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Abstract

Mammalian spermatogenesis contains three continuous and organized processes, by which spermatogonia
undergo mitosis and differentiate to spermatocytes, follow on meiosis to form haploid spermatids and ultimately
transform into spermatozoa. These processes require an accurately, spatially and temporally regulated gene
expression patterns. The microRNAs are a novel class of post-transcriptional regulators. Cumulating evidences have
demonstrated that microRNAs are expressed in a cell-specific or stage-specific manner during spermatogenesis. In
this review, we focus on the roles of microRNAs in spermatogenesis. We highlight that N6-methyladenosine (m6A)
is involved in the biogenesis of microRNAs and miRNA regulates the m6A modification on mRNA, and that specific
miRNAs have been exploited as potential biomarkers for the male factor infertility, which will provide insightful
understanding of microRNA roles in spermatogenesis.
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Background
Male fertility is dependent upon the successful perpetu-
ation of spermatogenesis that is a highly organized process
of germ cell differentiation occurring within the seminifer-
ous tubules in the testes. Spermatogonial stem cells (SSCs)
are a subset of undifferentiated spermatogonia that are
capable of self-renewal to maintain the pool of SSCs or
differentiation to give rise to spermatogenic lineage, thus
supporting the continuous production of spermatozoa.
Spermatogenesis initiates once SSCs enter differentiation
process [1]. The spermatogonia go into the meiotic phase
and become spermatocytes. After a long-lasting meiosis I,
preleptotene spermatocytes transform into second sper-
matocytes and enter meiosis II to produce haploid round
spermatids [2], which undergo spermiogenesis including
acrosomal biogenesis, flagellum development, chromatin
condensation, cytoplasmic reorganization and exclusion
[3]. Ultimately, the round spermatids transform into
spermatozoa, which are released into the lumen of semin-
iferous tubules [4].
This highly organized spermatogenesis requires accur-

ate, spatial and temporal regulation of gene expression
governed by transcriptional, post-transcriptional and

epigenetic processes [5, 6]. More than a thousand of pro-
tein coding genes that are involved in the spermatogenesis
have been identified [7, 8]. However, the mechanisms that
mediate the expression of these spermatogenesis-related
genes have not been fully uncovered. The microRNAs
(miRNAs, miR), small (~22 nucleotides) single-strand
noncoding RNAs, are linked to cell proliferation, differen-
tiation and apoptosis [9–11]. Transcriptome data indicate
that miRNAs are extensively transcribed during spermato-
genesis. The miRNAs are differentially expressed in a cell-
specific and step-specific manner ([12, 13], Chen et al.
unpublished data). Some miRNAs are specifically
expressed in certain type of male germ cells, while the
others are universally expressed among different types of
cells in the testes. Growing evidences have showed that the
miRNAs are essential for male germ cell development and
differentiation [14–17]. A few recent reviews have reported
the roles of miRNAs in spermatogenesis and fertility [5, 6,
10, 11]. In this article, we briefly summarize the most recent
progress of miRNAs in the regulation of spermatogenesis.

miRNA biogenesis
At present, there are 1881 miRNA loci having been
annotated in the human genome in the miRNA database
(http://www.mirbase.org). Analysis has revealed that 1%
of the human genome is miRNA genes [18–20], of
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which about half of miRNA genes located in the introns
(intronic miRNAs) of host genes [21]. However, some
intronic miRNAs exhibit low correlated expression level
with their host genes. It is likely these miRNAs are tran-
scribed from unique transcription units independent of
host genes [22–24].
The biogenesis of miRNAs is modulated at a few levels,

