
Zeng et al. 
Journal of Animal Science and Biotechnology          (2023) 14:112  
https://doi.org/10.1186/s40104-023-00915-3

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Animal Science and
Biotechnology

Heat stress affects dairy cow health status 
through blood oxygen availability
Jia Zeng1,2, Jie Cai2, Diming Wang2, Hongyun Liu2, Huizeng Sun1,2 and Jianxin Liu1,2*    

Abstract 

Background  Rises in global warming and extreme weather occurrence make the risk of heat stress (HS) induced 
by high ambient temperatures more likely in high-yielding dairy cows, resulting in low milk quality and yield. In ani-
mals, oxygen is involved in many physiological and metabolic processes, but the effects of HS on oxygen metabolism 
remain unclear. Thus, the current study aimed to investigate how oxygen metabolism plays a role in health status 
of dairy cows by measuring the milk yield, milk composition, and blood biochemical variables of cows under different 
levels of HS: none (No-HS), mild (Mild-HS), and moderate HS (Mod-HS).

Results  The HS significantly increased rectal temperature (Ptreat < 0.01) and respiration rate (Ptreat < 0.01). Under 
Mod-HS, greater Na+ (P < 0.05) and lower total CO2, and pH (P < 0.05) were observed relative to those under No-HS 
and Mild-HS. Oxygen concentrations in both coccygeal artery and mammary vein (Ptreat < 0.01) were lower 
under Mod-HS than under No-HS. Coccygeal vein concentrations of heat shock protein 90 (HSP90) (P < 0.05) increased 
during Mod-HS compared with those in cows under No-HS. Malondialdehyde increased during Mod-HS, and glu-
tathione peroxidase (P < 0.01) increased during Mild-HS. Coccygeal vein concentrations of vascular endothelial 
growth factor (P < 0.01), heme oxygenase-1 (P < 0.01), and hypoxia-inducible factor 1α (P < 0.01) were greater in cows 
under Mod-HS than those under No-HS. Red blood cell count (P < 0.01) and hemoglobin concentration (P < 0.01) were 
lower in the coccygeal vein of dairy cows under Mild- and Mod-HS than those of cows under No-HS.

Conclusions  Exposure to HS negatively impacts the health status and lactation performance of dairy cows by limit-
ing oxygen metabolism and transportation. However, the specific mechanism by which HS affects mammary function 
in cows remains unclear and requires further exploration.
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Introduction
Global warming and heat stress (HS) significantly affect 
livestock production. The HS reduces milk production 
in mid-lactation cows by 30%–40% [1, 2]. Reduced feed 

intake accounts for approximately half of total milk pro-
duction decrease [3]. The decline in milk production 
induced by HS could potentially be attributed to an array 
of complex physiological alterations within the bovine 
body. These may encompass the apoptosis of mam-
mary epithelial cells [4], modifications within the rumen 
microbiome [5], onset of systemic oxidative stress [6], 
and shifts in the overall health status of the dairy cow. 
However, the HS-induced physiological mechanisms 
associated with reduced milk synthesis and feed intake 
are not well understood.

The HS stimulates the production of reactive oxy-
gen species (ROS), which are by-products of oxygen 

*Correspondence:
Jianxin Liu
liujx@zju.edu.cn
1 Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality 
Research of Zhejiang Province, College of Animal Sciences, Zhejiang 
University, Hangzhou, China
2 Ministry of Education Key Laboratory of Molecular Animal Nutrition, 
Zhejiang University, Hangzhou, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40104-023-00915-3&domain=pdf
http://orcid.org/0000-0002-5812-5186


Page 2 of 11Zeng et al. Journal of Animal Science and Biotechnology          (2023) 14:112 

metabolism originating from cellular respiration. Oxida-
tive stress occurs when there is an imbalance between 
ROS production and antioxidative defenses. Heat-
stressed cows suffer from oxidative stress, which affects 
body substance metabolism and alters lactation per-
formance [7, 8]. Previous research has focused on the 
effects of HS on the cow behavior and physiology [9, 10]. 
On the other hand, oxygen is involved in several impor-
tant physiological and metabolic processes in animals, 
including ROS production and oxidative stress. Oxygen 
metabolism includes gas exchange, transport, and utiliza-
tion, of which availability of oxygen is a complex biologi-
cal process. Blood oxygen plays a vital role in metabolism 
and physiological regulation within the animal body. For 
example, high-yielding dairy goats have greater blood 
oxygen partial pressure and circulating oxygen availabil-
ity than low-yielding goats [11]. Hemoglobin (HGB) is an 
iron-containing metalloprotein in red blood cells (RBC), 
and the main carrier of oxygen [12]. However, oxygen 
metabolism and availability in dairy ruminants under HS 
conditions are often overlooked.

