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Abstract

Background: Accurate evaluation of SNP effects is important for genome wide association studies and for genomic
prediction. The genetic architecture of quantitative traits differs widely, with some traits exhibiting few if any
quantitative trait loci (QTL) with large effects, while other traits have one or several easily detectable QTL with large
effects.

Methods: Body weight in broilers and egg weight in layers are two examples of traits that have QTL of large effect.
A commonly used method for genome wide association studies is to fit a mixture model such as BayesB that
assumes some known proportion of SNP effects are zero. In contrast, the most commonly used method for
genomic prediction is known as GBLUP, which involves fitting an animal model to phenotypic data with the
variance-covariance or genomic relationship matrix among the animals being determined by genome wide SNP
genotypes. Genotypes at each SNP are typically weighted equally in determining the genomic relationship matrix
for GBLUP. We used the equivalent marker effects model formulation of GBLUP for this study. We compare these
two classes of models using egg weight data collected over 8 generations from 2,324 animals genotyped with a

42 K SNP panel.

Results: Using data from the first 7 generations, both BayesB and GBLUP found the largest QTL in a similar
well-recognized QTL region, but this QTL was estimated to account for 24 % of genetic variation with BayesB and
less than 1 % with GBLUP. When predicting phenotypes in generation 8 BayesB accounted for 36 % of the
phenotypic variation and GBLUP for 25 %. When using only data from any one generation, the same QTL was
identified with BayesB in all but one generation but never with GBLUP. Predictions of phenotypes in generations 2
to 7 based on only 295 animals from generation 1 accounted for 10 % phenotypic variation with BayesB but only
6 % with GBLUP. Predicting phenotype using only the marker effects in the 1 Mb region that accounted for the
largest effect on egg weight from generation 1 data alone accounted for almost 8 % variation using BayesB but
had no predictive power with GBLUP.

Conclusions: In conclusion, In the presence of large effect QTL, BayesB did a better job of QTL detection and its
genomic predictions were more accurate and persistent than those from GBLUP.
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Background

The choice of methods for accurate evaluation of SNP
effects in the presence of large effect QTL can be critical
for genome wide association studies (GWAS) and for
genomic selection (GS). Mixture models, sometimes
known as variable selection models, assume some SNP
effects are zero. One such mixture model, method
BayesB [1], has been shown to adequately estimate
marker effects in simulated data [2, 3] but comparisons
based on real data where true effects are unknown are
less straightforward. In a recent paper using broiler body
weight data, Wang et al. [4] conclude that compared to
single step GBLUP procedures “BayesB appears to overly
shrink regions to zero, while overestimating the amount
of genetic variation attributed to the remaining SNP
effects”. Egg weight is one trait in layers for which mul-
tiple studies report detecting a QTL with large effect
[5-8] at a consistent position on chromosome 4. The
objective of this study was to demonstrate that in the
presence of such large effect QTL, mixture models like
BayesB and BayesC [9, 10] are superior to GBLUP for
detecting and quantifying the effects of QTL, and that
mixture models provide more accurate genomic esti-
mates of breeding values (GEBV) that are more persist-
ent over generations, using brown egg layer data.

