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Abstract

chickens (TYCs) and 60 Hetian-black chickens (HTBCs).

Background: To explore the relationship between the heart-type fatty acid binding protein (H-FABP) gene and
intramuscular fat (IMF), a polymorphism of the second exon of the H-FABP gene was investigated in 60 Three-yellow

Results: The IMF contents of the cardiac, chest and leg muscles in HTBC were increased compared with TYC. Both TYC
and HTBC populations exhibited Hardy-Weinberg Equilibrium (HWE) according to the ¥ test. Three variations of the two
birds were detected, namely, G939A, G982A and C1014T. HTBCs with the TT genotypes exhibit increased IMF content in
the chest muscles compared with the TC genotype. Thus, the G982A site could be considered a genetic marker for
selecting increased IMF content in the chest muscles of HTBC. The correlation coefficients revealed that H-FABP mRNA
expression was negatively correlated with the IMF content in the cardiac, chest and leg muscles of HTBC and in the

cardiac and chest muscles of TYC. The relative mRNA expression of H-FABP was reduced in the cardiac and leg muscles of
HTBC compared with TYC, but this difference was not observed at the protein level, as assessed by Western blot analysis.

Conclusions: These findings offer essential data that can be useful in the breeding program of HTBC and future research

exploring the role of H-FABP in IMF deposition and regulation in chickens.
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Background
Meat quality is one of the most important factors influen-
cing the acceptability of meat [1]. However, the quality and
flavor of chicken have decreased in the past decades as a re-
sult of genetic selection for faster growth velocity and in-
creased feed conversion efficiency [2]. This phenomenon is
particularly evident in China and many Southeast Asian
countries and regions [3]. However, people prefer to con-
sume the traditional slow-growing, meat-type, colored-
feather chickens in many regions of the world [4]. These
traditional chickens, which mainly include local varieties,
are also popular in China, and the market share of these as
meat birds is as high as 50 % [5].

The Hetian-black chicken (HTBC) is a type of slow-
growing chicken with excellent meat taste and black
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feathers. Due to its rare genetic resources, it was included
in the Directory of National Animal Genetic Resources in
2010. The HTBC has a history spanning more than
1750 years and is only distributed in the townships of Min-
feng County of the Xinjiang Uygur Autonomous Region in
China. Through attempts to improve the slow growth and
low feed conversion rate, the HTBC was greatly hybridized
with other chickens, and the pure breed is now in danger
of extinction. In 2007, only 5,700 birds remained according
to the Animal Genetic Resources of China. Three-yellow
chicken (TYC), a fast-growing chicken, is widely farmed in
China as a major meat-type broiler.

Intramuscular fat (IMF), which is the fat or lipid content
extracted from muscle [5], has become one of the most im-
portant indicators of the quality of meat [2, 3, 6, 7]. Previ-
ous studies demonstrated that IMF influences the quality
traits of meat [1, 2]. In addition, IMF is associated with the
juiciness of beef and the flavor of pork [8, 9]. Moreover,
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moderate heritability and genetic selection for IMF have
been utilized to improve meat quality in selection pro-
grams for swine [10, 11]. However, few reports have
assessed the relationship between IMF deposition and
the genes related to fat deposition in HTBC.

IMF content in muscle is related to the expression of
lipogenic generation [1]. For example, the fatty acid bind-
ing protein (FABP) gene belongs to a supergene family of
hydrophobic ligand-binding proteins [12, 13] and is com-
posed of low-molecular-mass proteins that bind fatty acids
[14]. FABPs have been isolated from several tissues of in-
vertebrates and vertebrates [15, 16]. Nine types of FABPs
have been identified in the mammalian FABP family [17-
20]. Interestingly, the same types of FABP can be noted in
more than one organ, and most tissues express various
types of FABPs [21]. The FABPs have similar molecular
weight [13] and similar molecular structure [18]. These
proteins participate in transporting water insoluble fatty
acids from the plasmalemma to the location of pB-
oxidation in the mitochondria as well as transporting
other hydrophobic ligands [16, 21, 22]. Moreover, FABPs
protect enzymes from the detergent-like effects of free
fatty acids, modulate enzyme activity and gene transcrip-
tion, and have signal transduction functions [12, 13, 15].
However, the precise functions of FABPs have not yet
been fully elucidated [16, 22].