Under HS conditions, metabolic processes in these 
tissues may be altered, potentially leading to changes in 
oxygen consumption, and consequently differences in 
oxygen concentrations in the venous blood. Furthermore, 
HS may influence blood flow and vascular function, 
which could also contribute to the differences in oxygen 
concentration. Therefore, we hypothesized that environ-
mental HS would affect lactation performance in dairy 
cows by influencing oxygen metabolism. Previous studies 
have been usually conducted using a chamber to simu-
late HS or compare differences in cows’ physiology and 
metabolism between winter and summer [8, 13, 14]. The 
underlying mechanisms by which HS influences lactation 
performance and oxygen availability in dairy cows under 
natural conditions are largely unknown. In addition, few 
studies have monitored changes in cow physiology and 
oxygen metabolism in the same individual consistently 
under natural HS. Therefore, a self-controlled experi-
ment was designed to elucidate HS effects on dairy cow 
health status from the perspectives of oxygen metabolism 
and oxygen availability. Our study provides novel insights 
into the physiological effects of HS on animals, which will 
help inform the development of strategies to alleviate HS 
in dairy cows.

Materials and methods
Experimental design and animal management
All experimental procedures were approved by the Ani-
mal Care Committee of the Zhejiang University (Hang-
zhou, China). Eighteen high-yielding Chinese Holstein 
cows (milk yield = 41.4 ± 0.47 kg/d, days in milk = 207 ± 4.2 
d, parity = 2–3, mean ± standard error) were selected and 

housed within the same barn in a dairy farm. They were 
subjected to three conditions of varying HS intensity: no 
HS with a temperature-humidity index (THI) below 68 
(No-HS, from May 14 to May 21), mild HS (Mild-HS, 
from May 22 to June 18, 68 ≤ THI ≤ 79), or moderate HS 
(Mod-HS, from June 21 to July 14, 79 < THI ≤ 88) [15] in 
their natural environment (Additional file 1: Fig. S1a). All 
the cows were observed over a two-month period, and 
samples were collected from these cows in all three con-
ditions (Additional file 1: Fig. S1b).

Cows were fed three times per day with free access to 
water and housed in a shaded and sand-bedded free-
stall barn equipped with waterers and fans. The natural 
environment and barn conditions were similar to those 
described previously [16]. Air circulation system was uti-
lized, calibrated to operate at a fan speed of 20,000 m3/h. 
A precision sprinkler system was adopted for the cows, 
with sprinkler flow rate of 1.8 L/h. All the cows were fed 
with a total mixed ration formulated to meet their nutri-
tional requirements [17] throughout the experiment. 
Basal diet ingredients and chemical composition are pre-
sented in Table S1.

During the experiment, multi-point observations were 
made to record the temperature and humidity of the 
farm using automatic temperature and humidity record-
ers with an accuracy of ± 0.2 °C and ± 2% relative humid-
ity (RH) (TH20R; Shenzhen Huahanwei Technology 
Co., Ltd., Shenzhen, China). Five automatic temperature 
and humidity recorders, suspended at a height of about 
2.0 m from the ground, were placed in the center of the 
barn and several locations around the barn. The THI 
was calculated based on the equation recommended by 
Dikmen and Hansen [18]: THI = (1.8 × T + 32) – [(0.55 
– 0.0055 × RH) × (1.8 × T – 26)], where T = ambient tem-
perature (°C) and RH = relative humidity (%). The THI 
values for different sampling days are shown in Fig. S1c.

Lactation performance and physiological measurements
All cows were milked three times daily at 0500, 1400, and 
2000. Milk production was recorded for three consecu-
tive days and milk yield was collected using the APOLLO 
Milking System (GEA Farm Technologies, Naperville, 
USA). The collected milk samples were premixed at a 
ratio of 4:3:3 in a 50-mL centrifuge tube for later analysis. 
Milk composition was analyzed for protein, fat, lactose, 
milk urea nitrogen, and somatic cell count by infrared 
analysis [19] using a spectrophotometer (Foss-4000; Foss 
Electric A/S, Hillerod, Denmark).

Respiratory rate (RR) and rectal temperatures (RT) 
were measured for all cows at 0800, 1400, and 2000 dur-
ing sampling days. The RR was calculated by taking mean 
cow total flank movements over two 60-s periods. The RT 
was measured with a digital thermometer (GLA M900, 
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accuracy ± 0.1  °C, GLA Agricultural Electronics, CA, 
USA). Each cow was measured twice and the two values 
were averaged. The RR and RT of dairy cows at three dif-
ferent time points are shown in Table S2.

Plasma metabolites and blood gas parameters
Blood samples were collected using BD Vacutainer anti-
coagulant lithium heparin vacuum tubes and blood col-
lection needles, each of which was individually packaged 
and sterilized with cyclohexane prior to use. Samples 
were collected from the coccygeal vein, coccygeal artery, 
and mammary vein 3 h after morning feeding in 10-mL 
lithium heparin tubes. Two hundred microliters of all the 
blood samples were immediately used to measure blood 
gas parameters. The coccygeal vein samples were centri-
fuged at 3,000 × g for 15 min at 4 °C to obtain plasma for 
further analysis of hematological parameters and variable 
related to HS, hypoxia stress, and oxidative stress.

