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Abstract 

Background Intestinal barrier is a dynamic interface between the body and the ingested food components, how-
ever, dietary components or xenobiotics could compromise intestinal integrity, causing health risks to the host. 
Gossypol, a toxic component in cottonseed meal (CSM), caused intestinal injury in fish or other monogastric animals. 
It has been demonstrated that probiotics administration benefits the intestinal barrier integrity, but the efficacy 
of probiotics in maintaining intestinal health when the host is exposed to gossypol remains unclear. Here, a strain (YC) 
affiliated to Pediococcus pentosaceus was isolated from the gut of Nile tilapia (Oreochromis niloticus) and its potential 
to repair gossypol-induced intestinal damage was evaluated.

Results A total of 270 Nile tilapia (2.20 ± 0.02 g) were allotted in 3 groups with 3 tanks each and fed with 3 diets 
including CON (control diet), GOS (control diet containing 300 mg/kg gossypol) and GP (control diet containing 
300 mg/kg gossypol and  108 colony-forming unit (CFU)/g P. pentosaceus YC), respectively. After 10 weeks, addition of P. 
pentosaceus YC restored growth retardation and intestinal injury induced by gossypol in Nile tilapia. Transcriptome 
analysis and siRNA interference experiments demonstrated that NOD-like receptors (NLR) family caspase recruitment 
domain (CARD) domain containing 3 (Nlrc3) inhibition might promote intestinal stem cell (ISC) proliferation, as well 
as maintaining gut barrier integrity. 16S rRNA sequencing and gas chromatography-mass spectrometry (GC-MS) 
revealed that addition of P. pentosaceus YC altered the composition of gut microbiota and increased the content 
of propionate in fish gut. In vitro studies on propionate’s function demonstrated that it suppressed nlrc3 expression 
and promoted wound healing in Caco-2 cell model.

Conclusions The present study reveals that P. pentosaceus YC has the capacity to ameliorate intestinal barrier injury 
by modulating gut microbiota composition and elevating propionate level. This finding offers a promising strategy 
for the feed industry to incorporate cottonseed meal into fish feed formulations.
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Graphical Abstract

Background
The gastrointestinal tract acts as an important barrier to 
separate the body from the food components, antigens, 
intestinal microbiota and other possible toxins. It enables 
the absorption of nutrients and inhibits the invasion of 
the potentially harmful compounds or pathogens from 
the intestinal lumen [1–3]. It has been revealed that some 
dietary components or xenobiotics impair the intestinal 
barrier and disrupt the intestinal microbiota composition 
which in turn exacerbates this process [4, 5]. It has been 
established that the damage to the intestinal barrier is 
frequently accompanied by the activation of pro-inflam-
matory immune cells, then exacerbating the intestinal 
inflammation [6, 7]. And the impaired gut barrier is una-
ble to prevent lipopolysaccharide (LPS) and other bacte-
rial toxins from entering the circulatory system, thereby 
promoting hepatitis, hepatoma and meningitis [8–10]. 
Thus, the dysfunction or impairment of intestinal barrier 
will trigger intestinal disease or other multi-organ dys-
function syndromes [11].

The animal industry has confronted the challenge 
of escalating feed costs and the scarcity of protein 
resources [12, 13]. The cost of feed is largely attributed 
to the protein sources, so finding cheaper protein alter-
natives would be advantageous for both the industry 
and farmers. Cottonseed is one of the major products 
of cotton, with a global annual production of up to 26 
million tons. Cottonseed meal (CSM) is a protein-rich 
product that can be found in large quantities and is 
typically more cost-effective compared to other protein 
sources such as fish meal (FM) and soybean meal (SBM) 
[14–16]. However, deepening researches have revealed 
that CSM especially the gossypol residue contained in 
CSM could cause severe intestinal inflammation and 
gut barrier injury in diverse monogastric animals such 
as fishes and livestock [13, 17–24]. Try to decrease the 
remaining gossypol in CSM is one of the important 
strategy to eliminate the deleterious effects [25, 26], but 
it depends on the dephenolization process which may 
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cause extra cost. Our previous research indicated that 
intestinal microbiota mediated the gossypol-induced 
gut barrier injury in Nile tilapia (Oreochromis niloticus) 
[21], thus we hypothesized that regulating intestinal 
microbiota may have the potential to repair gossypol-
induced gut barrier injury.

Probiotics are initially employed as an economical 
and green substitute for antibiotics in feed additives 
[27, 28], and the Chinese Ministry of Agriculture and 
Rural Affairs has granted approval for the supplemen-
tation of animal feed with Pediococcus pentosaceus. 
Previous research elucidated that administration of P. 
pentosaceus CECT 8330 could increase the abundance 
of Bifidobacterium and Lactobacillus to strengthen 
mucosal integrity in DSS-induced colitis mice [29]. 
Addition of P. pentosaceus ZJUAF-4 restored gut 
microbiota composition against diquat-induced intes-
tinal injury in mice [30]. P. pentosaceus PR-1 increased 
the abundance of Fusobacteria, Cetobacterium and Ple-
siomonas and reinforced gut barrier integrity in high-
fat-diet-fed zebrafish (Danio rerio) [31]. The intestinal 
epithelium regenerates every 3–5 d to replenish the 
aged and damaged cells in the villi and ensure intestinal 
barrier integrity. Intestinal stem cells (ISCs) express the 
cell-surface markers, leucine-rich repeat-containing 
G-protein coupled receptor 5 (Lgr5) and olfactomedin 
4 (Olfm4), and differentiate perpetually into intestinal 
epithelial cells, which governed the renewal of intes-
tinal epithelium [32–35]. Addition of probiotics have 
been demonstrated to reinforce gut barrier integrity by 
promoting ISCs proliferation in mice [34, 36], but the 
exact mechanism by which P. pentosaceus repairs the 
injured intestinal barrier remains unclear.