Of these genes, H-FABP was studied as a candidate gene
to determine the IMF content for the evaluation of meat
quality [2, 12, 15, 16, 20, 23]. Polymorphisms in the first
exon and the first intron of the H-FABP gene in chickens
are reportedly correlated with the IMF content [24]. A
previous study demonstrated that H-FABP was the central
gene involved in the fatty acid and fat metabolism of
chickens [25]. H-FABP is related to the absorption of fatty
acids and the promotion of effective fat storage and
utilization [24, 26, 27]. H-FABP is also important in the
development and adipogenic differentiation of stromal-
vascular cells [1].

In addition, the relationship between H-FABP poly-
morphisms and expression and IMF has not been dem-
onstrated in TYCs and HTBCs. Therefore, the aim of
the current study was to explore the association of IMF
and H-FABP gene polymorphisms and expression levels
in these two chicken breeds. These findings will offer es-
sential molecular information that can be used to ex-
plore the role of H-FABP in IMF deposition and
regulation in chickens.

Materials and methods

Animals

The protocol for the animals in the current study was
approved by the Tarim University Institutional Animal
Care and Use Committee (TARU -ACUC-2012-051). All
of the breeding HTBC specimens were collected from
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the breed’s sole provenance, Minfeng County. All of the
TYC and HTBC specimens used in our experiment were
maintained under the same environmental conditions at
the Tarim University experimental station for animals,
including ad libitum access to food and water. The com-
mercial diets used in the current study met all National
Research Council (NRC) requirements [28]. All treat-
ments for the animals were in accordance with the Insti-
tute for Laboratory Animal Research (ILAR) Guide for
the Care and Use of Laboratory Animals. A total of 120
birds divided into two groups were hatched and reared
from 1 d until their slaughtering ages (70 d for TYC and
120 d for HTBC). 60 TYC specimens and 60 HTBC
specimens with a 1:1 sex ratio were selected randomly
and then anesthetized and sacrificed by exsanguination.

IMF content

The IMF contents in the cardiac, chest and leg muscles
were measured using the Soxhlet petroleum-ether extrac-
tion method according to Chinese National Standards
GB/T 5009.6.2004, and the IMF content was determined
as a weight percentage.

Polymerase chain reaction-single-strand conformation
polymorphism (PCR-SSCP)
Blood samples taken from the wing vein were anticoagu-
lated with acid citrate dextrose (ACD) and stored at —20 °
C for DNA extraction. The PCR was performed using a
typical 20 pL system containing 10 pL 2 x SG PCR Mas-
terMix (Beijing SinoGene Scientific Co. Ltd.,, China),
1 uL DNA, 8 pL dd H,0, and 0.5 pL primers (10 pmol/L)
(F: 5-CGACAAGGCGACGGTGAA-3; R: 5-TGGGGCA
GGAAGGAGTTT-3) (accession number: AY648562).
The amplification conditions were as follows: pre-
denaturation at 94 °C for 3 min; 35 cycles of denaturation
at 94 °C for 30 s, annealing at 60 °C for 30 s and extension
at 72 °C for 30 s; and a final extension at 72 °C for 10 min.
The PCR products were detected on 1 % agarose gel. A
50 uL expansion system was used to recover the products.
The polymorphism of the H-FABP gene second exon was
detected via PCR-SSCP. The PCR products were combined
with PCR—SSCP buffer containing 0.1 % bromophenol blue
and 0.1 % xylene cyanol in formamide. Then, the mixtures
were degenerated for 10 min at 98 °C and maintained on ice
for 5 min. Each sample was transferred to a 12 % polyacryl-
amide gel with 10 x TBE buffer. The gels were run at 4 °C
under the following conditions: 250 V for 10 min and 56 V
for 16 h. The gels were stained according to a standard
protocol [24]. Homozygotic type fragments were cut under
an ultraviolet lamp and then purified with a DNA purifica-
tion kit. The recovered DNA fragments were linked with
pMD18-T Simple Vector and then transformed into a DH5«
strain. The positive clones were selected and identified by
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PCR and then sequenced using TaKaRa (TaKaRa Biotech-
nology Inc,, Dalian, China).