including miRNA transcription, processing by Drosha and
Dicer, RNA methylation, uridylation and adenylation
(Fig. 1) [25–27]. The initial transcripts are termed the pri-
mary miRNAs (pri-miRNAs) that are variable in length
from several hundreds to thousands of nucleotides [25].
The pri-miRNAs are methylated by the methyltransferase
like 3 (METTL3), marking them for recognition and
processing by the DiGeorge syndrome critical region 8
(DGCR8) [28]. The pri-miRNAs are thus processed by
drosha ribonuclease III (Drosha) and its cofactor DGCR8
into ~ 70 nucleotides (nt) long miRNA precursor (pre-
miRNAs) [29, 30]. The pre-miRNAs are then transported
into the cytoplasm by exportin 5 (EXP5) in accompanied
with Ran-GTP [31, 32] and cleaved by Dicer into ~22 base
pair (bp) double-strands RNAs (dsRNAs) [33–35]. These
dsRNAs are loaded onto an Argonaute protein (AGO) so
as to form miRNA-induced silencing complex (miRISC),
in which one strand of the ~22-nt RNA duplex remains in
AGO as a mature miRNA, whereas the other strand is de-
graded [36]. Interestingly, Alarcon et al. recently reported
that RNA-binding protein heterogeneous nuclear ribonu-
cleoprotein A2/B1 (HNRNPA2B1) binds m6A-bearing
pri-miRNAs, interacts with DGCR8 and thus facilitates

the processing of pri-miRNAs [37]. In consistent with this,
loss of HNRNPA2B1 or depletion of METTL3 led to
concomitant accumulation of unprocessed pri-miRNAs
and decrease of the global mature miRNAs [28, 37].
Therefore, the methylation mark acts as a key post-
transcriptional modification that enhances the initiation of
miRNA biogenesis.

Mechanisms of miRNA action
Usually, a specific base-pairing between miRNAs and
mRNAs induces mRNA degradation or translational
repression [38]. In mammals, the overall complementar-
ity between a miRNA and its target is usually imperfect,
which allows each miRNA to potentially regulate mul-
tiple RNAs [39]. It is estimated that one miRNA may
target as many as 400 genes on average [19]. Conversely,
the expression of a single gene can also be modulated by
multiple miRNAs [40].
Interestingly, it has been reported recently that miR-

NAs regulate the m6A modification in mRNAs via a se-
quence pairing mechanism. As a result, manipulation of
miRNA expression leads to change of m6A modification
through modulating the binding of METTL3 to mRNAs
(Fig. 1) [41]. The m6A modification, in turn, modulates
mRNA metabolism and thus is another key post-
transcriptional control of gene expression [37, 42, 43].
Evidences have indicated that m6A methylation deter-
mines stem cell fate by regulating pluripotent transition
toward differentiation [41, 44, 45]. Intriguingly, deficiency
of ALKBH5, a m6A demethylase, leads to aberrant

Fig. 1 Biogenesis and function of miRNAs
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spermatogenesis and apoptosis in mouse testis through
the demethylation of m6A on mRNAs [46].

Functions of miRNAs in spermatogenesis
Conditional Dicer knockout mouse models
The overall importance of miRNA signaling for regu-
lation of spermatogenesis has been demonstrated
using conditional knockout of Dicer in germ cells.
Dicer1 ablation in prospermatogonia just before birth
using Ddx4 promoter-driven Cre expression led to an
alteration in meiotic progression, significant increase
of apoptosis in pachytene spermatocytes, a reduced
number of round spermatids and morphological
defects in spermatozoa [47]. Moreover, Ngn3 is
expressed endogenously in type A spermatogonia
starting from postnatal d 5 [48, 49]. In the mouse
model of selective deletion of Dicer1 in type A sperm-
atogonia by Ngn3 promoter-driven Cre, the first clear
defects were displayed in haploid round spermatids.
The spermiogenesis was severely compromised [50].
Similarly, conditional depletion of Dicer1 using the
Stra8Cre transgene in early spermatogonia resulted in
the comparable phenotype to the Ngn3Cre-driven
Dicer1 deletion [51, 52]. In addition, deletion of Dicer1
in haploid spermatids using the protamine 1 (Prm1)-Cre
transgene led to abnormal morphology in the elongated
spermatids and spermatozoa [53]. But, the Prm1Cre-
Dicer1 knockout caused a less severe phenotype compared
to those in which Dicer1 was deleted from prospermato-
gonia and spermatogonia [53].

Collectively, the earlier the ablation of Dicer occurs,
the more severe side effects on spermatogenesis are
found. Therefore, miRNA-mediated post-transcriptional
control is an important regulator for spermatogenesis.

