Skip to main content

Table 3 Effects of citrus pectin in the intestinal cell and animal models

From: Role of omega-3 polyunsaturated fatty acids, citrus pectin, and milk-derived exosomes on intestinal barrier integrity and immunity in animals

Model of study

Stress by

CPn(s) assessed

Immune response and morphological changes

Reference

In vitro

 Human T84 cells

Phorbol esters

CPn (DM30%, DM56%, DM74%)

↑TEER

[114]

 Human Caco-2 cells

Salmonella typhimurium (pathogen), Listeria monocytogenes (pathogen), Lacticaseibacillus casei (probiotic), Bifidobacterium lactis (probiotic)

CPn or citrus residues after juice/pectin extraction

↓(IL-8, pathogen adhesion and invasion); ↑probiotic adhesion

[33]

 Mouse CMT93 cells

Citrobacter rodentium

CPn (DM32%, DM59%, DM64%)

↓(Pathogen adhesion, lucifer yellow flux); ↑TEER

[113]

 Porcine IPEC-J2 cells

Non-stimulated

Fermented citrus pulp

↓(TLR4, CLDN-1); ↑NOD1

[124]

In vivo

 Rats

Non-stimulated

CPn

↑(Ki67+ cells, intestinal length and weight, cecum SCFAs, mucosal wet weight, protein and DNA content)

[125]

 Rats

Methotrexate-colitis

CPn

↓(Organ water content, MPO, intestinal permeability, bacterial translocation); ↑(mucosal protein, DNA and RNA content)

[126]

 Mice

Acetic acid-colitis

CPn

↓(ROS, MPO, granulocyte adhesion, colon damage)

[127]

 Mice

Doxorubicin-ileitis

CPn (DM7%)

↓(TNF-α, MCP-1, CXCL1, IL-6, inflammatory cell infiltration, crypt cell apoptosis); =(IL-10, cecum SCFAs)

[32]

 Mice

DSS-colitis

CPn or citrus residues after juice extraction

↓(TNF-α, IL-1β, IL-16, iNOS, ICAM-1, colon weight/length ratio); ↑(MUC3, ZO-1, OCLN)

[128]

 Mice

DSS-colitis

CPn (DE68.01 ± 0.43%, DE41.61 ± 0.12%, DE38.09 ± 0.78%)

↓(IL-6, IL-17, MPO, FD4/LPS flux, epithelial erosion, ulceration, inflammatory cell infiltration, colon weight/length ratio); ↑(ZO-1, goblet cell abundance, crypt and villus structure); =OCLN

[31]

 Mice

DSS-colitis

CPn, CPn methanol extracts or methanol residues

↓(TNF-α, IL-1β, IL-6, CXCL2, IL-17a, ulceration, erosion, inflammatory cell infiltration, colon shortening); ↑(ZO-2, OCLN, CLDN-3/-7, JAM-A)

[129]

 Mice

DSS-colitis

Methanol extracted CPn

↓(IL-6, MCP-1, CXCL2, epithelial damage, inflammatory cell infiltration, colon shortening); ↑(ZO-1/-2, CLDN-3/-7, crypt structure, goblet cell abundance); =IL-17a

[130]

 Mice

DSS-colitis

CPn

↓(TNF-α, IL-12, colon shortening)

[131]

 Cats

Indomethacin-small intestinal lesions

CPn

↓Mucosal ulceration and lesions

[132]

 Chicken

Eimeria maxima coccidiosis

CPn

↓(IL-12β, serosa thickness, schizont count in enterocytes); ↑(IFN-γ, IL-1β, goblet cell abundance, V/C ratio, cecum weight, cecum SCFAs); =(MUC2, IL-8)

[133]

 Weaned piglets

Non-stimulated

Citrus pulp

=(IL-6, IL-1β, TNF-α, IFN-γ, IL-10, SOCS3)

[134]

  1. The arrow indicates an increase (↑) or decrease (↓) in the level or activity of the different parameters analysed, “=” symbol designates unchanged parameters. CLDN Claudin, CPn Citrus pectin, CXCL Chemokine C-X-C motif ligand, DE Degree of esterification, DM Degrees of methyl esterification, DSS Dextran sulphate sodium, FD4 Fluorescein isothiocyanate-labelled dextran 4 kDa, ICAM-1 Intercellular adhesion molecule-1, IFNγ Interferon γ, IL Interleukin, iNOS Inducible nitric oxide synthase, JAM Junctional adhesion molecule, Ki67 Cell proliferation marker, LPS Lipopolysaccharides, MCP-1 Monocyte chemotactic protein-1, MPO Myeloperoxidase, MUC Mucin, NF-κB Nuclear factor-κB, OCLN Occludin, ROS Reactive oxygen species, SCFAs Short-chain fatty acids, SOCS3 Suppressor of cytokine signalling-3, TEER Transepithelial electrical resistance, TLR Toll-like receptor, TNBS 2,4,6-Trinitrobenzene sulfonic acid, TNF Tumour necrosis factor, ZO Zonula occludens