Blood oxygen concentration was measured using 
an i-STAT portable clinical analyzer (Heska Corpora-
tion,  Loveland, CO, USA). Each i-STAT blood gas card 
came with a calibration solution for calibration. Deter-
mined blood gas parameters included pH; concentrations 
of sodium (Na+), potassium (K+), total carbon dioxide 
(CO2), ionized calcium (iCa2+); HGB; partial pressure 
of oxygen (pO2) and of carbon dioxide (pCO2); HCO3

−; 
base excess in the extracellular fluid (BEecf ); and oxygen 
saturation (sO2). An i-STAT CG8 + cartridge (Abbott 
Medical, Canada) was used as the blood gas card in the 
analyzer. Hematological parameters were determined 
using an automatic hematology analyzer (Automatic 
blood cell analyzer, Mindray B2600, Shenzhen, China).

Heat stress‑, hypoxia stress‑ and oxidative stress‑related 
parameters
Commercial ELISA kits developed by Nanjing Jiancheng 
Bioengineering Institute (Nanjing, China) were used to 
analyze HS-related parameters in coccygeal vein plasma, 
including heat shock transcription factor (HSF; #H612), 
heat shock protein 70 (HSP70; #H264-2), HSP90 (#H264-
3), and HSP27 (#H264-4).

Hypoxia-inducible factor 1α (HIF-1α; #H307-2), nitric 
oxide (NO; #A012-1-2), inducible nitric oxide synthase 
(iNOS; #H372-1), endothelial nitric oxide synthase 
(eNOS; #H195), heme oxygenase 1 (HO-1; #H246-1), and 
vascular endothelial growth factor (VEGF; #H044-2) lev-
els were determined using a radial immunodiffusion assay 
(commercial kits provided by Nanjing Jiancheng Bioen-
gineering Institute, Nanjing, China). Glutathione per-
oxidase (GSH-Px; #A005-1-2), malondialdehyde (MDA; 
#A003-1-2), total antioxidant capacity (T-AOC; #A015-
3-1), and superoxide dismutase (SOD; #A001-1-2) were 
determined using a commercial kit (Nanjing Jiancheng 

Bioengineering Institute, Nanjing, China) according to 
previously reported procedures [20, 21]. Blood physio-
biochemical analysis was performed using a 7020 Clinical 
Analyzer (Hitachi High-Tech Corporation). Total biliru-
bin concentration (#B-2014) was measured using com-
mercial kits (Shanghai Juchuang Biotechnology Co., Ltd., 
Shanghai, China).

Calculations and statistical analysis
Blood oxygen concentration was calculated using the 
following equation [22, 23]: oxygen concentration (%) = 
0.003 × pO2 + 1.34 × HGB × sO2, where pO2 is the partial 
pressure of oxygen (mmHg), HGB is hemoglobin (g/dL), 
and sO2 is oxygen saturation (%). The arterio-venous dif-
ference (AVD) was calculated according to the method 
reported previously [24].

Statistical analysis was performed using SAS Analytics 
Software 9.4 (SAS Institute Inc., Cary, NC, USA), and dif-
ferences among treatments were analyzed using orthog-
onal polynomial comparisons of linear and quadratic 
effects, with treatment as fixed variables and individual 
cows as random variables. Statistical model as follows:

where yij is the dependent variable of cow j in differ-
ent HS treatment i, µ is the overall mean, τi is the fixed 
effect of different HS treatment, δj is the random effect 
of individuals that is assumed to follow normal distribu-
tion N (0, Iσ 2) , and I is the identity matrix, Li is the linear 
effect of HS treatment i, Qi is the quadratic effect of HS 
treatment i, and ǫij is the random residuals. The P values 
for treatment, linear, and quadratic effects were calcu-
lated and denoted as Ptreat, Plinear, Pquadratic, respectively. 
The interactions between the levels of the fixed factors 
were evaluated by means of pairwise comparisons. Sta-
tistical comparisons among groups were carried out 
through a one-way analysis of variance (ANOVA), sup-
plemented by Tukey’s multiple comparisons post-hoc test 
using GraphPad Prism v8.0 (GraphPad Software, Inc.). 
Pearson’s correlation coefficient analysis was conducted 
to determine correlations between variables. The corre-
lation analysis was performed using the “corrplot” pack-
age in R (https://​www.r-​proje​ct.​org) [25, 26]. Results 
are presented as the mean ± standard error of the mean 
(SEM). A statistically significant difference was defined as 
P < 0.05 and highly significant at P < 0.01.

Results
Physiological measurements and lactation performance
Table  1 presents the changes in dairy cow physiologi-
cal measurements and lactation performance. The HS 
increased the RT and RR of dairy cows (Ptreat < 0.01). Milk 
yield and percentage of milk fat decreased (Ptreat < 0.01) 

(1)yij = µ+ τi+δj + Li + Qi + ǫij

https://www.r-project.org
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during the HS period, whereas somatic cell counts 
increased in cows under Mod-HS (Ptreat < 0.01).