The roles of miRNAs in SSC self-renewal and differentiation
SSCs are the foundation of spermatogenesis that in-
volves a delicate balance between self-renewal and differ-
entiation of SSCs to ensure the lifelong production of
spermatozoa. In the testes, the SSCs reside in a unique
microenvironment or ‘niche’. The niche factor glial cell
line-derived neurotropic factor (GDNF) is the first well-
defined paracrine factor that promotes SSC self-renewal
[54]. GDNF signaling acts via the RET tyrosine kinase
[55] and requires a ligand-specific co-receptor GFRα1
[56] in mouse SSCs [57]. Evidences have shown that
through the PI3K/AKT-dependent pathway [58] or the
SRC family kinase (SFK) pathway [59], GDNF regulates
the expression of the transcription factors B cell CLL/
lymphoma 6 member B (BCL6B), ETS variant 5 (ETV5),
DNA-binding protein 4 (ID4), LIM homeobox 1 (LHX1)
and POU class 3 homeobox 1 (POU3F1) to drive SSC
self-renewal [59].
miRNAs conduce maintenance of the pool of SSCs. It

has been shown that miR-20 along with miR-21, −34c,
−135a, −146a, −182, −183, −204, −465a-3p, −465b-3p,
−465c-3p, −465c-5p and −544 were preferentially
expressed in the SSC-enriched population (Fig. 2) [60,
61]. Importantly, miR-20, miR-21 and miR-106a contrib-
ute to maintenance of mouse SSC homeostasis [61].

Fig. 2 The expression of associate miRNAs in testicular cells
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miR-135a mediates the maintenance of rat SSCs by
regulating FOXO1 that promotes high levels of Ret pro-
tein on the cell surface of SSCs [62]. Moreover, miR-544
regulates self-renewal of goat SSCs by targeting the pro-
myelocytic leukemia zinc finger gene (PLZF), which is
the first transcription factor to be identified as being in-
volved in SSC self-renewal [63]. Similarly, miR-224 regu-
lates mouse SSC self-renewal via modulating PLZF and
GFRα1 [64]. Interestingly, miR-34c is expressed in goat
SSCs and promotes SSC apoptosis in a p53-depemdent
manner [65]. Recently, it was found that miR-204 was
involved in the regulation of dairy goat SSC proliferation
via targeting Sirt1 [66]. Collectively, miRNAs are in-
volved in regulating SSCs fate.
On the other hand, some miRNAs have been identified

to mediate spermatogonia differentiation. It is well-known
that retinoic acid (RA) directs the sequential programs of
spermatogonial differentiation and the entry into meiosis
[67, 68]. miR-146 [69], miR-let7 family miRNAs [70],
miR-17-92 and miR-106b-25 clusters [71] are downregu-
lated during RA-induced spermatogonial differentiation.
Importantly, male germ cell-specific knockout of miR-17-
92 cluster resulted in the reduced number of SSCs and
spermatogonia, and impaired spermatogenesis [71, 72].
Interestingly, exposure to RA downregulates miR-221/222
expression, while GDNF upregulates miR-221/222 abun-
dance. Over-expression of miR-221/222 in undifferenti-
ated spermatogonia made them resisting to RA-induced
transition into c-kit-positive differentiated spermatogonia
[73]. In addition, miR-34c promotes SSC differentiation and
meiosis process by targeting NANOS2 and up-regulating
meiosis regulated genes Stra8, Scp3 and Dazl [74]. Taken
together, miRNAs are related to the post-transcriptional
regulation of spermatogonia differentiation.