Quantitative real-time PCR (qPCR)

Total RNA was extracted from the cardiac, chest and leg
muscle tissue samples using TRIzol reagent (Invitrogen,
Carlsbad, CA), as previously described [29]. The integrity of
the RNA extracted from each sample was confirmed by
agarose gel electrophoresis with ethidium bromide staining
and visualization under ultraviolet (UV) light. A NanoDrop®
ND-2000C spectrophotometer (Thermo Fisher Scientific,
Wilmington, DE) was used to determine the amount of
RNA extracted and verify its purity (OD560/OD5go absorp-
tion ratio > 1.9). Next, 1 pg of total RNA was reverse tran-
scribed into first-strand ¢cDNA using the GoScript reverse
transcription system (Promega, Madison, WI). To control
for DNA contamination, a negative control (without en-
zyme) was included. The synthesized cDNA was stored at
—20 °C prior to real-time PCR analysis.

An ABI 7500 Real-time PCR System (Applied Biosys-
tems, Foster City, CA) was used for qPCR analyses. The se-
quences of the primers used are listed below: H-FABD, F: 5'-
CAGAAGTGGGATGGGAAGGAGA-3; R: 5-TCATAGG
TGCGGGTGGAGAC-3’ (accession number: NM204290);
B-actin (housekeeping gene), F: 5-AACACCCACACCCC
TGTGAT-3, R 5-TGAGTCAAGCGCCAAAAGAA-3
(accession number: L08165). The cDNA was amplified with
SYBR® Premix DimerEraser™ (TaKaRa Biotechnology Inc.,
Dalian, China) containing 2 pL of cDNA, 1.0 pmol/L
primers, 10 pL of 2xSYBR Premix DimerEraser and
04 pL of ROX (passive reference dye). A non-template
control of nuclease-free water was included in each run. All
reactions were conducted in triplicate. The reaction was
performed as follows: 1 cycle of 95 °C for 30 s; 39 cycles of
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95 °C for 5 s, 60 °C for 30 s, and 72 °C for 60 s; and
1 cycle of 95 °C for 15 s, 60 °C for 60 s, 95 °C for 30 s,
and 60 °C for 15 s. To quantify the relative mRNA ex-
pression, the cycle threshold (Ct) values of the target
genes were normalized to the Cr value of the housekeep-
ing gene, and the results are presented as the fold change
using the 27T method. The relative expression of the
target gene mRNA in each group was calculated using
the following equations: ACt = Cr grget gene ~ CT housekeep-
ing gene and AA(:T = ACTtreated group ~ AC:Tcontrol group*

Western blotting

Frozen tissue samples (0.1 g) were ground with protease in-
hibitors (1 pg/mL leupeptin, 1 pg/mL pepstatin A, and 2 ug/
mL aprotinin) using a glass grinder on ice. The lysates were
centrifuged to remove the insoluble material. The super-
natant was collected, and the protein concentration was mea-
sured using a protein assay (Bio-Rad Laboratories, Hercules,
CA, USA). Sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE) sample buffer (10 mmol/L Tris-
HCI, pH 6.8, 2 % SDS, 10 % glycerol, 0.2 mol/L dithiothreitol
(DTT)) was added to the lysates. The mixture was heated at
100 °C for 5 min, followed by centrifugation at 15,000 x g for
15 min at 4 °C to remove the insoluble debris. The super-
natant was used for Western blot analysis. A total of 50 pg of
protein was loaded into each well in a 10 % SDS-PAGE gel.
The resolved proteins were transferred onto nitrocellulose
and blocked with 5 % non-fat milk. An anti-cardiac FABP pri-
mary antibody (Abcam, Cambridge, UK) was used at a dilu-
tion of 1:500 at 4 °C overnight. The blots were thoroughly
washed and then exposed to goat anti-rabbit IgG HRP
(M21002; Abmart) at a dilution of 1:1,000 for 1 h at room
temperature. Finally, the signal was detected using an en-
hanced chemiluminescence (ECL) kit. f-actin (4970; Cell
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Fig. 1 IMF content in cardiac muscle, chest and leg muscles of TYC and HTBC. Cardiac, chest and leg muscles were collected from TYC at 70 d
and HTBC at 120 d. The IMF contents of cardiac (a), chest (b) and leg (c) muscles were measured via the Soxhlet petroleum-ether extraction
method according to Chinese National Standards GB/T 5009.6.2004. The data are presented as the mean =+ standard error of the mean (SEM) for
each tissue (n =60 per group). P < 0.05. IMF, intramuscular fat; TYC, Three-yellow chicken; HTBC, Hetian-black chicken
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Signal) in each sample was amplified as a housekeeping con-
trol as presented in the lower panel.