Nile tilapia is the third most farming teleost fish world-
wide [37] and CSM is regarded as the potential protein 
source for fish in near future. A bacterial strain (YC) affil-
iated to P. pentosaceus was isolated from the gut of Nile 
tilapia. P. pentosaceus YC was used to treat Nile tilapia 
exposed to gossypol and the restoration effect of P. pen-
tosaceus on intestinal permeability was evaluated.

Methods
Bacteria strain and culture
The preserved strain P. pentosaceus YC, isolated from 
the gut of Nile tilapia [38], was recovered and spread 
on the Man Rogosa Sharpe (MRS)-agar plate (Basebio, 
Hangzhou, China). The bacterial suspension was iden-
tified by sequencing the full length of 16S rRNA gene 

(Personalbio, Shanghai, China). The single colony of P. 
pentosaceus YC was cultured overnight in MRS medium 
at 28 °C at 100 r/min for 18 h. Following centrifugation at 
2,000 × g for 15 min, the bacterial precipitation was resus-
pended in sterile 1 × phosphate buffered saline (PBS) and 
mixed with the diet powder to form the pellets. The bac-
terial quantity was detected by serial dilution and count-
ing on MRS agar plates.

Animal experiments
Juvenile Nile tilapia were purchased from Guangzhou 
Tianfa Fry Development Co., Ltd. (Guangzhou, China). 
All fish were raised in the environment with water 
temperature of 28 °C, a dissolved oxygen higher than 
6.0 mg/L, and light/dark cycle of 12 h/12 h. Fish were 
acclimated and fed with a commercial diet purchased 
from Tongwei Co., Ltd. (Chengdu, China) for 2 weeks. 
Two hundred and seventy Nile tilapia (2.20 ± 0.02 g) were 
randomly divided into nine 200-L tanks (30 fish/tank, 
3 tanks/diet), fed with three diets including the CON 
(control diet), GOS (control diet containing 300 mg/
kg gossypol) and GP (control diet containing 300 mg/
kg gossypol and  108 colony-forming unit (CFU)/g P. 
pentosaceus YC). During the experiment, fish were fed 
with gossypol for 8 weeks in GOS group, and fish were 
fed with P. pentosaceus YC daily for 2 weeks prior to the 
gossypol addition in GP group. All fish were fed twice 
(08:30 and 18:30) daily and fed at 4% of their average 
body weight within a day. The formulation of the diets 
was listed in Additional file 1: Table S1.

Sample collection
After the feeding trail, Nile tilapia were fasted for 16 h 
before sampling. Twelve fish were randomly selected 
from each group (4/tank) and anesthetized with 
20 mg/L tricaine methanesulfonate (MS-222, E10521, 
Sigma-Aldrich, St. Louis MO, USA). The whole intesti-
nal contents were collected for 16S rRNA sequencing, 
short chain fatty acids (SCFAs) and lactate quantifica-
tion. Blood samples were drawn from the caudal part 
of fish and centrifuged at 3,000 r/min for 10 min at 
4 °C to obtain serum for LPS concentrations detection. 
Proximal intestine (PI) and distal intestine (DI) were 
separately stored at −80 °C for gene expression quanti-
fication and transcriptome sequencing. The final body 
weight, liver, intraperitoneal fat and final body length 
of each fish were measured and the growth indicators 
and organ indices were calculated following the under 
formula:

Weight gain WG, g = final body weight FBW, g − initial body weight IBW, g
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Specific growth rate (SGR,%/d) = 100× [(ln FBW − ln IBW)/time (d)]

Condition factor
(

CF, g/cm3
)

= 100×
[

body weight
(

g
)

/body length3 (cm)

]

Hepatosomatic index (HSI, %) = 100×
[

liver weight
(

g
)

/body weight
(

g
)]

Mesenteric fat index (MFI, %) = 100×
[

mesenteric fat weight
(

g
)

/body weight
(

g
)]

for SCFAs extraction. All operations were performed 
on ice. The Gas Chromatography Nexis GC-2010 (Shi-
madzu, Kyoto, Japan) was utilized to measure SCFAs 
levels according to the following program: temperature 
increased from 60 °C to 100 °C at a rate of 5 °C/min, 
for 2 min; increased to 180 °C at 5 °C/min for 2 min. 
The external standard method was employed in order 
to calculate the concentration of SCFAs (acetate, pro-
pionate and butyrate) (71251, 94425 and 19215, Sigma-
Aldrich, St. Louis MO, USA).

