. A study compared two

Fig. 3 Mechanisms of fluoroacetate toxicity
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distant populations of possums, one having prior expos-
ure to fluoroacetate vegetation and the other having no
prior exposure. No differences were found in the
defluorination rate of liver extracts between the two
populations [42]. Despite a number of other studies
attempting to address the biochemical mechanisms for
tolerance and fluoroacetate detoxification, there is still
inadequate information available.
The soil bacterium Streptomyces cattleya is able to

produce both fluoroacetate and fluorothreonine but has
pathways that possibly confer resistance to these com-
pounds [50]. A fluoroacetyl-CoA-specific thioesterase
(FlK) in S. cattleya selectively hydrolyzes fluoroacetyl-
CoA over acetyl-CoA and exhibits a 106-fold higher
catalytic efficiency for fluoroacetyl-CoA compared to
acetyl-CoA [51]. The FlK gene is located in the same
cluster as the C-F bond-forming fluorinase (flA), rais-
ing the probability that FlK-catalyzed hydrolysis of
fluoroacetyl-CoA plays a role in fluoroacetate resist-
ance in S. cattleya by inhibiting the entrance of
fluoroacetyl-CoA into the TCA cycle [52].

Degradation of fluoroacetate
Studies to isolate, purify and characterise fluoroacetate-
detoxifying enzymes from animals have generally been
unsuccessful and contradictory in their findings. None-
theless, it is generally appreciated from early studies that
the vast majority of fluoroacetate is defluorinated within
the liver by an enzyme termed fluoroacetate specific
defluorinase [53, 54]. This enzyme has been purified
from mouse liver cytosol but it is distinct from multiple
cationic and anionic glutathione S-transferase isozymes
[55]. However, there has been no definitive classification
of the enzyme [56]. The enzyme appears to act via a
glutathione-dependent mechanism [57]. The focus of the
most recent studies has been to determine the relationship
between fluoroacetate specific defluorinase and glutathi-
one S-transferase family enzymes to gain a better under-
standing of the mechanism of fluoroacetate detoxification.
Mead and co-workers [58] characterized a glutathione-

dependent dehalogenation pathway in the liver of possum
utilizing fluoroacetate as substrate. In the urine of
fluoroacetate-treated animals, they found S-carboxymethyl-
cysteine which indicates defluorination was catalyzed by an
enzyme of the glutathione S-transferase group.

Microbial aerobic degradation
Contrary to the animal studies on fluoroacetate detoxifi-
cation, microbial degradation of fluoroacetate has been
extensively studied. Moreover, the mechanism for aer-
obic fluoroacetate degradation is well characterised and
documented [59–64]. Microorganisms from the soil have
been identified with ability to aerobically degrade fluor-
oacetate. The bacterial communities involved in

fluoroacetate degradation vary significantly depending
on the areas studied. In Western Australia, species of
Bacillus, Pseudomonas, Aspergillus, Penicillium and
Streptomyces were isolated from soil in a of temperate
climate [64], while Burkholderiaceae, Ancylobacter sp.,
Paenibacillus sp., Staphylococcus sp. and Stenotrophomo-
nas sp. were isolated from the soil of Brazilian areas
where the fluoroacetate-containing plants Mascagnia
rigida and Palicourea aenofusca are found [65].
Microorganisms have also been isolated from bait con-

taining the 1080 poison (fluoroacetate) that is used for
vertebrate pest control [66]. Bacteria, particularly
Pseudomonas fluorescens, were isolated from the 1080
bait when mixed with ground kangaroo meat, while both
bacteria and soil fungi such as Fusorium oxysporum have
been isolated from the bait mixed with oats [66, 67].
The bacteria and soil fungi degraded fluoroacetate in the
presence and absence of another carbon source. How-
ever in the presence of peptone, degradation was higher.
In Western Australia, several microorganisms were iso-

lated from soil with and without previous exposure to
fluoroacetate. These included (Aspergillus fumigatus,
Fusarium oxysporum, Pseudomonas acidovorans, Pseudo-
monas fluorescens 1, an unidentified Pseudomonas sp.,
Penicillium purpurescens and Penicillium restriction.
These microbes can degrade fluoroacetate, presumably
utilising it as a carbon source when grown in solution
(2 to 89%) [67]. Recently, two other fluoroacetate
degrading-bacteria were isolated from the Brazilian caprine
rumen which had the ability to degrade fluoroacetate under
aerobic conditions [68]. The bacteria were closely related to
Pigmentiphaga kullae and Ancylobacter polymorphus.
Fluoroacetate was degraded to fluoride ions, but the end
products containing the carbon atoms from fluoroacetate
were not discussed. Moreover, these bacteria might poten-
tially be facultative anaerobes, and it was speculated that
degradation occurred through the aerobic process.
Walker and Lien [59] were first to identify two