Blood gas profiles and oxygen concentration
Gas profiles in coccygeal vein of dairy cows are shown 
in Table 2. Under Mild-HS, the concentration of ionized 
Ca2+ was greater, whereas the concentrations of Na+ and 
K+ were lower than those under No-HS (P < 0.05). Under 
Mod-HS, greater Na+ (P < 0.05) and lower total CO2, 
pH, and BEecf (P < 0.05) were observed relative to those 
under No-HS and Mild-HS. No significant differences 
(Ptreat > 0.05) were identified in the sO2 and pO2 among 
different HS conditions.

Gas profiles in coccygeal artery of dairy cows are shown 
in Table S3. Under Mild-HS, the concentration of ionized 
Ca2+ was greater, whereas the concentration of K+ was 
lower than those under No-HS (P < 0.05). Under Mod-
HS, greater K+ and lower total CO2, and BEecf (P < 0.05) 
were observed relative to those under No-HS and Mild-
HS. No significant differences (Ptreat > 0.05) were identi-
fied in the sO2 and pO2 among different HS conditions. 
Percentage of HCT and concentration of HGB (P < 0.05) 
were lower under Mod-HS than under No-HS. Blood gas 
parameters in mammary vein indicated similar change 
trend as in coccygeal artery of dairy cows under varying 
HS (Table S4).

Table 1  Effects of heat stress on lactation performance of dairy cows

1 ECM Energy-corrected milk yield, ECM = 0.3246 × milk yield + 13.86 × milk fat yield + 7.04 × milk protein yield, FCM Fat corrected milk yield, 4%FCM = 0.4 × milk 
yield + 15 × milk fat yield, SCC Somatic cell counts, MUN Milk urea nitrogen
a–c Means within the same row with different superscripts differ (P < 0.05)

Item1 Heat stress SEM P-value

No Mild Moderate Treat Linear Quadratic

Rectal temperature, °C 38.4c 38.8b 39.7a 0.08  < 0.01  < 0.01  < 0.01

Respiratory rate, bpm 43.4c 49.2b 76.0a 2.26  < 0.01  < 0.01  < 0.01

Yield, kg/d

  Milk yield 41.4a 36.8b 26.8c 0.70  < 0.01  < 0.01  < 0.01

  ECM 49.6a 35.5b 26.0c 1.47  < 0.01  < 0.01 0.22

  4%FCM 46.1a 31.1b 23.1c 1.53  < 0.01  < 0.01 0.07

Milk composition, %

  Fat 4.02a 2.88b 2.65b 0.28  < 0.01  < 0.01  < 0.01

  Protein 3.51a 3.20b 3.04b 0.05  < 0.01  < 0.01  < 0.01

  Lactose 5.08a 5.00a 4.73b 0.09  < 0.01  < 0.01 0.24

  SCC, × 103/mL 67.9b 93.3b 166.0a 25.96  < 0.01  < 0.01 0.30

  MUN, mg/dL 18.1a 12.5b 14.4b 0.80  < 0.01  < 0.01  < 0.01

Table 2  Blood gas parameters in coccygeal vein of dairy cows under varying heat stress

1 iCa2+ Ion calcium, pCO2 Partial pressure of carbon dioxide, sO2 oxygen Saturation, pO2 Partial pressure of oxygen, BEeff Base excess extracellular fluid
a–c Means within the same row with different superscripts are different (P < 0.05)

Item1 Heat stress SEM P-value

No Mild Moderate Treat Linear Quadratic

iCa2+, mmol/L 1.20b 1.93a 1.21b 0.06  < 0.01 0.91  < 0.01

Na+, mmol/L 136b 134c 138a 0.36  < 0.01  < 0.01  < 0.01

K+, mmol/L 4.46a 4.09b 4.14b 0.06  < 0.01  < 0.01  < 0.01

pO2, mmHg 33.7 40.1 37.2 3.70 0.48 0.50 0.32

sO2, % 64.3 68.8 66.3 2.75 0.48 0.59 0.28

Total CO2, mmol/L 30.7a 31.0a 27.2b 0.54  < 0.01  < 0.01  < 0.01

pCO2, mmHg 46.0 43.3 44.2 1.84 0.52 0.45 0.39

HCO3
−, mmol/L 29.3 28.0 25.8 1.08 0.07 0.02 0.72

BEecf, mmol/L 4.61a 5.33a 0.56b 0.56  < 0.01  < 0.01  < 0.01

pH 7.41a 7.42a 7.38b 0.01  < 0.01  < 0.01  < 0.01
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Table  3 showed the concentration of oxygen in the 
blood vessels of dairy cows. Oxygen concentration was 
lower in the coccygeal arteries and mammary veins of 
dairy cows under Mod-HS than in those under No-HS 
(P < 0.05), but was not significantly different (Ptreat = 0.60) 
in the coccygeal veins among three HS conditions. The 
mammary AVD in oxygen concentration did not differ 
between HS and No-HS treatments (Ptreat = 0.77).