Quantitative PCR (qPCR) analysis
Total RNA from tissues or cells was extracted using 
Tripure Reagent (RN0102, Aidlab, Beijing, China). The 
quality and quantity of RNA were determined by aga-
rose gel electrophoresis and NanoDrop 2000 spectro-
photometry (Thermo Scientific, Waltham, USA). Then 
the complementary DNA (cDNA) was synthesized 
using a FastQuant reverse-transcribed kit with gDNase 
(R323-01, Nanjing Vazyme Biotech Co., Ltd., Nanjing, 
China). Quantitative real-time PCR was performed on 
CFX96 Real-Time PCR system (Bio-Rad, Richmond, 
USA) using 2 × SYBR Master Mix (Q711-02, Nanjing 
Vazyme Biotech Co., Ltd., Nanjing, China) containing 
10 μmol/L gene specific primer. Gene expression levels 
were calculated using  2-ΔΔCT method and normalized 
to the housekeeping genes elongation factor 1 alpha 
(ef1α) and β-actin. The PCR primers were designed 
using NCBI Primer BLAST based on the NCBI database  
and synthesized by Shanghai Personal Biotechnology Co., 
Ltd. Primer sequences were summarized in Table S2.

RNAseq analysis
Total RNA from the distal intestine was extracted, quali-
fied, paired and the purified RNA was used to construct 
the library using Illumina  TruseqTM RNA sample prep 
kits. Paired-end sequencing was performed on the 
Illumina Novaseq 6000 sequencing platform (Majorbio,  
Shanghai, China). The gene expression levels were 

Intestinal permeability assay
Intestinal permeability was detected by an Ussing chamber 
as previously described [39]. Six proximal intestine seg-
ments larger than 0.01  cm2 from each group were directly 
rinsed with the buffer (NaCl, 140 mmol/L;  NaHCO3, 
10 mmol/L; KCl, 4 mmol/L;  NaH2PO4, 2 mmol/L;  MgSO4, 
1 mmol/L;  CaCl2, 1 mmol/L; glucose, 5.5 mmol/L; pH 7.8) 
and fixed on a clamp. After an equilibration for 20 min, 
transepithelial electrical resistance (TEER) was automati-
cally monitored in a 10-min-circuit current.

Histological analysis
The 4% paraformaldehyde-fixed proximal intestine samples  
were embedded in paraffin, and then cut into 5 μm 
slice for the hematoxylin and eosin (H&E) staining.  
A light microscope (Nikon Ds-Ri2, Nikon Corporation, 
Tokyo, Japan) was used to image the intestinal villus 
height, villus thickness and basal layer thickness from at 
least 24 segments. Quantification and statistical analysis  
were conducted according to the previous article by 
using imaging software (Nis-Elements F package version 
4.60) [40].

Biochemical analysis
The LPS concentration in the serum was quantified by 
using fish LPS enzyme-linked immunosorbent assays 
(ELISA) kits (HB794-QT, Shanghai Hengyuan Biotech-
nology Co., Ltd., China). The levels of lactate in intestinal 
contents were measured using the commercial kit (A019-
2-1, Nanjing Jiancheng Bioengineering Institute, Nanjing, 
China) according to the manufacturer’s instruction.

Short chain fatty acids quantification
Total SCFAs in intestinal contents were determined 
using gas chromatography-mass spectrometry (GC-
MS). Briefly, 0.02 g intestinal contents mixed with 
200 μL 1 × PBS, acidified with 50 μL of 50% sulfuric acid 
and crushed by homogenizer (DLAB Scientific Co., 
Ltd., Beijing, China). 250 μL of diethyl ether was used 
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quantitatively analyzed by RSEM software with TPM 
as the quantitative index. The differentially expressed 
genes (DEGs) were analyzed by DESeq2. Genes of 
P-value  <  0.05 were considered as DEGs. Genes with 
detection values higher than 0.1 were used for Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analysis and volcano plot analysis. The raw data 
was available in the NCBI with the BioProject accession 
number PRJNA987992.

Gut microbiota analysis
Genomic DNA extracted from the intestinal contents 
was performed by the Illumina NovaSeq 6000 System 
(Personalbio, Shanghai, China). Microbial composi-
tion was analyzed by targeting the V3–V4 region of 16S 
rRNA gene using primers 338 F (5′-ACT CCT ACG GGA 
GGC AGC A-3′) and 806 R (5′-GGA CTA CHVGGG 
TWT CTAAT-3′). QIIME2 software was used to ana-
lyze sequencing reads. Alpha diversity indexes (Chao1, 
Shannon and Faith_pd) were significantly different 
among groups as assessed using the Kruskal-Wallis test. 
Beta diversity was conducted by the principal coordi-
nate analysis (PCoA) based on Bray-Curtis distance. 
Linear discriminant analysis effect size (LEfSe) analysis 
was used to characterize taxonomic units with signifi-
cant differences based on Wilcoxon test. Circos analysis 
was performed by the Genes cloud tools of Personal-
bio. The raw data of intestinal microbiota were availa-
ble in the NCBI with the BioProject accession number 
PRJNA987999.