fluoroacetate-degrading enzymes (initially termed haloace-
tate halidohydrolase) from Pseudomonas species and a
fungus Fusarium solani. At the same time, a fluoroace-
tate dehalogenase was isolated from a fluoroacetate-
dehalogenating bacterium in industrial wastewater, and
tentatively named Moraxella sp. strain B [62]. It has
now been reclassified as Delftia acidovorans strain B.
Other soil bacteria which play a role in defluorination
of fluoroacetate are Burkholderia sp. strain FA1, P.
fluorescens, Rhodopseudomonas palustris CGA009 and
different strains of Pseudomonas species [61, 66, 69, 70].
The fluoroacetate dehalogenase enzymes identified in
some of these bacteria appear to degrade fluoroacetate via
a similar mechanism, where an ester is produced as an
intermediate which is hydrolyzed by a water molecule to
form glycolate (Fig. 4).
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In spite of their novel mechanisms, limited work has
been conducted on these enzymes. The biochemical stud-
ies show (Table 1) relatively similar properties between
these dehalogenases. All the bacterial enzymes have opti-
mal activities at a slightly alkaline pH around pH 8.0 to
9.0 [59, 61, 69]. However, defluorinating activities in fungi
have a wider optimal pH range, with pH 7-8 for F. solani
compared to pH 5-8 for F. oxysporium [59, 67].
The thermal stability of these enzymes differs signifi-

cantly depending on the species of the microorganisms.
Fluoroacetate dehalogenase in Pseudomonas sp. from the
New Zealand soil was shown to have higher thermal
stability, approximately 55 °C, than the fluoroacetate deha-
logenase in F. solani [59]. However, this notion of high
thermal stability was not observed in some Psuedomonas
species, P. fluorescens DSM 8341 was shown to have ther-
mal stabilities to 30 °C [69].
The dehalogenases were shown to use water as the

sole co-substrate, and no evidence indicates the involve-
ment of metal ions in their catalytic activity [59, 71].
However, an increase in fluoroacetate degradation activ-
ity with addition of low concentration metals ion such
as Mg2+, Fe2+ and Mn2+ has been demonstrated but
higher concentration of these metals were inhibitory

[69]. Although all the enzymes have a similar degradation
mechanism, the size of these enzymes varies significantly.
Pseudomonas sp. strain A and P. fluorescens enzymes are
presumed to be monomers, and have an estimated
molecular weight of 42 and 32.5 kDa, respectively. Con-
versely Burkholderia sp. FA1 and D. acidovorans strain B
are dimers of two identical subunits with an estimated mo-
lecular mass of 79 and 67 kDa, respectively [61, 72].
All these enzymes release inorganic fluoride from

fluoroacetate, but some also cleave chlorinated and bro-
minated analogues, albeit at slower rates [59, 61, 73]. To
date, D. acidovorans strain B is the only fluoroacetate-
dehalogenating bacterium which harbours two haloace-
tate dehalogenase enzymes; Fluoroacetate dehalogenase
H-1 (dehH1) and fluoroacetate dehalogenase H-2
(dehH2) which are encoded by two different genes on its
65 kb plasmid pUO1. Fluoroacetate dehalogenase H-1
acts predominately on fluoroacetate, while fluoroacetate
dehalogenase H-2 has a broader range of substrate
specificity for haloacetate, but not fluoroacetate [73].
Two other fluoroacetate dehalogenase enzymes which

were purified and tested for their substrate specificities are
fluoroacetate dehalogenases from Burkholderia sp. FA1
(Fac-dex) and R. palustris CGA009 (RPA1163) [61, 70].
When compared to DelH1 of D. acidovorans strain B, the
two fluoroacetate dehalogenases were more specific to
fluoroacetate than to other halogenated analogues [61, 70].
To date, the mechanism of fluoroacetate degradation

by fluoroacetate dehalogenase has been extensively stud-
ied in Burkholderia sp. strain FA1 and D. acidovorans
strain B [63, 70, 72, 74–76]. Several catalytic regions
were identified by comparing the amino acid sequence
with that of a haloalkane dehalogenase from Xanthobacter
autotrophicus [60], and the specific amino acids have been
identified by mutagenic studies [63]. It has been found
that the active site of the H-1 enzyme contains a con-
served Asp105 and His272.
In the initial steps of the pathway for fluoroacetate

degradation to glycolate, the carboxylate group of
Asp105 acts as a nucleophile to form an ester