Statistical analysis

The frequencies of alleles and genotypes were analyzed
using the POPGENE software package (v.1.31), and the
PowerMaker software package (v.3.25) was used to
analyze the polymorphic information content (PIC).

The correlation between the H-FABP genotypes and IMF
content was performed using the SAS statistical software
package, version 9.0 (SAS Institute, Inc., Cary, NC, USA)
using the SAS software PROC GLM procedures. The fol-
lowing statistical model was applied: Y =p+G+S+f+h+
e, where Y =the dependent variable, p=the population
mean, G = fixed effects of the breed, S = fixed effects of sex,
f=family, h =random effects, and e =random error. The
G x S interaction was not significant for any trait and there-
fore was not included in the model.

Statistical analyses of the mRNA differential expres-
sion were conducted with the SPSS statistical software
package, version 17.0 (SPSS Inc., Chicago, IL, USA)
using the independent samples t-test. The correlation
between the mRNA expression (272" [10] and the IMF
content was assessed by Pearson’s correlation coefficient
[30]. The difference was considered significant at P <
0.05 unless otherwise specified.

Statistical analysis of the H-FABP protein expression
in different chickens was performed with Quantity One
(v. 4.62). SPSS (17.0) was utilized to analyze the significant
difference between two birds through the independent-
samples t-test.

Results

IMF content

Contents of IMF in two chicken populations are shown
in Fig. 1. IMF contents in the cardiac, chest and leg
muscles of HTBC were increased compared with those
in TYC (P =0.028, P =0.047, P = 0.016, respectively).

H-FABP gene polymorphism

The results of PCR-SSCP indicated that the H-FABP
gene had three types of single-strand conformation
polymorphism (SSCP) bands: TT, TC and CC (Fig. 2).
Genotypic frequency and gene frequency analyses

Table 1 Genotypic and gene frequency of H-FABP in TYC and HTBC
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TT TC CC TC CC TC TC CC

Fig. 2 H-FABP genotypes of TYC and HTBC. Blood samples were
collected from the wing vein of TYC at 70 d and HTBC at 120 d,
anticoagulated via acid citrate dextrose (ACD), and DNA was extracted.
Polymerase chain reaction-single strand conformation polymorphism
(PCR-SSCP) was performed to analyze the polymorphism of the second

exon of the H-FABP gene. The bands were named as TT, TC and CC
L J

revealed that TT was the dominant genotype and
that T was the dominant allele of both TYC and
HTBC in natural selection (Table 1). The sequences
of TT and CC genotypes were compared with the
reference sequence (AY648562) registered in Gen-
Bank. Three identical mutation sites were identified
in H-FABP exon 2 in the two birds: G939A, G982A
and C1014T.

The genetic polymorphism parameters are presented
in Table 2. Both values of expected heterozygosity (He)
were higher than those of the observed heterozygosity
(Ho), and both of the Polymorphic information con-
tents (PICs) of the two breeds were in the range 0.25 <
PIC<0.5.

The X2 values were 0.708 (P=0.400) in TYC and
2.500 (P=0.114) in HTBC. The populations of both
chicken breeds exhibited Hardy-Weinberg equilibrium
(HWE).

Association between the H-FABP gene polymorphism and
IMF content

The results of the association analysis between genotypic
frequency and IMF content are displayed in Table 3. HTBC
specimens with the TT genotype exhibited increased IMF
content in the chest muscles compared with the TC geno-
type (P = 0.035) based on the least-square mean.