Blood hematological parameters
Hematological parameters from coccygeal vein of 
dairy cows are presented in Table  4. The RBC count 
(Ptreat < 0.01), HGB concentration (Ptreat < 0.01) and 
mean corpuscular hemoglobin concentration (MCHC) 
(Ptreat < 0.01) were lower, whereas mean corpuscular 
volume (MCV) was greater (Ptreat < 0.01) under Mild 
and Mod-HS than under No-HS. Percentage of HCT 
(Ptreat < 0.01) was lower under Mod-HS than under 

No-HS and Mild-HS. Under Mild-HS, platelet concen-
tration was lower (P < 0.01), whereas neutrophil propor-
tion was greater (P < 0.01) than that under No-HS and 
Mod-HS.

Variables related with heat stress, hypoxia stress 
and oxidative stress
Variables related to HS, oxidative stress, and hypoxia 
at different HS levels are presented in Table  5. Under 
Mod-HS, coccygeal vein concentrations of HO-1, 
VEGF, HIF-1α, HSP70, HSP90, and total bilirubin as 
well as activity of MDA were greater (P < 0.05) than 
those under No-HS and Mild-HS, with no difference 
between No-HS and Mild-HS (P > 0.05). Concentra-
tion of HSF showed an increasing trend (Ptreat = 0.06) 
under Mod-HS. The iNOS concentration decreased 
(Ptreat < 0.01) under Mod-HS compared to that under 
No-HS and Mild-HS, with no difference between 

Table 3  Oxygen concentration in the coccygeal vein, coccygeal artery, and mammary vein of dairy cows under different heat stress

1 AVD Arterio-venous difference
a,b Means within the same row with different superscripts are different (P < 0.05)

Item, mL/dL Heat stress SEM P-value

No Mild Moderate Treat Linear Quadratic

Coccygeal vein 7.54 7.77 7.19 0.41 0.60 0.54 0.42

Coccygeal artery 11.6a 11.2ab 10.8b 0.20  < 0.01  < 0.01 0.81

Mammary vein 9.58a 9.00ab 8.69b 0.28  < 0.01  < 0.01 0.51

Mammary AVD1 2.09 2.26 2.21 0.20 0.77 0.62 0.61

Table 4  Hematological parameters in coccygeal vein of dairy cows under different heat stress

1 RBC Red blood cell, HCT Hematocrit, HGB Hemoglobin, MCV Mean corpuscular volume, MCH Mean corpuscular hemoglobin, MCHC Mean corpuscular hemoglobin 
concentration, MPV Mean platelet volume, PLT Platelet, WBC White blood cell, NEU Neutrophil, LYM Lymphocyte, MON Monocyte, EOS Eosimophil, BASO Basophil
a–c Means within the same row with different superscripts are different (P < 0.05)

Item1 Heat stress SEM P-value

No Mild Moderate Treat Linear Quadratic

RBC, M/μL 6.05a 5.81b 5.37c 0.11  < 0.01  < 0.01 0.12

HCT, % 28.0a 28.0a 25.9b 0.44  < 0.01  < 0.01  < 0.01

HGB, g/L 101a 98.2b 91.8c 1.44  < 0.01  < 0.01 0.13

MCV, fL 46.4b 48.5a 48.3a 0.70  < 0.01  < 0.01  < 0.01

MCH, pg 16.8 16.9 17.1 0.26 0.03 0.01 0.87

MCHC, g/L 363a 350b 354b 1.4  < 0.01  < 0.01  < 0.01

MPV, fL 7.34 7.45 7.29 0.13 0.07 0.45 0.03

PLT, K/μL 463a 420b 466a 27.2  < 0.01 0.83  < 0.01

WBC, K/μL 16.1a 15.9a 13.5b 1.29  < 0.01  < 0.01 0.03

NEU, % 47.1b 51.1a 47.4b 2.69 0.04 0.88 0.01

LYM, % 43.6 40.2 44.7 2.91 0.01 0.50  < 0.01

MON, % 8.28 7.95 7.03 0.49 0.08 0.03 0.54

EOS, % 0.95 0.64 1.08 0.24 0.40 0.70 0.20

BASO, % 0.24 0.18 0.15 0.03 0.22 0.09 0.72
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No-HS and Mild-HS (P > 0.05). Concentration of SOD 
was lower (P < 0.05) under Mod-HS than under No-HS 
and Mild-HS, with no difference between Mild-HS and 
Mod-HS (P > 0.05). During Mild-HS, the concentration 
of GSH-Px was greater (P < 0.05) than under No-HS 
and Mod-HS.

Correlation analysis between blood gas profile 
and oxidative stress
Correlation coefficients between blood gas profiles and 
oxidative stress are shown in Fig. 1. Under No-HS, HSP90 
was positively correlated with pO2 (r = 0.53, P = 0.02), 
whereas SOD was negatively correlated with HSP90 
(r =  −0.61, P = 0.01) and HIF-1α (r =  −0.68, P < 0.01). 