The roles of miRNAs in meiosis and spermiogenesis
Growing evidences have also demonstrated that specific
miRNAs regulate meiosis (Fig. 2). The expression of
miR-449 cluster is abundant and is upregulated upon
meiotic initiation during testis development and in adult
testes. The expression pattern of the miR-449 cluster is
similar to that of miR-34b/c. Moreover, miR-34b/c and
miR-449 cluster share the same seed region and thus
target same sets of mRNAs [75–78]. Depletion of either
miR-34 cluster or miR-449 cluster displays no apparent
defect in male germ cell development. However, simul-
taneous knockout of these two clusters led to sexually
dimorphic and infertility, suggesting that miR-34b/c
and the miR-449 cluster function redundantly in the
regulation of spermatogenesis [71]. Furthermore, miR-18,
one of the miR-17-92 cluster, is abundantly expressed in
spermatocytes. miR-18 targets heat shock factor2 (Hsf2),
which is a critical transcription factor for spermatogenesis

[79]. Finally, miR-34b-5p regulates meiotic progression by
targeting Cdk6 [80].
A unique chromatin remodelling occurs during sperm-

atogenesis when histones are replaced by DNA packing
proteins, such as transition proteins (TPs) and protamines
(PRMs), which are exclusive to male germ cells [81, 82].
In the post-mitotic germ cells, the timely expression of
TPs and PRMs is prerequisite for compaction and con-
densation of chromatin during spermiogenesis [83]. To
secure this timed expression pattern, Tp and Prm are sub-
jected to an efficiently post-transcriptional control. It has
been demonstrated that miR-469 suppresses the transla-
tion of TP2 and PRM2 by targeting mRNA of Tp2 and
Prm2 in pachytene spermatocytes and round spermatids
[84]. On the contrary, miR-122a that is abundantly
expressed in late-stage male germ cells reduces the Tp2
mRNA expression by RNA cleavage [85].
Although the majority of miRNAs disappear during

spermiogenesis, the sperm born miRNAs have also
been demonstrated to play important roles. miR-34 is
present in mouse spermatozoa and zygotes but not in
the oocytes or in embryos beyond the one-cell stage
[86]. Upon fertilization, miR-34c is transferred from
spermatozoa to zygote where it reduces the expression
of Bcl-2 and p27, leading to S-phase entry and the first
cleavage. Moreover, injection of miR-34c inhibitor into
the zygotes inhibits DNA synthesis and suppresses the
first cleavage division, suggesting that the sperm-borne
miR-34c is required for zygote cleavage [86]. In
addition, dysregulation of miR-424/322 induces DNA
double-strand breaks in spermatozoa [87]. Importantly, a
set of sperm miRNAs are differentially expressed in
asthenozoospermic and oligoastheno- zoospermic males
compared with normozoospermic males [88, 89]. Further-
more, miR-151a-5p is abundant in severe asthenozoosper-
mia cases compared with healthy controls and participates
in mitochondrial biological functions [53, 90]. Therefore,
specific miRNAs have been exploited as potential bio-
markers for male factor infertility [91].

miRNAs in testicular somatic cells
Spermatogenesis is supported by the testicular Sertoli
cells, peritubular myoid (PTM) cells and Leydig cells
[92–94]. The extrinsic factors derived from these
somatic cells trigger specific events in germ cells that
dictate or influence spermatogenesis. It has been
shown that miRNAs are highly abundant in Sertoli
cells (Fig. 2) [12, 95, 96]. MiR-133b and miR-202 are
involved in pathogenesis of azoospermia or Sertoli-
cell-only syndrome [97, 98]. Importantly,conditional
depletion of Dicer1 from Sertoli cells, using the Anti-
Müllerian hormone (Amh) promoter-driven Cre in
mice, results in disrupted spermatogenesis and pro-
gressive testis degeneration, indicating that miRNAs
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in Sertoli cells play critical roles in spermatogenesis
[99, 100]. Specifically, miR-133b promotes the prolifer-
ation of human Sertoli cells by targeting GLI3 and
mediating expression of Cyclin B1 and Cyclin D1 [97].
Moreover, miR-762 promotes porcine immature
Sertoli cell growth via the ring finger protein 4 (RNF4)
[101].
FSH and androgens are fundamentally important for