In vivo NOD‑like receptors (NLR) family caspase 
recruitment domain (CARD) domain containing 3 (nlrc3) 
siRNA in the intestine of Nile tilapia
Three siRNA fragments of nlrc3 (Gene ID: 100694916) 
were designed to target different encoding regions 
and the scrambled siRNA (Table S3) was adminis-
tered to juvenile Nile tilapia (1.11 ± 0.02 g) as previously 
reported [41]. Briefly, 10 μL of 1 × PBS, siRNA scramble 
(50 μmol/L) and sinlrc3 (50 μmol/L) were delivered into 
the etherized juvenile fish via oral gavage using 10 μL 
micro pipette tips. The siRNAs were given orally to the 
same fish every 2 d. Five fish in each group were dissected 
for mRNA expression analysis at 1 d and 7 d post-siRNA 
treatment.

Western blot
Intestinal tissues were homogenized on ice by using 
ice-cold radioimmunoprecipitation assay (RIPA) lysis 
buffer (P0013B, Beyotime Biotechnology, Shanghai, 
China) containing 1 mmol/L phenylmethylsulfonyl 
fluoride (PMSF) (ST506, Beyotime Biotechnology, 
Shanghai, China) for 30 min. The extracted protein 

was mixed with 5 × sodium dodecyl sulfate (SDS) load-
ing buffer and boiled at 95 °C for 10 min. The  100 μg 
protein was subjected to 10% sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE). The 
protein concentration was determined using Bicin-
choninic acid (BCA) assay Protein Assay kit (P0012, 
Beyotime Biotechnology, Shanghai, China). The anti-
bodies were as follows: anti-Nlrc3 (DF13411, Affinity 
Biosciences, Jiangsu, China), anti-α-Tubulin (AF4651, 
Affinity Biosciences, Jiangsu, China), and the second-
ary antibody  IRDye® 600CW and  IRDye® 800CW (Li-
Cor Biotechnology, Nebraska, USA). Visualization was 
carried out using Odyssey Clx (Li-Cor Biotechnology, 
Nebraska, USA) and the densitometric quantification 
was performed using Image Studio Lite Ver 5.2 software.

Caco‑2 cell line culture and treatments
Briefly, Caco-2 cells were obtained from ATCC, main-
tained in medium (RPMI 1640, 20% FBS, 100 U/mL 
penicillin, 0.1 mg/mL streptomycin) in a humidified 
incubator (37 °C and 5%  CO2) and passaged every 2–3 
d at 80% confluency. For gene expression detection, 
cells were incubated in 12-well plates with gossypol 
(20 μmol/L) and sodium propionate (SP) (1 mmol/L 
and 5 mmol/L) for 24 h. For wound-healing assay, cells 
were seeded in 12-well plates until reaching 90%–100% 
confluency. After serum starving, 10 μL pipette tip was 
used to make a scratch in cell monolayer. Cells were 
treated with gossypol (20 μmol/L) and SP (1 mmol/L 
and 5 mmol/L) for 72 h. An inverted light microscope 
(Nikon Ds-Ri2, Nikon Corporation, Tokyo, Japan) was 
used to image and the imaging software (Nis-Elements 
F package version 4.60) was used to measure the wound 
closure. The wound closure was calculated according 
to the formula: [(original area of wound − final area of 
wound)/original area of wound]/2.

Statistical analysis
Data were presented as mean ± standard error of mean 
(SEM). Shapiro−Wilk test and Levene’s test were used 
to test the normality and the homogeneity of variances 
for all data. One-way analysis of variance (ANOVA) 
with Tukey’s adjustment was used to compare the dif-
ferences among groups and unpaired Student’s t-test 
was conducted for the difference analyses between two 
groups in GraphPad Prism 8. A value of P < 0.05 was 
deemed statistically significant.

Results
The effects of P. pentosaceus YC on the growth performance
After the feeding trial, the growth parameters were 
recorded to analyze the effects of P. pentosaceus YC on 
the growth performance of Nile tilapia. The WG, SGR 
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and FBL were significantly decreased in GOS group 
when compared to the CON group, and they were sig-
nificantly increased in GP group compared with the 
GOS group (P < 0.05, Table 1). The CF, HSI and MFI had 
no significant difference among three groups (P > 0.05, 
Table  1). Collectively, addition of P. pentosaceus YC 
enhanced the growth performance of Nile tilapia.

Addition of P. pentosaceus YC repaired gossypol‑induced 
intestinal barrier injury
We further detected the intestinal barrier integrity of Nile 
tilapia. The TEER was significantly reduced in GOS group 

and remarkably increased in GP group (P < 0.05, Fig.  1A). 
Consistently, serum LPS concentration was significantly 
increased in GOS group and decreased after the addition of 
P. pentosaceus YC (P < 0.05, Fig. 1B), suggesting an increase 
of intestinal barrier permeability [42, 43]. Dietary gossypol 
caused shedding of intestinal epithelial cells at the top of 
villi, while addition of P. pentosaceus YC ameliorated the epi-
thelium damage (Fig. 1C). Gossypol significantly decreased 
villi height, villi width and basal layer thickness (P < 0.05), 
while addition of P. pentosaceus YC resulted in a remarkable 
improvement of these indicators (P < 0.05, Fig. 1D–F). These 
results indicated that addition of P. pentosaceus YC repaired 
gossypol-induced gut barrier injury in Nile tilapia.