Table 5  Heat stress-related variables, oxidative stress variables, and hypoxia variables in coccygeal vein of dairy cows during different 
heat stress

1 NO Nitric oxide, iNOS Inducible nitric oxide synthase, eNOS Endothelial nitric oxide synthase, HO-1 Heme oxygenase 1, VEGF Vascular endothelial growth factor, MDA 
Malondialdehyde, SOD Superoxide dismutase, GSH-Px Glutathione peroxidase, T-AOC Total antioxidant capacity, HSF Heat shock transcription factor, HIF-1α Hypoxia 
inducible factor 1α, HSP70 Heat shock protein70
a–c Means within the same row with different superscripts are different (P < 0.05)

Item1 Heat stress SEM P-value

No Mild Moderate Treat Linear Quadratic

NO, μmol/L 5.43 7.19 6.78 0.74 0.32 0.28 0.28

iNOS, U/mL 15.0a 13.4b 12.3b 0.31  < 0.01  < 0.01 0.42

eNOS, ng/mL 5.00 4.67 4.91 0.21 0.50 0.77 0.26

HO-1, ng/mL 17.7b 18.6b 23.4a 0.93  < 0.01  < 0.01 0.09

VEGF, ng/L 263b 262b 313a 10.4  < 0.01  < 0.01 0.02

MDA, nmol/mL 1.29b 1.40b 2.18a 0.17  < 0.01  < 0.01 0.07

SOD, U/mL 171a 167a 152b 4.1  < 0.01  < 0.01 0.08

GSH-Px, U/mL 40.9b 55.9a 42.1b 2.09  < 0.01 0.71  < 0.01

T-AOC, mmol/L 0.32 0.34 0.31 0.01 0.04 0.34 0.02

HSF, ng/L 252 244 282 12.6 0.06 0.07 0.11

HIF-1α, ng/L 207b 206b 255a 10.9  < 0.01  < 0.01 0.01

HSP27, ng/mL 4.38ab 3.88b 4.46a 0.17 0.02 0.70 0.01

HSP70, ng/mL 5.12b 4.83b 6.21a 0.24  < 0.01  < 0.01  < 0.01

HSP90, ng/mL 19.2b 19.6b 22.8a 0.76  < 0.01  < 0.01 0.06

Total bilirubin, μmol/L 2.31b 2.06b 3.83a 0.12  < 0.01  < 0.01  < 0.01

Fig. 1  Pearson correlation analysis between blood gas profiles and oxidative stress in cow coccygeal veins under no heat stress (A), mild heat stress 
(B), and moderate heat stress (C). MDA, malondialdehyde; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; T-AOC, total antioxidant 
capacity; HO-1, heme oxygenase 1; VEGF, vascular endothelial growth factor; HSF, heat shock transcription factor; HIF-1α, hypoxia inducible factor 
1α; HSP90, heat shock protein 90; HCT, hematocrit; HGB, hemoglobin; TCO2, total pressure of carbon dioxide, pCO2, partial pressure of carbon 
dioxide; pO2, partial pressure of oxygen, sO2, oxygen saturation; Color gradients indicate the degree of correlation, with blue indicating a positive 
correlation and red indicating a negative correlation. ***P < 0.001, **P < 0.01, *P < 0.05
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Under Mild-HS, coccygeal vein concentrations of HIF-1α 
(r = 0.602, P = 0.011) and MDA (r = 0.60, P = 0.01) were 
positively correlated with HSP90 but negatively cor-
related with SOD (r =  −0.55, P = 0.02). The HSP90 was 
negatively correlated with SOD (r =  −0.53, P = 0.03) and 
GSH-Px (r =  −0.64, P < 0.01).

Under moderate HS, coccygeal vein concentration 
of HIF-1α showed a positive association with HSP90 
(r = 0.70, P < 0.01), MDA (r = 0.50, P = 0.04), HCT 
(r = 0.55, P = 0.02), and HGB (r = 0.55, P = 0.02). Both 
HIF-1α (r =  −0.48, P = 0.05) and HSP90 (r =  −0.52, 
P = 0.03) were negatively correlated with SOD levels. 
The T-AOC was positively correlated with sO2 (r = 0.52, 
P = 0.03) and oxygen content (r = 0.55, P = 0.02).

Discussion
Heat stress is known to reduce feed intake and hence 
lactation performance [3], cause oxidative stress [7], and 
change substance metabolism in dairy cows [13]. How-
ever, our study primarily focused on exploring the addi-
tional metabolic alterations induced by HS, excluding 
the effects attributable to diminished feed intake. The 
role of oxygen metabolism in substance metabolism has 
seldom been reported. In this study, we measured milk 
composition, blood gas profiles, and oxygen concen-
tration to estimate oxygen availability, and metabolites 
related to oxidative stress and hypoxia stress in dairy 
cows under HS with  an aim to explore how HS affects 
dairy cow physiology, health and lactation performance 
from the perspective of oxygen metabolism. As such, we 
hypothesize that the observed variations in oxygen con-
centration may be attributable to changes in metabolic 
activity under HS, particularly in tissues with high oxy-
gen demand such as the mammary gland.