Table 1 Physical and biochemical properties of fluoroacetate dehalogenase isolated from different aerobic microorganisms

Microbial source Number
of genes a

Gene
location

Native enzyme
sizes,kDa

Subunit
Composition

Optimal pH Optimal
temperature

Reference

Delftia acidovorans strain B 2,deH1, deH2 Plasmid 67 Dimer 9.5 50 [60]

Pseudomonas fluorescens DSM 8341 N.D. N.D. 32.5 monomer 8 30 [69]

Burkholderia sp. FA1 1,fac-dex Chromosome 79 Dimer 9.5 N.D. [61]

Rhodopseudomonas palustris CGA009 1,RPA1163 b Chromosome N.D Dimer N.D. N.D. [70]

Pseudomonas sp. strain A N.D. N.D. 42 Monomer 9 50 [62]

Pseudomonas sp. N.D. N.D. 62 N.D. 8 N.D. [59]

Fusarium solani N.D N.D. 62 N.D. 7-8 N.D. [59]
a gene names were described in parentheses
b gene name identified in the form of locus tag

Fig. 4 The mechanism of dehalogenation by fluoroacetate
dehalogenase in Delftia acidovorans
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intermediate around the beta carbon atom of fluoroace-
tate to displace the fluorine atom [63, 75]. Then the
acetate intermediate is hydrolysed by a deprotonated
water molecule formed by a conserved His272. The net
result of the reaction is a displacement of a fluoride ion
producing glycolate and regeneration of the carboxylate
group belonging to Asp105 (Fig. 4).
The catalytic sites of D. acidovorans strain B are

also conserved as Asp105 and His271 in Burkholderia
sp. strain FA1 [72]. Moreover, release of fluoride was
found to be stabilised by the hydrogen bonds to
His149, Trp150 and Tyr212 of Burkholderia sp. strain
FA1 [75]. This stabilisation effect reduces the activa-
tion barrier, where the energy required to cleave the
C-F bond was calculated to be only 2.7 kcal/mol, des-
pite the strong C-F bond. A similar structure was also
noted in the fluoroacetate dehalogenase from R.
palustris CGA009 [70].
Due to the fact that the fluoroacetate dehalogenase of

Burkholderia sp. strain FA1 has a preference for fluoroa-
cetate compared to chloroacetate, the substrate specificity
was tested using this enzyme [76]. Using docking stimula-
tions and quantum mechanics/molecular mechanics
(QM/MM), Nakayama and colleagues [76] managed to
show that fluoroacetate and chloroacetate were incorpo-
rated into the active site of fluoroacetate dehalogenase in
different conformations. Moreover, the hydrogen bonds of
the chloroacetate-enzyme complex do not sufficiently
reduce the activation barrier for chloroacetate, which is in
a good agreement with the observed high specificity of
this enzyme towards fluoroacetate.
Li et al. [77] worked on the structural requirements

for defluorination by fluoroacetate degalogenase or
FAcD (from bacterium Rhodopseudomonas palustris
CGA009, PDB code 3R3V) in enabling defluorination
rather than dechlorination. They have shown that con-
formational variations relating to neutrally charged histi-
dine are Hsd155 and Hse155 may cause differences in
enzymatic preference. They found that the structure
FAcDHse155 is more energetically feasible than the struc-
ture FAcDHsd155 for enzyme FAcD, whereas FAcDHse155
prefers defluorination rather than the dechlorination
process. Besides the residues Arg111, Arg114, His155,
Trp156, and Tyr219, the important role of residues His109,
Asp134, Lys181, and His280 during the defluorination
process were also emphasized in their experiment. In
addition, they found that conformational variations
may cause different enzymatic preferences toward com-
petitive pathways.