Addition of P. pentosaceus YC increased the gene 
expression of tight junction proteins (tjps)
Epithelial cell tjps such as zona occludens 1 (zo-1), oclu-
din, cadherin1 and claudin suppported the integrity of 
the gut barrier, and the decrease of their expression can 
lead to a higher permeability of the intestine [44, 45]. In 
this study, we found that the expression level of zo-1 was 
significantly reduced in PI and DI when fish fed with gos-
sypol (P < 0.05, Fig.  2A and E), but it was markedly ele-
vated after addition of P. pentosaceus YC (P < 0.05, Fig. 2 
A and E). Moreover, the gene expression of ocludin was 
significantly decreased in DI when fish fed with gossypol 

Table 1 Effects of three diets on growth performance in Nile 
tilapia

Data are represented as mean ± SEM and analyzed by ANOVA with Tukey test. 
a,bDifferent lowercase letters indicated significant differences (P < 0.05)

Items CON GOS GP

Initial body weight, g 2.20 ± 0.02 2.20 ± 0.02 2.20 ± 0.02

Weight gain, g 27.98 ± 0.43a 24.78 ± 0.37b 27.42 ± 0.05a

Specific growth rate, %/d 3.19 ± 0.01a 2.99 ± 0.03b 3.14 ± 0.03a

Final body length, cm 11.85 ± 0.21a 10.52 ± 0.22b 11.79 ± 0.13a

Condition factor, g/cm3 1.60 ± 0.04 1.53 ± 0.03 1.54 ± 0.02

Hepatosomatic index, % 2.32 ± 0.09 1.99 ± 0.12 2.01 ± 0.12

Mesenteric fat index, % 0.38 ± 0.05 0.29 ± 0.04 0.31 ± 0.04

Fig. 1 Addition of P. pentosaceus YC repaired gossypol-induced intestinal barrier injury. A The TEER of intestine; B The LPS concentrations 
in serum (n = 6 individuals); C H&E straining of intestine; D Villi height; E Villi width; F Basal layer thickness (n = 24 individuals). Data are represented 
as mean ± SEM. Asterisk refers to the significant difference (ANOVA with Tukey’s test; *P < 0.05, **P < 0.01). CON, control diet; GOS, gossypol diet; GP, 
gossypol diet supplemented with P. pentosaceus YC; TEER, transepithelial electrical resistance; LPS, lipopolysaccharide
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(P < 0.05, Fig. 2F). There was no significant difference in 
the expression of ocludin in PI (P > 0.05, Fig.  2B), cad-
herin1 (P > 0.05, Fig.  2C and G) and claudin (P > 0.05, 
Fig. 2D and H) in PI and DI among three groups.

Addition of P. pentosaceus YC inhibited Nlrc3 
and promoted the gene expression of ISC markers
The RNAseq analysis was further used to explore the 
possible mechanism by which P. pentosaceus YC repaired 
gossypol-damaged intestinal barrier. The KEGG enrich-
ment analysis enriched a shared NOD-like signaling 
pathway (Fig.  3A) which included 4 cell proliferation 
related genes (nlrc3, forkhead box O3 (foxo3), cyclinD1, 
cyclin  G2) and inflammatory related genes (inhibitor of 
nuclear factor kappa B kinase (iκbκb), interleukin-1β (il-
1β)) (Fig.  3B). The expression of nlrc3 was significantly 
increased in GOS group and dramatically decreased 
in GP group (P < 0.05, Fig.  3B–D). The expression of 
foxo3 and cyclinD1 was significantly decreased in GOS 
group and remakedly increased in GP group (P < 0.05, 
Fig.  3B–D). We observed that dietary gossypol signifi-
cantly decreased the expression of ISC marker genes lgr5 
and olfm4 (P < 0.05, Fig. 3C), but addition of P. pentosa-
ceus YC remarkly increased their expressions (P < 0.05, 
Fig.  3D), indicating P. pentosaceus YC administration 
might promote ISCs proliferation. The expression of 
ISC marker genes (lgr5 and olfm4) (Fig.  3E and F), the 

NOD-like signaling pathway related genes (nlrc3, foxo3 
and cylinD1) (Fig. 3 G–K) in PI and DI were confirmed 
by qPCR and Western blot, and the results were consist-
ent with the transcriptome analysis. Together, these data 
indicated that addition of P. pentosaceus YC inhibited 
Nlrc3 expression and promoted the gene expression of 
ISC markers.

Nlrc3 was the key factor to regulate genes related to ISC 
markers
We designed a short-term experiment (sinlrc3–3# inter-
ference for 1 d) and a long-term experiment (sinlrc3–3# 
interference for 7  d) in  vivo to detect how the inhibi-
tion of nlrc3 modulate the gene expression of ISC mark-
ers. sinlrc3–3# had the best inhibition effect of intestinal 
nlrc3 (P < 0.05, Fig. 4A), which was further used in both 
short-term and long-term experiments. The gene expres-
sion of nlrc3 was also significantly inhibited by sinlrc3–3# 
in the long-term experiment (P < 0.05, Fig.  4B). The 
expression levels of foxo3, cyclinD1 were upregulated 
when nlrc3 was knock down (P < 0.05, Fig. 4C and F), sug-
gesting that the expression of foxo3 and cyclinD1 could 
be influenced by nlrc3. The gene expression of ISC mark-
ers (lgr5 and olfm4) were significantly promoted after 
sinlrc3 interference (P < 0.05, Fig.  4D and G). There was 
no difference in the expression levels of zo-1 and ocludin 
in the short-term experiment (P > 0.05, Fig. 4E). However, 