Our findings demonstrate a significant decline in milk 
yield and milk fat percentage influenced by HS. We also 
observed an augmentation in the count of milk somatic 
cells and a substantial alteration in the immune cells and 
in the blood parameters of the coccygeal vein. Increased 
milk somatic cells are associated with immune activation, 
and excessive immune system activation under HS can 
use the increased amount of glucose, thereby reducing 
their availability for lactose synthesis and reducing milk 
production [27]. Increased sweating and respiratory alka-
losis during HS can affect the homeostasis of electrolytes 
in blood [28]. Therefore, the changes of Ca2+, Na+ and K+ 
under different degrees of HS may indicate the changes 
in electrolyte balance and body health of dairy cows. 
Electrolyte concentrations in milk may reveal short-term 
physiological responses related to HS [29]. These results 
suggest that HS exerts a notable impact on the over-
all health status of dairy cows. Furthermore, during HS 
(with an increase in respiratory rate) dairy cows undergo 

intense gas exchange with the external environment, 
including ion and acid–base balance in the coccygeal 
vein and coccygeal artery. Fluctuations in temperature 
and humidity throughout the day can lead to variations 
in cow blood parameters [16]. Given our focus on iden-
tifying indicators of consistent and stable changes dur-
ing HS, we restricted our blood sample collection to the 
morning. However, this approach imposes certain limi-
tations on analyzing the dynamics of cow blood param-
eters. To gain a comprehensive understanding of the 
impact of HS on the physiological health of dairy cows, 
future research should consider the broader spectrum of 
blood biochemical changes in relation to diurnal fluctua-
tions of temperature and humidity.

Contrary to expectations, our study did not reveal 
any alterations in pO2 and sO2 in both coccygeal vein 
and coccygeal artery, implying that the amount of oxy-
gen circulating in the blood in dairy cows may remain 
relatively unaltered in response to sustained HS [30]. In 
addition, no significant difference was found in the mam-
mary AVD of oxygen concentration among different HS, 
which may be attributed to adaptation of dairy cows to 
the environment because the oxygen concentration indi-
cated parallel changes in coccygeal artery and mammary 
vein. Notably, our findings indicated a decline in the 
counts of RBC, along with a decreased concentration of 
HGB and MCHC in the coccygeal vein during HS con-
ditions. The HGB is an iron-containing protein complex 
that transports oxygen throughout the body and is usu-
ally found in RBC [31]. Arterial oxygen concentration 
and consequently tissue oxygenation are directly affected 
by HGB levels [32, 33]. Both HCT and HGB have been 
considered as essential indices reflecting the capacity of 
RBCs to carry oxygen [34]. Lower level of HCT and lower 
count of RBC were found in Holstein dairy cows dur-
ing the summer than during the winter [14], consistent 
with the results of our study. Morar et  al. [35] reported 
that RBC count and levels of HCT and HGB were signifi-
cantly lower in cows under HS. In our study, oxygen con-
centrations in both coccygeal artery and mammary vein 
exhibited a substantial decrease during periods of Mod-
HS. This trend correlated with a reduction in the count 
of RBC and the concentration of HGB. The observed data 
hint at a potential physiological response to HS in cows, 
where the availability of oxygen is modulated via altera-
tions in RBC count and HGB concentration. The precise 
mechanisms underlying this adaptation, however, war-
rant further in-depth investigations.

Our study furnishes compelling evidence suggesting 
a significant diminution in the MCHC, consistent with 
the change in HGB during periods of HS. Bilirubin is a 
naturally occurring product from the catabolism of heme 
by heme oxygenase [36, 37]. Serum levels of bilirubin are 
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thought to be derived from the breakdown of RBC, which 
mostly occurs in the spleen [38]. Our findings elucidate a 
significant elevation in total bilirubin concentration dur-
ing the period of Mod-HS. This increase may be attrib-
utable to an augmentation in the breakdown of RBC, 
consequently resulting in a diminished RBC count [39]. 
Concurrently, this process could lead to the liberation of 
hemoglobin within RBCs and subsequent catalysis into 
bilirubin by HO-1, which was enhanced by HS.