Breed Genotypic Frequency, % Gene Frequency, %

L TC cC T C
TYC 0.467 (28/60) 0.400 (24/60) 0.133 (8/60) 0.667 (80/120) 0.333 (40/120)
HTBC 0417 (25/60) 0.383 (23/60) 0.200 (12/60) 0.608 (73/120) 0391 (47/120)

H-FABP heart-type fatty acid binding protein, TYC Three-yellow chicken, HTBC Hetian-black chicken
TT, TC and CC are genotype frequencies; T and C are alleles. These genotypes were analyzed using the POPGENE software package (v.1.31) in 60 chickens with a

1:1 sex ratio in each group
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Table 2 Hereditary character of H-FABP in TYC and HTBC

Breed Ho He Ne PIC X P
TYC 0400 0448 1,800 0346 0708 040
HTBC 0383 0481 1910 0364 2500 0.11

H-FABP heart-type fatty acid binding protein, TYC Three-yellow chicken, HTBC
Hetian-black chicken

Ho observed heterozygosity, He expected heterozygosity, Ne effective number
of alleles, PIC polymorphic information content

Ho, He, Ne and x? were analyzed using the POPGENE software package
(v. 1.31), and the PIC was analyzed using the PowerMaker software
package (v. 3.25)

Correlation between H-FABP gene mRNA expression and
IMF content

The relative H-FABP gene expression in different tissues in
these two chicken breeds is presented in Fig. 3. In the car-
diac and leg muscles, the expression of H-FABP mRNA in
HTBC was reduced compared with that in TYC (P < 0.001
and P = 0.02, respectively). No difference was noted in chest
muscle H-FABP mRNA expression in the two chicken
breeds.

The association coefficients of the H-FABP gene mRNA
with the IMF contents in the cardiac, chest and leg mus-
cles were -0.588 (P = 0.045), -0.649 (P =0.012) and -0.441
(P>0.05) in TYC and -0.667 (P=0.018), -0.646 (P=
0.023) and -0.608 (P = 0.030) in HBTC, respectively. Nega-
tive correlations were observed in these tissues with the
exception of the leg muscle in TYC (Table 4).

Interestingly, the trend of H-FABP protein expres-
sion in the different muscles mirrored the changes
in H-FABP mRNA expression, but no statistical sig-
nificance was observed at the protein level (Fig. 4).

Discussion
Considerable efforts have been made to improve the
speed of growth, daily weight gain and feed efficiency in
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Table 3 Relationship between H-FABP polymorphism and IMF
content in TYC and HTBC

Tissue Breed TT TC cC

Chest muscle  TYC 5029+0307 3994+0332 4314+0575
HTBC ~ 7535+0568° 5457+0581° 6133 +0804%

Leg muscle  TYC 73010673 5628+0727 6506+ 1.259
HTBC 1064341031 8742+1053 932041458

H-FABP heart-type fatty acid binding protein, TYC Three-yellow chicken, HTBC
Hetian-black chicken

The correlation between H-FABP gene polymorphism and IMF content was
performed using the SAS 9.0 software package’s PROC GLM procedures
2PMeans within a row with no common superscript are different (P < 0.05)

chicken breeding over a long period of time. However,
increased productivity led to dramatically decreased
meat quality [2, 24]. As people’s quality of life has im-
proved, higher requirements have been placed on the
meat quality of chickens. Improving meat quality has
become an important aim of breeding to meet people’s
increased living standard. With their excellent meat and
unique flavor, HTBCs have received considerable atten-
tion, but the native Chinese breed is going to become
extinct. Therefore, the mechanism underlying the won-
derful HTBC meat quality should be investigated
immediately.