Methods

Average egg weight data of 3-5 eggs collected at 42—45 wk
of age from a brown egg layer line, described in detail by
Wolc et al. [8], were used. Only records of animals that
were genotyped and had individual performance data were
retained, resulting in the following numbers of observa-
tions in each of 8 consecutive generations: 295, 323, 294,
360, 290, 252, 300 and 210. All 2,324 animals were geno-
typed with a custom made 42 K Illumina SNP chip, of
which 24,383 segregating SNPs were retained after
quality control (removing SNPs with minor allele fre-
quency <0.025, proportion of missing genotypes >0.05,
and parent-offspring mismatches >0.05). Build WUGSC
2.1/galGal3  (http://moma.ki.au.dk/genome-mirror/cgi-
bin/hgGateway?db=galGal3) was used to identify the
genomic locations of markers. Data were analyzed using
mixture models that assume m=99 % of SNPs have no
effect, namely BayesB [1], which assumes a different un-
known variance for each SNP, BayesC [9, 10], which as-
sumes equal unknown variance for all SNPs. Performance
of the mixture models were compared to two ridge regres-
sion methods that fit all SNPs in the model (i.e. 7t = 0), as-
suming equal variance of SNP effects. The latter methods
were two parameterizations of BayesCO, one with the
same degrees of freedom (4, 10) for the genetic and re-
sidual scale factors as used for BayesB and BayesC, which
results in the variance components being estimated jointly
from the data and the prior, and one with large values for
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the degrees of freedom for the genetic and residual scale
factor priors (100, 100), which is equivalent to GBLUP
[11] in treating the equal variance of SNP effects as
known. This model was referred to as GBLUP throughout
the paper. The fixed class effect of hatch within generation
was fitted in addition to random marker effects. All
methods were implemented in the GenSel software [12],
which uses Gibbs sampling MCMC algorithms. For infer-
ence on parameters we used a chain of 35,000 samples
with the first 5,000 discarded as burn in. As a reference
for accuracy of prediction, pedigree-based analysis was
used with the phenotypes of genotyped individuals and
their pedigree which included 26,300 individuals from
generations —2 (2 generations prior to the first generation
with data) to generation 8.

The marker effects were estimated using whole genome
data from all of the first 7 generations, as well as from
each generation separately. Accuracy of prediction was
assessed as the correlation between GEBV and hatch-
corrected phenotype in the validation generation, which
was generation 8, or in each successive generation when
training only used the 295 individuals from generation 1.
Accuracy of prediction was quantified using marker ef-
fects from the whole genome, or using only estimates of
effects of markers located in the largest QTL region,
which was defined as the 1 Mb window that accounted
for the largest proportion of variance (the effects of the
1 Mb markers were extracted from solutions of a model
fitting all SNPs simultaneously). Persistence of predictions
was quantified in terms of the correlations in successive
post-training generations.

In order to quantify potential bias in the estimation of
the largest effect by BayesB, the SNP that explained the
greatest proportion of variance in the 1 Mb window that
contributed the largest proportion of variance was fitted
as a fixed effect in an animal model using ASReml [13]
and the regression coefficients for predicting the 8 gen-
eration of hatch-corrected phenotypes were calculated
and compared to the corresponding regression from
BayesB — a regression coefficient of phenotype on the
SNP effect estimate greater than 1 would indicate over-
shrinkage of the SNP effect; this means that the observed
difference in phenotypes is larger than expected based on
marker solutions.

Results and discussion

Detection of QTL

The 1 Mb windows that contributed the greatest propor-
tion of genetic variance for each genomic method are
shown in Table 1. Using all data from the first 7 genera-
tions detected a very large QTL on chromosome 4 at
78 Mb (4_78) using either of the mixture models, and at
4_77 using the models that fitted all loci simultaneously.
The effect attributed to this QTL has been shown in
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Table 1 Comparison of four genomic methods (BayesB, BayesC, BayesCO and GBLUP) for QTL detection using different generations

(G1 to G7) of training data

BayesB BayesC BayesCO GBLUP
Training Data chr_mb? %Var® p >0° chr_Mb %Var p >0 chr_Mb %Var chr_Mb %Var
G1-G7 4_78 237 1.00 4_78 144 1.00 4 77 0.62 4 77 062
€] 4_78 94 0.82 4_78 25 0.68 3_110 0.36 3_110 0.32
G2 4_78 6.1 0.73 4_78 6.1 0.73 Z_39 0.31 Z_39 0.32
G3 478 13.8 0.64 478 3.1 0.77 79 032 727 035
G4 4_78 22.7 0.98 4_78 4.1 0.90 Z_27 0.54 727 0.58
G5 4_78 104 0.77 4_78 1.1 0.50 Z_27 0.35 727 0.36
G6 478 7.1 0.77 3_42 32 0.93 3_110 0.38 3_110 0.31
G7 723 47 0.77 723 3.6 0.77 723 0.32 723 0.34