Microbial anaerobic degradation
Compared with aerobic degradation of fluoroacetate, there
is a lack of studies on the isolation of anaerobic microor-
ganisms that have the ability to degrade fluoroacetate.

However recently, a native bacterium from the Australian
bovine rumen was isolated using anaerobic agar plates
containing fluoroacetate as a carbon source [1]. This bac-
terium, strain MFA1, which belongs to the Synergistetes
phylum has the ability to degrade fluoroacetate, producing
fluoride and acetate, as opposed to glycolate from aerobic
fluoroacetate-degrading bacteria. Similar observations
were noted from other studies on anaerobic degradation
of trifluoroacetic acid in anoxic sediments, where acetate
was produced from the degradation of this compound
[78, 79]. Moreover, similar mechanisms were also noted
with anaerobic dechlorinating bacteria. An anaerobic
microbial enrichment culture containing Dehalococcoides
ethenogenes 195 was capable of completely dechlorinating
tetrachloroethene to chlorides and ethene [80].
Acetate is not used by strain MFA1 for growth, unlike

aerobic fluoroacetate dehalogenating bacteria which util-
ise the end product, glycolate, as an energy source.
Strain MFA1 appears to degrade fluoroacetate via the
reductive dehalogenation pathway utilising it as terminal
electron acceptor rather than a carbon source. Reductive
dehalogenation occurs in anaerobic bacteria, where a
halogen substituent is released from a molecule with
concurrent addition of electrons to that molecule [81].
There appeared to be a consumption of hydrogen and

formate during the growth of strain MFA1 in fluoroace-
tate [1]. This observation was also noted from reductive
dehalogenation of other halogenated compounds in
anoxic environment. A net loss of hydrogen was measured
from anoxic sediment microcosms dosed with various
halogenated compounds [82], and hydrogen was con-
sumed by a Dehalococcoides ethenogenes strain 195 with
degradation of tetrachloroethene and vinyl chlorides to
ethene [83]. However, there is not yet any enzyme identi-
fied in strain MFA1 responsible for the degradation of
fluoroacetate.

Biotechnological-derived methods for
fluoroacetate detoxification in cattle
There have been several attempts to reduce the toxic
effects of fluoroacetate in ruminant livestock production.
A biotechnological approach to the problem did provide
some evidence that detoxifying fluoroacetate by micro-
bial metabolism was possible in the rumen [84]. Gregg
and colleagues [84] transformed the rumen bacterium
Butyrivibrio fibrisolvens with the fluoroacetate dehalo-
genase gene (DelH1) from Delfitia acidovorans strain B,
and the recombinant bacteria demonstrated active deha-
logenation of fluoroacetate in vitro.
The fluoroacetate dehalogenase H1 gene from D.

acidovorans strain B was incorporated into the plasmid
pBHf for transfection into Butyrivibrio fibrisolvens [84].
The transfection was relatively stable, with the pBHf
plasmid remaining detectable after 500 generations
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under non-selective conditions. Gregg and colleagues
[84] also performed an in vitro study, where a growing
population of the recombinant bacterium was able to
release fluorine from fluoroacetate at the rate of
9.9 nmol/min/mg [84]. However, dehalogenase activity
was not detected outside the bacterial cells, and so it
was predicted that fluoroacetate in the media diffused
readily into the cells [84]. The genetically modified B.
fibrisolvens strain expressed dehalogenase enough to
detoxify fluoroacetate from the surrounding medium at
a rate of 10 nmol/(min·mg) bacterial protein in in vitro
testing. The plasmid that carries the dehalogenase gene
appears to be very stable and was retained by 100% of
the transformed bacteria after 500 generations of
growth in non-selective media [84].
In an in vivo study conducted by Gregg and colleagues

[85], one group of sheep were inoculated with the
recombinant bacteria before being fed fluoroacetate-
injected snow-peas, while a control group was not inoc-
ulated with the recombinant bacteria. This study showed
a significant difference between groups, where the inoc-
ulated sheep appeared to be relatively normal despite a
0.4 mg dose of fluoroacetate per kg of animal, while the
control sheep died of the fluoroacetate poisoning [85].
The modified bacteria were able to colonise the rumens
of two sheep and were shown to persist for an experi-
mental period of 5 months.
In another in vivo study conducted using 20 Angus