Beyond the reduction in RBC, HS incurs broader phys-
iological implications, influencing overall health. The 
HS leads to excessive ROS production and mitochon-
drial dysfunction, resulting in oxidative stress in dairy 
cows [7]. Biological macromolecules are easily damaged 
by oxidative stress, which interferes with metabolic and 
physiological pathways [40]. In the current study, the 
concentrations of MDA increased and SOD decreased in 
the coccygeal vein of dairy cows during HS. The MDA is 
the main product of polyunsaturated fatty acid peroxida-
tion. The increased MDA concentration may be attribut-
able to the enhanced production of ROS and aggravating 
the oxidative damage of lipids [41, 42]. The SOD catalyzes 
the disproportionation of superoxide anion radicals (O2

−) 
into H2O2 and O2. Therefore, the observed elevation of 
GSH-Px during Mild-HS may conceivably enhance the 
antioxidant capacity of dairy cows. However, during 
the Mod-HS, the elevated levels of MDA alongside the 
decreased SOD within the coccygeal veins suggest that 
the cows may be subjected to intense oxidative stress.

The oxidative stress induced by HS appears to have a 
significant correlation with oxygen metabolism, as our 
findings suggest. Mitochondria are the primary sites of 
oxygen consumption and ROS production, accounting for 
85%–90% of cell oxygen consumption [43, 44]. The mito-
chondrial electron transport chain requires molecular 
oxygen to produce ATP [45]. The HS has been reported 
to cause mitochondrial protein degeneration and inhibit 
mitochondrial ATP synthesis [46]. A decrease in oxy-
gen consumption suggests damage to the mitochondrial 
respiratory chain under HS [47]. It has been shown that 
HS inactivated complex I in the respiratory chain [48]. 
Reduced electron flow along the respiratory chain leads 
to decreased oxygen uptake and increased mitochon-
drial superoxide anion levels [49], which are precursors 
of most ROS and mediators of oxidation chain reac-
tions. Previous studies have shown that HS can reduce 
SOD-1 mRNA levels, cytoplasmic SOD protein levels, 
and enzyme activity by increasing ROS [50]. Therefore, it 
seems that the mechanism by which HS impacts oxygen 
availability may be associated with the oxidative stress 
resulting from mitochondrial degradation.

In the subsequent correlation analysis, we found that 
HIF-1α and HSP90 were negatively correlated with SOD 

during HS, indicating that cows with higher HIF-1α 
and HSP90 levels might have a weaker oxidative resist-
ance. A significant positive correlation existed between 
HIF-1α, MDA, and HSP90 under Mild-HS, indicating 
that cows with greater HSP90 levels during HS may be 
a potential risk for hypoxia stress and lipid peroxidation. 
In order to dissipate body heat under HS, animals experi-
ence an increased peripheral vascular dilation and a com-
pensatory decrease in intestinal blood flow, resulting in 
hypoxia [27]. Therefore, HS led to both hypoxia and oxi-
dative stress, which affected the health of dairy cows in 
our study. The HIF-1α appears to be a master transcrip-
tion factor capable of inducing the expression of genes 
related to autoregulation, cell survival and proliferation, 
angiogenesis, energy metabolism, and erythropoiesis 
[51], and is induced by cellular responses to hypoxia. 
Hypoxia transactivates target genes such as VEGF [52] 
and directly enhances angiogenesis by promoting VEGF 
expression [53]. The VEGF plays a crucial role in the 
hypoxia response by controlling the expression of many 
hypoxia response genes involved in various oxygen deliv-
ery processes [54]. Our investigation revealed that dur-
ing Mod-HS there is a pronounced increase in VEGF 
concentrations, suggesting that HIF-1α, in response to 
HS, stimulates the expression of VEGF, thereby foster-
ing angiogenesis. The increased expression of HSP90 
and HIF-1α in dairy cows during HS increased VEGF 
expression and stimulates angiogenesis, which may play a 
specific role in the adaptation of dairy cows to HS. There-
fore, cows under HS self-regulated to improve oxygen-
carrying capacity; however, their oxygen transport and 
hematopoietic functions were still deteriorated to some 
extent.

It should be pointed out that gradual adaptation to HS 
may exist, wherein dairy cows exhibit adaptive responses 
when subjected to mild to moderate HS. In our experi-
ment, we were unable to account for the potential influ-
ence of time on this adaptation process. It is plausible 
that cows gradually acclimate to HS from No-HS condi-
tion to Mild-HS condition before being exposed to Mod-
HS condition. On the other hand, a recent study showed 
that 7 d of washout was enough for recovery in milk 
yield, and inflammatory markers after a period of HS 
[27]. Therefore, it is important to incorporate a thermo-
neutral control group in future experiments to enhance 
experimental design and better assess the effects of HS.

Conclusion
In this study, heat stressed-dairy cows had greater con-
centrations of HIF-1α and MDA in the coccygeal vein, 
but lower concentrations of oxygen, HGB, and RBC in 
the blood vessels than the cows under No-HS. These 
findings imply that the exposure to HS decreases the 
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availability of circulating oxygen by reducing hemo-
globin concentration and RBC count, thus instigating 
oxidative stress and hypoxia. Therefore, HS impacted 
lactation performance by affecting the ability of the 
blood to metabolize and transport oxygen. However, 
the precise mechanism underlying how HS influences 
mammary lactation via the availability of blood oxygen 
necessitates further exploration.
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