Localization of the 1 Mb window that explained the largest amount of variance (chromosome_1 Mb window on that chromosome)

Ppercentage of variance explained by that window

“proportion of models where this window accounted for more than 0 % of genetic variance

other data to be associated with differential expression
of the cholecystokinin receptor A (CCKAR) gene [14],
which is located around 2 Mb away at ~75.6 Mb. That
gene appears to increase orexigenic drive by reducing
feedback from the gut to the brain, signaled by CCK
[14]. The precise location or nature of the causal muta-
tion responsible for these expression differences is not
known. Although it is conceivable that SNPs in 4_78 are
in high long-range LD with variants in CCKAR, the
4 78 QTL region on chromosome 4 also includes the
LCORL and NCAPG genes, which have been observed
to be associated with growth or stature in numerous
mammalian GWAS studies [15-18]. So, although this
effect could involve long-range LD, or a long-range en-
hancer acting on CCKAR, it could alternatively be the
effect of a different gene, conserved across birds and
mammals. Regardless of the cause, a positive genetic
correlation has been reported between body weight and
yolk weight and between body weight and egg weight for
which this QTL is a major contributor [8].

The 4_78 window accounted for 23.7 % of the genetic
variance for egg weight when using BayesB, and 14.4 %
when using BayesC. In small datasets such as used here,
BayesC is expected to result in smaller estimates of vari-
ance than BayesB, because BayesC shrinks all SNP ef-
fects according to the same variance ratio, whereas
BayesB shrinks the effect of each SNP according to the
ratio of the residual variance to the unique variance esti-
mate for that SNP. The sampling of the SNP effects vari-
ances involves a function of the square of the sample of
the SNP effect [19] that results in little shrinkage of large
effect loci and considerable shrinkage of small effect loci.
In contrast, the two methods that simultaneously fitted
all 24,383 equal variance loci using 2,114 animals in the
first 7 generations detected the largest QTL 1 Mb

upstream at 4_77 and attributed less than 1 % genetic
variance to that window.

Using Bayes B for training only on data from any one
of the first 7 generations involving at most 360 ani-
mals, detected the largest QTL at 4_78 in all but gen-
eration 7. Using BayesC detected the largest QTL in
4 78 in all but generations 6 or 7. The estimated ef-
fects of the 4_78 QTL were always smaller than ob-
tained with training on all 7 generations, and were
never larger for BayesC than for BayesB. The effect of
the variance ratio in shrinking SNP effects reduces as
the size of the dataset increases [12], and is expected
to result in consistent window variances for BayesB
and BayesC if the dataset is sufficiently large. In

Table 2 Accuracy of prediction of phenotypes in generation 8
based on training in all seven previous generations (G1-G7) or
any one of the previous 7 generations for pedigree BLUP (PBLUP)
and four genomic methods (BayesB, BayesC, BayesCO and GBLUP)

N Method of training with validation in generation 8
Training PBLUP®  BayesB® BayesC® BayesCO  GBLUP®
G1-G7 1814 027 0.60 0.57 0.50 0.50
Gl 295 0.10 0.35 033 0.19 0.20
G2 323 0.00 0.36 0.36 0.24 0.24
G3 294 002 049 045 0.28 0.28
G4 360 007 040 0.30 0.12 0.12
G5 290 -0.01 047 0.38 032 032
G6 252 0.19 049 044 033 0.34
G7 295 0.22 048 045 0.37 0.37
Averaged 0.06 043 0.39 0.26 0.27

®Pedigree-based BLUP

PMixture models assumed the fraction of SNPs with 0 effect () of 0.99
“GBLUP was fitted as BayesCO with genetic and residual scale factors having
100° of freedom

9Average of the 7 individual generation results
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contrast, the two methods that fitted all SNPs never
detected the largest effect SNP on chromosome 4
when data from only a single generation was used.
Thus, the mixture models were clearly better at detect-
ing large effect QTL than models such as GBLUD, es-
pecially in small datasets.