spermatogenesis. To elucidate the molecular mecha-
nisms by which FSH and androgen act in the Sertoli
cells, Nicholls et al. [102] investigated the expression
and regulation of micro-RNAs (miRNAs). The authors
have found that a subset of miRNAs were up-
regulated after hormone suppression in rat model and
in vitro culture of primary rat Sertoli cells. Interest-
ingly, Pten, an intracellular phosphatase, and Eps15, a
mediator of endocytosis, were down-regulated by the
withdrawal of hormones [102]. In consistent with it,
overexpression of miR-23b in vitro resulted in de-
creased translation of PTEN and EPS15 protein. Simi-
larly, by using androgen suppression and androgen
replacement, Chang et al. [53] identified that androgen
regulated the expression of several microRNAs in
mouse Sertoli cells [103]. One of the miRNAs targets
found in this study is desmocollin-1 (Dsc1), which
plays an essential role in cell-cell adhesion in epithelial
cells [104]. On the other hand, elevated estradiol level
is associated with male infertility [105]. Evidences indicate
that estradiol regulates proliferation of Sertoli cells in a
dose-dependent manner, in which miR-17 family and
miR-1285 are involved in the regulation [106, 107].
Collectively, miRNA transcription is a new paradigm in
the hormone dependence of spermatogenesis.
Leydig cells are responsible for androgen production

that is essential for sperm production [108]. Basic
fibroblast growth factor (bFGF) promotes the develop-
ment of stem Leydig cells and inhibits LH-stimulated
androgen production by regulating miRNAs [109].
Interestingly, miR-140-5p/140-3p control mouse Leydig
cell numbers in the developing testis. Deletion of
miR-140-5p/miR-140-3p results in an increase of num-
ber of Leydig cells, indicating that the miRNAs are likely
to regulate the expression of factors produced by Sertoli
cells that regulate differentiation of Leydig cells [110].
Collectively, these findings indicate that miRNAs regu-

late the development and functions of Sertoli cells and
Leydig cells, which create the niche for SSCs and thus
provide structural and nutritional support for germ cells.
Therefore, miRNAs in somatic cells play important roles
in spermatogenesis.

Conclusion and perspectives
Extensive and accurate regulation of gene expression is
prerequisite for spermatogenesis. miRNAs are expressed

in a cell-specific or stage-specific manner during sperm-
atogenesis. However, the roles and underlying mecha-
nisms of many of those miRNAs in spermatogenesis
remain largely unknown. Future studies should primarily
focus on uncovering the roles of germ-cell specific miR-
NAs in spermatogenesis. The powerful single-cell small
RNA sequencing would help to more accurately profile
the miRNAs for certain type of germ cells. Meanwhile,
the establishment of long-term culture of SSCs and in
vitro induction of differentiation of male germ cells
make it possible to elucidate the role of a certain miRNA
or miRNA cluster in vitro. The application of CRISPR/
Cas9 system and conditional knockout strategies would
speed up the understanding of miRNA functions. Sec-
ondly, growing evidences have been demonstrated that
some specific miRNAs are preferentially expressed in
testicular somatic cells. But it is not clear whether these
miRNAs act as secreted paracrine factors in the SSC
niche, or whether they indirectly mediate the secretion
of growth factors, GDNF for instance, which then affect
germ cells. More somatic cell expressed miRNAs are
needed to be functionally characterized. Thirdly, it has
been demonstrated that some transcription factors pro-
mote SSC self-renewal (for example, BCL6B, BRACHY-
URY, ETV5, ID4, LHX1, and POU3F1), while several
transcription factors stimulate spermatogonia differenti-
ation (DMRT1, NGN3, SOHLH1, SOHLH2, SOX3, and
STAT3) [111]. However, it is unclear which and how
miRNA/miRNA cluster regulates the expression of these
transcription factors. Fourthly, it has been discovered re-
cently that RNA methylation is involved in pri-miRNA
processing [28, 37], opening the door for exploring RNA
methylation in the biogenesis and function of the miR-
NAs. Future research will pay increasing attention on
the understanding of biological functions of epigenetic
changes (or marks) during germ cell development.
Finally, specific miRNAs in spermatozoa or seminal
plasma will be exploited as potential biomarkers for
male factor infertility. The annotation of the miRNAs
and the elucidation of their regulating mechanisms in
pathogenesis will provide insight into the etiology of
male sterility and infertility. Together, uncovering these
questions will shed new light on the pivotal roles of
miRNA in spermatogenesis and fertility.
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