Fig. 2 Addition of P. pentosaceus YC promoted tjps expression. A–D The relative gene expression of zo-1, ocludin, cadherin1 and claudin in PI; E–H 
The relative gene expression of zo-1, ocludin, cadherin1 and claudin in DI (n = 6). Asterisk refers to the significant difference (ANOVA with Tukey’s 
test; *P < 0.05). CON, control diet; GOS, gossypol diet; GP, gossypol diet supplemented with P. pentosaceus YC; zo-1, zona occludens 1; PI, proximal 
intestine; DI, distal intestine
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the expression level of zo-1 was significantly higher in the 
long-term experiment (P < 0.05, Fig.  4H). These results 
indicated that the inhibition of nlrc3 had a time-delay 
effect on promoting the expression of zo-1 compared 
with the effect on ISC markers expression.

Addition of P. pentosaceus YC altered the composition 
of gut microbiota
16S rRNA sequencing was conducted to detect whether 
addition of P. pentosaceus YC altered gut microbiota 

composition. The abundance of Pediococcus was signifi-
cantly increased in GP group, indicating the successful 
colonization of P. pentosaceus YC in fish gut (P < 0.05, 
Fig.  5A). Dietary P. pentosaceus YC had no significant 
effects on Chao1 (characterized abundance) and Shannon 
(characterized diversity) indexes (P > 0.05, Fig. 5B and C), 
but significantly increased Faith_pd (characterized phylo-
genetic diversity) index (P < 0.05, Fig. 5D). Addition of P. 
pentosaceus YC recovered the composition of gut micro-
biota similar to that of the CON group (PCo1 and PCo2 

Fig. 3 Addition of P. pentosaceus YC inhibited Nlrc3 and promoted the gene expression of ISC markers. A KEGG enrichment analysis; B Heatmap 
of genes of NOD-like signaling pathway; C and D Volcano plot of DEGs in the compared groups (n = 3). E and F The relative gene expression of ISC 
markers (lgr5 and olfm4) in PI and DI; G The protein expression of Nlrc3 in PI and DI; H and I The quantification of the protein expression of Nlrc3 
in PI and DI; J and K The relative gene expression of foxo3 and cyclinD1 in PI and DI (n = 6). Data are represented as mean ± SEM. Asterisk refers 
to the significant difference (ANOVA with Tukey’s test; *P < 0.05, **P < 0.01). CON, control diet; GOS, gossypol diet; GP, gossypol diet supplemented 
with P. pentosaceus YC; FC, fold change; lgr5, leucine-rich repeat-containing G protein-coupled receptor 5; olfm4, olfactomedin 4; nlrc3, NLR family 
CARD domain containing 3; foxo3, forkhead box O3; iκbκb, inhibitor of nuclear factor kappa B kinase; il-1β, interleukin-1β; PI, proximal intestine; DI, 
distal intestine
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were 22.5% and 17.9%, Fig. 5E). LEfSe analysis indicated 
that Actinobacteria and Nocardioidaceae were dominant 
in GOS group, and Pseudonocardiaceae, Bacillaceae and 
Pediococcus were predominant in GP group (Fig.  5F).  
Proteobacteria, Actinobacteria, Firmicutes, Fusobacteria, 
and Bacteroidetes were the major phyla across all groups, 
and addition of P. pentosaceus YC increased the abundance 
of Firmicutes, Fusobacteria, Bacteroidetes, but decreased 
the abundance of Actinobacteria at the phylum level 
(Fig.  5G). Rhizobiales, Nocardioides, Cetobacterium, and 
Lactobacillus were the dominant genera in all three groups, 
and addition of P. pentosaceus YC increased the abun-
dance of Lactobacillus, Cetobacterium, Bacteroides, and 
decreased the abundance of Nocardioides and Legionella 

at the genus level (Fig. 5H). Collectively, addition of P. pen-
tosaceus YC altered the intestinal microbial composition.

Addition of P. pentosaceus YC increased the propionate 
content in gut
Considering that addition of P. pentosaceus YC altered the 
intestinal microbiota composition, we detected the con-
tent of microbial derived acetate, propionate, butyrate, 
and lactate in the intestinal contents. Butyrate was too low 
to be detected and there were no notably changes in the 
levels of lactate and acetate among three groups (P > 0.05, 
Fig.  6A and B). A significant decrease of propionate was 
observed in GOS group, and addition of P. pentosaceus 
YC restored the level of propionate in GP group (P < 0.05, 