Accuracy of prediction

The accuracies of prediction of the animals in the most
recent generation 8 based on training on data from all
the 7 previous generations or from any one of the previ-
ous 7 generations are in Table 2. For every method, the
most accurate predictions were obtained when training
on the much larger dataset comprising all 7 generations.
The poorest accuracy was for pedigree based BLUP
(PBLUP), which had accuracy of 0.27 for predicting
phenotype, while the mixture models had accuracy of
0.57 and outperformed the models that fitted all SNPs,
which had an average accuracy of 0.50.

Training on only a single generation to predict gener-
ation 8 had no predictive power for PBLUP, unless the
training generation was only 1 or 2 generations distant
from generation 8 (i.e. generation 6 or 7). Averaged
across all 7 individual training generations, PBLUP re-
sulted in accuracy of 0.06, which would account for less
than 1 % of phenotypic variance. For the genomic
methods, accuracy decreased with distance between the
training and validation population, confirming published
results [20], but all methods had some predictive power
in generation 8 based on training in generation 1. On
average, training in any one generation had accuracy of
0.43 for BayesB and 0.39 for BayesC, compared to less
than 0.27 for the models that fitted all SNPs with an

Table 3 Accuracy of predicting phenotype in each successive
generation based on training on generation 1 for pedigree
BLUP (PBLUP) and four genomic methods (BayesB, BayesC,
BayesCO and GBLUP)

Validation Method of training in generation 1

generation  bgi ypa  Bayess®  BayesC®  BayesCO  GBLUPC
G2 0.21 0.36 0.34 0.32 0.31
G3 0.02 0.22 022 0.17 017
G4 0.12 032 0.31 0.28 0.28
G5 0.01 0.27 0.25 0.20 0.20
G6 0.12 042 0.39 0.35 0.35
G7 -0.05 0.28 0.28 0.21 0.21
G8 0.10 035 033 0.19 0.20
Averaged 0.07 0.32 0.30 0.25 0.25

?Pedigree-based BLUP

PMixture models assumed the fraction of SNPs with 0 effect () of 0.99
“GBLUP was fitted as BayesCO with genetic and residual scale factors having
100° of freedom

4Average of the 7 individual generation results
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equal variance ratio. These findings confirm previous
studies reporting that BayesB outperforms GBLUP for
genomic prediction in the presence of large effect QTL
using both simulated [21] and real data [22].

Persistence of the accuracy in genomic predictions

One of the appeals of genomic selection is its application
to traits that are difficult or costly to measure. Ideally,
one would train in a suitable population of individuals
with phenotypic and genomic information, and then
apply the resulting prediction equation in successive
generations of selection candidates without investing the
time and effort for ongoing phenotypic measurement.
The accuracy of this scenario for this case with a QTL
of large effect is demonstrated in Table 3, where training
was undertaken using only 295 animals from generation
1 and accuracies of prediction were obtained for each
successive generation. Not surprisingly, the predictive
ability of PBLUP was greatest in the immediate next
generation after training but had no real predictive
power in subsequent generations. The mixture models
showed the most promising results, with BayesB and
BayesC accounting for an average of 10 and 9 % pheno-
typic variance across generations 2 to 8. The models that
fitted all SNPs accounted for on average 6 % of variance.
In the last validation generation, 7 generations distant
from training, the mixture models were still accounting
for 10 % of phenotypic variation, whereas the models fit-
ting all SNPs accounted for only 4 %.

Contribution of the largest QTL to the accuracy of
genomic prediction

Genes with large effects can obviously contribute a
greater than average contribution to predictive ability.