The growth and development process of fatty tissue is
very complex because the procedure is associated with a
variety of genes and pathways [31]. The IMF content,
which refers to the deposition of fat within the muscles,
affects the toughness of pork by changing the structure
of the connective tissue [8] and affects the flavor and
juiciness of chicken meat [32]. In the three tissues men-
tioned in the present experiment, the IMF contents in
HTBC were increased compared with those in TYC,
which could be the reason that slower-growing chickens

TYC, Three-yellow chicken; HTBC, Hetian-black chicken

A Cardiac muscle B Chestmuscle C Leg muscle
1.6+ 2+ 1.5
* k% *
1.5
14 — 14 —=
) 5 4]
a 4 4 a
3 3 3
N N N
0.5+ 0.5
0.5+
0 . 0 T 0 T
TYC HTBC TYC HTBC TYC HTBC

Fig. 3 Relative expression of H-FABP mRNA in cardiac, chest and leg muscles of TYC and HTBC. Cardiac, chest and leg muscles were collected
from TYC at 70 d and HTBC at 120 d. The relative expression of mRNA for the gene encoding H-FABP in cardiac (a), chest (b) and leg (c) muscles
was analyzed using quantitative real-time PCR. The data are presented as the mean + SEM for each tissue (n = 60 per group). P <005; P <0.001.
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Table 4 Correlation between H-FABP mRNA expression and IMF
content in TYC and HTBC

Tissue TYC HTBC

Cardiac muscle -0.588" 0667
Chest muscle -0649" -0646"
Leg muscle -0441 —0.608"

H-FABP heart-type fatty acid binding protein, TYC Three-yellow chicken, HTBC
Hetian-black chicken

The correlation analysis between mRNA expression (. ) and IMF content
was assessed by Pearson’s correlation coefficient at slaughter time using the
SPSS 17.0 software package, "P < 0.05

27ACt

have better flavor and meat quality than faster-growing
chickens. The fact that HTBC meat is more popular
than TYC meat in markets is consistent with this result.
These results are consistent with the findings of Tu et
al., who reported a similar phenomenon in Rugao and
Luyuan chickens [10].

Fatty acid binding proteins expressed in mammalian
tissues or cells serve as intracellular transporters to
satisfy special cellular needs [13, 18]. Members of the
FABP families are thought to be closely related to IMF
deposition. Of these, H-FABP is detected in many spe-
cies, ranging from arthropods to mammals. In addition,
H-FABP plays a critical role in determining the IMF
content [16]. In chickens, the H-FABP gene located on
chicken chromosome 23 is composed of 3 introns and 4
exons that code for 132 amino acids. This gene is
expressed in various types of tissues, such as liver,
muscle and heart [14]. H-FABP is essential for the bind-
ing of long-chain fatty acids and the transportation of
fatty acids from the cell membrane to the sites of fatty
acid oxidation and triglyceride and phospholipid synthe-
sis [33-35].

The results of the x* test indicated that the two popu-
lations in this study were in HWE, which could be a

Page 6 of 8

consequence of long-time natural and artificial selection
[36]. Both He values were higher than the Ho values, in-
dicating more homozygous samples than heterozygote
samples. The PICs of both breeds were in the range of
0.25 < PIC < 0.5, thereby indicating that moderate poly-
morphisms were detected at this locus.

The autogenous variation of H-FABP has an important
influence on IMF deposition and other biological traits
of chickens [24]. The assay of PCR-SSCP had been used
to analyze polymorphisms for cows [37], pigs [38] and
chickens [39]. Ye et al. [40] assessed a SNP (C2054T) in
the second intron of the Beijing-Oil chicken H-FABP
gene that remarkably correlated with the IMF contents
in the chest and leg muscles. Eight SNPs (G332A,
G534A, C835T, -1131A, C1294A, C2329T, C2372T, and
C2636T) in the H-FABP gene of Caoke chickens were
detected and correlated with carcass traits. Their results
indicated that the genotypes of one primer pair exhibited
a significant difference in the half-eviscerated weight,
body weight, chest weight, thigh weight and carcass
weight; thus, H-FABP could have a strong impact on
carcass traits or could be connected with genes that
affect slaughter performance in chickens. Four SNPs
(C260T, A675G, C783T, and A2778G) in the H-FABP
gene in Fengkai Xinghua, Huiyang Huxu, Qingyuan Ma
and Guangxi Xiayan chickens affect the IMF content
[24]. In contrast with previous studies, three variations
of the two breeds examined in this study were detected
as follows: G939A, G982A and C1014T. One possible
reason for the discrepancy in these results is that the
chicken breeds used in our respective experiments have
a different genetic background [41]. The IMF content in
the chest muscle of HTBC with the TT genotype was in-
creased compared with that of the TC genotype. Thus,
the G982A mutable site could be considered as a gene
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Fig. 4 H-FABP protein expression in cardiac, chest and leg muscle in TYC and HTBC. Cardiac, chest and leg muscles were collected from TYC at
70 d and HTBC at 120 d. H-FABP protein expression in cardiac (a), chest (b) and leg (c) muscles was detected by western blot. Representative
panels of H-FABP protein are shown. Expression of -actin was measured as an internal control. The intensities of H-FABP and