Fig. 4 Nlrc3 was the key factor to protect gut barrier integrity. A In vivo sinlrc3 interference for 1 d; B In vivo sinlrc3 interference for 7 d; C and 
F The relative gene expression of foxo3 and cylinD1 in the short-term and long-term experiments; D and G The relative gene expression of lgr5 
and olfm4 in the short-term and long-term experiments; E and H The relative gene expression of zo-1 and ocludin in the short-term and long-term 
experiments (n = 5). Data are represented as mean ± SEM. Significant difference compared with siRNA-scramble group (Student’s t-test; 
**P < 0.01, ***P < 0.001). CON, control; nlrc3, NLR family CARD domain containing 3; foxo3, forkhead box O3; lgr5, leucine-rich repeat-containing G 
protein-coupled receptor 5; olfm4, olfactomedin 4; zo-1, zona occludens 1
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Fig. 5 Addition of P. pentosaceus YC altered the composition of gut microbiota. A The relative abandance of Pediococcus; B Chao1 index. C Shannon 
index; D Faith_pd index; E PCoA analysis; F LEfSe analysis; G Circos analysis in the level of phylum; H Circos analysis in the level of genus (n = 5). Data 
are represented as mean ± SEM. Significant difference of the relative abandance of Pediococcus compared with GOS group (ANOVA with Tukey’s test; 
*P < 0.05) and significant difference of Faith_pd (Kruskal-Wallis test; *P < 0.05). CON, control diet; GOS, gossypol diet; GP, gossypol diet supplemented 
with P. pentosaceus YC; PCoA, principal coordinate analysis; LDA, laser diffraction analysis
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Fig. 6C). Moreover, the expression levels of free fatty acids 
receptor 2 (ffar2, also known as G protein-coupled recep-
tor (GPR)43) and ffar3 (also known as GPR41) increased 
remarkably in the PI and DI after P. pentosaceus YC treat-
ment (P < 0.05, Fig. 6D and E). In conclusion, addition of 
P. pentosaceus YC increased intestinal propionate content 
and upregulated the expression of ffar2 and ffar3.

Propionate stimulated wound healing in vitro
The wound-healing assay of Caco-2 cells was conducted 
to detect the reparative function of propionate. Results 
revealed that gossypol suppressed the wound healing, 
but supplementation of sodium propionate strikingly 
accelerated the healing of wound (P < 0.05, Fig. 7A and B). 
We further detected the above mentioned differentially 
expressed genes on the Caco-2 cells. Here, we found that 
lgr5 had a significantly higher expression after addition of 
sodium propionate compared to the GOS group, which 
indicated that propionate might enhance stem cell prolif-
eration during the healing process (P < 0.05, Fig. 7C). Fur-
thermore, we examined the expression of ffar2 and ffar3, 
and found these two genes were significantly upregulated 
in sodium propionate treatment (P < 0.05, Fig.  7D and 
E). The expression of nlrc3 was dramatically increased in 
GOS group, and notably decreased by sodium propionate 
administration (P < 0.05, Fig. 7F). These results indicated 
that propionate inhibited nlrc3 expression, promoted 

lgr5 expression, and improved the wound healing of 
Caco-2 cells.

Discussion
Dietary components and xenobiotics have the adverse 
effects on the intestinal health [46–48]. Gossypol, a 
toxic compound contained in CSM, has detrimental 
effects on the growth condition, intestinal immunity 
and barrier barrier integrity in various animals, how 
to decrease the deleterious effects of gossypol residue 
remains to be expolored [13, 17, 19–22]. Probiotics 
have the potential to promote the growth condition 
and repair the gut barrier, and concomitantly, intesti-
nal microbiota is involved [34, 36, 49–51]. The present 
research revealed that the weight gain, specific growth 
rate and final body length were significantly augmented 
after the addition of P. pentosaceus YC, suggesting its 
ability to restore the growth retardation caused by 
gossypol in Nile tilapia. The increased growth may 
be attributed to the repair of gut barrier, as intestinal 
structure integrity is indispensable for the absorp-
tion of nutrients and resisting of pathogens [52]. Wang 
et al. [17] reported that dietary gossypol resulted in the 
loose arrangement of enterocyte and epithelial slough-
ing to damage the structure of intestinal epithelial cells 
in grass carp (Ctenopharyngodon idella), but there is 
no effective stretagy to reduce the negative effect of  

Fig. 6 Addition of P. pentosaceus YC induced the accumulation of gut propionate. A The levels of lactate in the intestinal contents; B The levels 
of acetate in the intestinal contents; C The levels of propionate in the intestinal contents; D and E The relative genes expression of ffar2 and ffar3 
in PI and DI (n = 6). Data are represented as mean ± SEM. Asterisk refers to the significant difference (ANOVA with Tukey’s test; *P < 0.05, **P < 0.01). 
CON, control diet; GOS, gossypol diet; GP, gossypol diet supplemented with P. pentosaceus YC; ffar, free fatty acid receptor; PI, proximal intestine; DI, 
distal intestine
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gossypol. Our previous study in Nile tilapia proved 
that the disruption of intestinal microbial homeostasis 
was the reason for gossypol to exacerbate gut barrier 
injury [21]. And in the present study, we found that 
addtion of P. pentosaceus could improve the intesitnal 
strucuture and integrity when fish were exposed to 
gossypol.