Table 4 Accuracy of predicting phenotype in each successive
generation when using only the marker effect estimates from
the top genomic 1 Mb window based on training in generation
1 for four genomic methods (BayesB, BayesC, BayesCO and GBLUP)

Validation Method of training in generation 1

generation BayesB® BayesC? BayesCO GBLUP®
G2 0.25 023 -0.06 —-0.03
G3 023 0.19 0.08 0.08
G4 0.27 0.26 -0.03 -0.10
G5 029 028 -0.13 —-0.15
G6 031 030 0.11 0.13
G7 0.30 0.29 -0.03 -0.02
G8 034 034 0.00 0.00
Average 0.28 0.27 —0.01 —0.01

@ Mixture models assumed the fraction of SNP with 0 effect (m) of 0.99
® GBLUP was fitted as BayesCO with genetic and residual scale factors having
100 df
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Genomic predictions based on training in generation 1
using all SNPs but computing GEBV only using esti-
mates of effects for SNPs in the window that contributed
the most variance, as identified in the second row of
Table 1, were used to compute the persistence of accur-
acy over generations, similar to what was done for whole
genome GEBYV in Table 3. The results are in Table 4 and
show that 7 % of phenotypic variance can be predicted
by the largest QTL region when using BayesB or BayesC
and training on the 295 animals from generation 1,
whereas the models that fitted all SNPs had no predict-
ive ability. The latter is not surprising, as Table 1 had
demonstrated that these methods resulted in inconsist-
ent locations and small estimates of the effect of the
largest QTL. The predictions using BayesB and BayesC
indicate a slight trend of increasing accuracy, reflecting
the fact that the frequency of the chromosome 4 QTL
appears to be increasing slightly over these successive
generations [8].

Bias in SNP effects estimation

The within generation estimates of SNP effects from dif-
ferent training data sets using BayesB were compared to
fixed effect estimates from a single marker model, fitting
an animal model using full pedigree to correct for family
relationships in ASReml. For every data set, Table 5
demonstrates that the single marker model estimated
larger SNP effects than BayesB. However, as more data
were used (all 7 generations) the shrinkage of the BayesB
estimate was reduced. These results are consistent with

Table 5 Estimates of substitution effects and regression
coefficients for predicting generation 8 phenotypes from
training in ancestral generations (G1 to G7) for SNP rs14491030
using BayesB or a single SNP model in ASReml

Training BayesB® Single SNP animal model®
generation Effect Regression® Effect Regression®
G1-G7 2.55 1.55 3.05 1.53
€] 0.51 2.51 262 1.78
G2 113 4.05 2.64 1.77
G3 1.54 298 2.83 1.65
G4 264 1.77 296 1.58
G5 1.69 2.72 329 142
G6 1.51 2.33 4.05 115
G7 046 1.74 381 1.23
Average® 1.50 246 3.16 151

*The effect of the most significant marker in the 1 Mb window with the
largest variance

PMost significant marker fitted as a fixed effect in an animal model

using ASReml

“Regression of hatch-adjusted phenotype on predicted merit using the estimate
of the SNP effect

4Average of the 7 individual generation results
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the downward bias (regression coefficient larger than 1)
when predicting generation 8 phenotypes using pre-
dicted merit based upon SNP estimates from the 1 Mb
window with the largest effects using either the single
SNP animal model or BayesB. We therefore conclude
that in this data there is no evidence for overestimation
of the largest effect using the single SNP animal model
and therefore, in contrast to the claims of [4], no evi-
dence of overestimation using BayesB.

Conclusions

The mixture models known as BayesB or BayesC more
accurately identified the QTL region than the two
models that fitted all markers, BayesCO or the SNP
equivalent of GBLUP. Thus, mixture models should be
preferred for traits with large effect QTL over models
such as GBLUP, which fit all SNP effects assuming equal
SNP variance for both genome wide association studies
and for genomic prediction. We anticipate that the same
finding will be true for models that include information
on non-genotyped individuals. That is, single-step mix-
ture models such as proposed in Fernando et al. [23] are
expected to outperform single-step GBLUP [24] in the
presence of large-effect QTL, until such a time that SNPs
comprising randomly-chosen genome-wide markers can
be replaced with SNPs in high or perfect linkage disequi-
librium with causal mutations that are fitted as fixed
effects or weighted according to their contribution to gen-
etic variance.
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