steers, animals orally inoculated with seven different
strains of Butyrivibrio fibrisolvens (B. fibrisolvens 0/10,
10/1, 85, 149/83, 156, 291, 52/10 strains respectively)
containing the plasmid (pBHf)-bearing the fluoroacetate
dehalogenase gene DelH1 did not develop the acute
symptoms of fluoroacetate toxicity compared to the con-
trols [86]. PCR analysis of rumen fluid collected at 7, 12
and 15 days post-inoculation confirmed the presence of
the recombinant bacteria in the rumen at 104 to 107

cells/ mL. Post-mortem PCR analysis of the rumen fluid
from all test animals showed approximately 106 colony
forming units (CFU) per mL of recombinant B. fibrisolvens
for several of the strains, 20 days after inoculation [86].
The dose of recombinant bacteria used was able to signifi-
cantly diminish the effects of fluoroacetate poisoning.
Therefore, these in vivo tests showed significant protection
of livestock from fluoroacetate using the recombinant
bacteria approach. However, in Australia, this technology
has not been adopted because approval has not been
granted due to strict government regulations regarding re-
lease of genetically modified organisms.
In order to prevent animals from unintentional fluor-

oacetate poisoning, one of the therapies involves the
adsorption of fluoroacetate with activated charcoal or
other resins. These agents were investigated for their
abilities to absorb fluoroacetate from gastrointestinal

fluid, thus potentially preventing the conversion of fluor-
oacetate to fluorocitrate [87]. Moreover, the doses of
2 g/kg of such resins are impractical for preventing
fluoroacetate poisoning in livestock. Acetate donor ther-
apy has also been investigated as a treatment for poison-
ing. Early studies on the effect of fluoroacetate poisoning
revealed that fluoroacetate inhibits acetate metabolism
in poisoned animals [88]. This led to other studies to
investigate whether acetate in the animal at high concen-
tration would provide protection to the animals from
fluoroacetate poisoning [89]. This treatment was only
effective when provided immediately after the ingestion
of the toxin and therefore not practical for treating grazing
livestock due to limited surveillance of animals in a range-
land production system. In some cases, animals have died
after consumption of fluoroacetate due to the severity of
symptoms caused by the depletion of tissue citrate. There-
fore, by relieving the symptoms of fluoroacetate poisoning
using citrate therapy, researchers have been able to
enhance the survival rate of poisoned animals [90]. How-
ever, these symptom-reversing therapies would need to be
administrated immediately to the poisoned animals to
show any effect. Furthermore, some of the poisoned
animals in these studies died of other complications even
though the major symptoms were suppressed [90].

Rumen microbial transfer
Amorimia pubiflora is one of the main causes of fluoroa-
cetate poisoning in Brazil. In a recent study researchers
were able to induce resistance to toxicity by feeding
non-toxic doses of this plant to sheep. In addition trans-
ferring rumen contents from the resistant animals to naïve
sheep was able to confer protection from toxicity [91].

Conclusions
To date, attempts to prevent fluoroacetate toxicity have
been unsuccessful except for physically preventing
access to toxic plants in the grazing environment. Ani-
mal house studies have demonstrated in principle that
rumen bacteria engineered to hydrolyse the toxin could
prevent toxicity but approvals for the release of these
organisms into the environment are unlikely due to
current government regulatory restrictions. However
the recent discovery of a naturally occurring rumen
bacterium (Synergistetes strain MFA1) capable of de-
grading fluoroacetate may provide a biotechnological
solution to the problem of toxicity in rangeland ani-
mals. Even though Synergistetes strain MFA1 appears
to be ubiquitous throughout the digestive systems of
animals such as emus, kangaroos and other cattle, they
are present in low numbers which may limit their abil-
ity to protect the animal from a lethal dose of the toxin
[1]. However it is possible that there are other rumen
bacteria able to degrade fluoroacetate which are at
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higher abundance or could act in concert with other
rumen microorganisms to ameliorate the full impact of
the toxin. Therefore, further surveys for the presence of
other fluoroacetate degrading rumen bacteria and stud-
ies on increasing the numbers of these bacteria and ex-
pression of the genes responsible for degrading the
toxin seems a logical approach for developing a prac-
tical strategy to protect livestock from fluoroacetate
poisoning. Recent studies demonstrating tolerance to
toxicity by adapting the rumen microbiota to non-toxic
doses of fluoroacetate further supports a ‘rumen detoxi-
fication’ approach.
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