ISC proliferation is fundamental to sustaining gut 
barrier integrity by governing the rapid renewal of 
intestinal epithelium, particularly in response to gut 
barrier injury [32, 34, 53]. Several signaling path-
ways including NLR, Wnt, bone morphogenetic pro-
tein (BMP) and Notch signals have been documented 
to regulate ISC proliferation [32]. Here, the RNAseq 
analysis inspired us to focus on the Nlrc3 (also named 
CLR16.2 and Nod3), a molecular belonging to NLRs 
family [54]. NOD1 and NOD2 in the NLRs family are 
capable of regulating ISC proliferation [55–57]. How-
ever, the link between Nlrc3 and ISC proliferation has 
not been explored. Research has discovered that a defi-
ciency of NLRC3 spurred cell proliferation in wound 
and hastened the healing of murine cutaneous wound 
[58]. Correspondingly, the results of the feeding trail 
substantiated that the expression of Nlrc3 had a nega-
tive correlation with the expression of ISC markers, 
lgr5 and olfm4, and the siRNA interference experiment 

indicated that inhibition of Nlrc3 could stimulate the 
expression of these genes, potentially implying ISC 
proliferation. Foxo3 and cyclinD1 were two down-
stream genes of nlrc3 [59], and cyclinD1 was found 
to contribute to porcine ISC proliferation [35]. In 
this study, the expression levels of foxo3 and cyclinD1 
were up-regulated when nlrc3 was inhibited, suggest-
ing that the effect of nlrc3 on foxo3 and cyclinD1 was 
conserved in different animals. The proliferated ISCs 
could move up and divide into epithelial cells to replace 
the damaged cells in the villi [60]. We also found the 
expression of si (a marker of terminal differentiation in 
enterocytes) and villin (enterocytes marker) increased 
when P. pentosaceus YC was added (Fig. S1), suggesting 
that the addition of P. pentosaceus YC may also influ-
ence the differentiation to enterocytes, yet this requires 
more validation. Furthermore, it has been revealed that 
mice lacking NLRC3 were predisposed to cancer due to 
hyperproliferation [59], so we identified whether addi-
tion of P. pentosaceus YC with standard diet caused 
harmful effect to the host. The results showed that 
addition of P. pentosaceus YC did not influence the 
growth performance or intestinal barrier function (Fig. 
S2), indicating P. pentosaceus YC did not induce the 
excessive proliferation under the normal physiological 
condition of fish.

Fig. 7 Propionate improved the wound healing of Caco-2 cells in vitro. A Representative phase contrast images of Caco-2 cells, scale bar = 1,000 
px (1 px = 4.23 μm); B Quantification of average migration distance; C–F The relative gene expression of lgr5, ffar2, ffar3 and nlrc3 in Caco-2 cells 
(n = 3). Asterisk refers to the significant difference (ANOVA with Tukey’s test; *P < 0.05, **P < 0.01, ***P < 0.001). CON, control; GOS, gossypol; SP, 
sodium propionate; lgr5, leucine-rich repeat-containing G protein-coupled receptor 5; ffar, free fatty acid receptor; nlrc3, NLR family CARD domain 
containing 3
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The intestinal microbiota and the derived metabolites 
can initiate signals of hosts to maintain the gut barrier 
integrity [61, 62]. Previous study has demonstrated that 
addition of P. pentosaceus altered the gut microbiota 
composition in mice and zebrafish [29–31, 38]. Con-
sistently, P. pentosaceus YC administration raised the 
abundance of Firmicutes, Fusobacteria, Bacteroidetes 
phyla and Lactobacillus, Cetobacterium, and Bacte-
roides genera. These bacteria are capable of effectively 
producing SCFAs, which can help to repair intestinal 
barrier damage [63–65]. The metabolites analysis fur-
ther indicated that the addition of P. pentosaceus YC 
increased the level of propionate significantly. Unlike 
the beneficial effect of acetate and butyrate in main-
taining intestinal barrier [66, 67], the effect of propion-
ate on gut barrier was inconsistent [68, 69]. It has been 
found that propionate supplementation in high-fat diet 
induced intestine damage in zebrafish [68], but sodium 
propionate supplementation in the diet with high soy-
bean meal promoted the growth performance of turbot 
and enhanced the expression of intestinal tight junc-
tion proteins [69]. In our study, exogenous addition of 
sodium propionate promoted wound healing of Caco-2 
cells, insinuating the reparative effect on gut barrier 
integrity of propionate with the presence of gossypol.

Caco-2 cells line was used because it has a classical intes-
tinal crypt stem cell-like population and can differentiate 
into intestinal epithelial-like cells, which is an ideal model 
to research the connection between ISCs and intestinal 
epithelium [70, 71]. With the addition of sodium propion-
ate, we discovered a high expression of LGR5 [70], a marker 
of the classic intestinal crypt stem cell-like population of 
Caco-2 cells, indicating stem cell proliferation. GPR41 
and GPR43 are known to mediate propionate to promote 
murine intestinal stem cell proliferation [72]. Moreover, 
SCFAs has been proved to inhibit NLRs by activating GPRs 
[73]. Here, propionate increased ffar2/ffar3 expression and 
decreased nlrc3 expression in  vitro and in  vivo, indicat-
ing propionate may inhibit Nlrc3 through GPRs. Taken 
together, addition of P. pentosaceus YC increased the level of 
gut microbiota-derived propionate and repaired gossypol- 
induced intestinal barrier injury in Nile tilapia.

Conclusions
In conclusion, the present study established that P. pentosa-
ceus YC had the protective effect on repairing gossypol-
induced intestinal barrier injury. Addition of P. pentosaceus 
YC altered the gut microbiota composition and increased 
intestinal propionate to inhibit Nlrc3, up-regulated the 
genes of ISC proliferation markers and repaired intestinal 
barrier injury. This study provides a potential strategy for 
gossypol-induced gut barrier injury, which will also benefit 
the application of CSM in the future.
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