Leg muscle

Ratio of H-FABP/g-actin

TYC HTBC

-actin bands were

determined using the Quantity One software package. The results are presented as the ratio of the H-FABP band intensity to the -actin band
intensity. The data are presented as the mean + SEM for each tissue (n =4 per group). H-FABP, heart-type fatty acid binding protein; TYC, Three-
yellow chicken; HTBC, Hetian-black chicken
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marker for selecting HTBC with increased IMF content
in the chest muscle.

H-FABP participates in the transport procedure of fatty
acids to the mitochondria during f-oxidation and exists in
organs involved in high acid oxidation activity, such as
skeletal muscle and cardiac muscle [27]. Our experimental
results confirmed that H-FABP is expressed in various
types of tissues, such as cardiac, breast and thigh muscles
[10, 41-44]. Our findings indicate that the H-FABP
mRNA level in the cardiac muscle of TYCs was increased
compared with that in HTBCs. This result is consistent
with the results of Wang et al., who reported that the H-
FABP mRNA expression level in the cardiac muscle of
Bai'er layers was increased compared with that in a fat line
broiler at the age of 42 d [24].

Our findings demonstrated negative correlations be-
tween the H-FABP mRNA expression and IMF content in
the three tissues of the two chicken breeds with the excep-
tion of the leg muscle of TYC. These findings are consist-
ent with those of Tu et al., who indicated that the H-
FABPmRNA expression level has a significant negative ef-
fect on the IMF of the cardiac, breast and leg muscles in
Rugao and Luyuan chickens [10]. The results are also con-
sistent with the results of Li et al, who reported that high
H-FABP mRNA expression was correlated with low leg
IMF content at 70 d in Baijing You chickens [25]. Further-
more, relatively increased H-FABP mRNA expression im-
proved fatty metabolic activity and decomposed fat to
produce more energy to satisfy the needs for growth and
diversified physiological demands.

The H-FABP mRNA and protein expression trends
were consistent in the current study, but no significant
difference was observed at the protein level. H-FABP
gene transcription and translation can directly or indir-
ectly affect the synthesis and regulation of proteins in
fatty acid metabolism [45]. Tissue-specific expression of
FABP genes is considered to be primarily regulated at
the transcriptional level [45]. Glatz et al. reported that
H-FABP expression was mainly regulated via the process
of transcription [46], and this viewpoint was confirmed
in pigs [7]. Tyra et al. also drew a similar conclusion that
the higher expression amount of mRNA was not consist-
ent with higher H-FABP protein levels in pigs [22].
These results indicated that the distribution of fat
among different fat deposits might be controlled by dif-
ferent mechanisms and possibly by different genes [47].
This finding indicates a low correlation between H-FABP
mRNA and protein levels which is in agreement with
the relationship between H-FABP mRNA level and pro-
tein expression level in pigs. [48].

Increasing the IMF content is economically desirable
in chicken breeding [40]. Regarding the Chinese indigen-
ous breed HTBC, the most important task would be to
protect those genetic resources that have high IMF
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contents to ensure that precious experimental materials
could be used for further study of H-FABP or other
genes related to IMF content.

Conclusion

In conclusion, our results suggest that IMF content in the
same tissues of HTBC is increased compared with TYC.
The G982A mutational site could serve as a genetic
marker for increased IMF content in selecting for the
chest muscle of HTBC. H-FABP gene transcription had a
negative impact on IMF content in the two chicken
breeds.
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