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Abstract 

Background Hepatic steatosis is a prevalent manifestation of fatty liver, that has detrimental effect on the health 
and productivity of laying hens, resulting in economic losses to the poultry industry. Here, we aimed to systematically 
investigate the genetic regulatory mechanisms of hepatic steatosis in laying hens.

Methods Ninety individuals with the most prominent characteristics were selected from 686 laying hens accord-
ing to the accumulation of lipid droplets in the liver, and were graded into three groups, including the control, mild 
hepatic steatosis and severe hepatic steatosis groups. A combination of transcriptome, proteome, acetylome and lipi-
dome analyses, along with bioinformatics analysis were used to screen the key biological processes, modifications 
and lipids associated with hepatic steatosis.

Results The rationality of the hepatic steatosis grouping was verified through liver biochemical assays and RNA-seq. 
Hepatic steatosis was characterized by increased lipid deposition and multiple metabolic abnormalities. Integra-
tion of proteome and acetylome revealed that differentially expressed proteins (DEPs) interacted with differentially 
acetylated proteins (DAPs) and were involved in maintaining the metabolic balance in the liver. Acetylation alterations 
mainly occurred in the progression from mild to severe hepatic steatosis, i.e., the enzymes in the fatty acid oxidation 
and bile acid synthesis pathways were significantly less acetylated in severe hepatic steatosis group than that in mild 
group (P < 0.05). Lipidomics detected a variety of sphingolipids (SPs) and glycerophospholipids (GPs) were negatively 
correlated with hepatic steatosis (r ≤ −0.5, P < 0.05). Furthermore, the severity of hepatic steatosis was associated 
with a decrease in cholesterol and bile acid synthesis and an increase in exogenous cholesterol transport.

Conclusions In addition to acquiring a global and thorough picture of hepatic steatosis in laying hens, we were able 
to reveal the role of acetylation in hepatic steatosis and depict the changes in hepatic cholesterol metabolism. The 
findings provides a wealth of information to facilitate a deeper understanding of the pathophysiology of fatty liver 
and contributes to the development of therapeutic strategies.
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Background
Fatty liver syndrome (FLS) often occurs in caged laying 
hens, especially during the later stages of the laying cycle, 
and poses a threat to the well-being and productivity of 
laying hens, and the primary hazards are as follows: (1) 
it is the main cause of noninfectious death of laying hens 
[1, 2]; (2) it affects the development of follicles, leading 
to a decline in production performance, egg production 
rate and egg quality [3]; and (3) it influences the endog-
enous synthesis and catabolism of bile acids and other 
steroid hormones, resulting in a reduction in nutrient 
absorption [4, 5]. In humans, it is known as non-alcoholic 
fatty liver disease (NAFLD), but has undergone a name 
change in 2020 as metabolic dysfunction-associated fatty 
liver disease (MAFLD) [6]. Hepatic steatosis is the initial 
manifestation of both FLS and MAFLD. Given that the 
liver is the primary organ for lipogenesis in humans and 
birds [7], chicken hepatic steatosis is an excellent model 
for studying MAFLD in human. Thus, it is imperative to 
clarify the potential regulatory mechanism of hepatic ste-
atosis from a systemic perspective.

Hepatic steatosis is frequently accompanied by aber-
rant lipid metabolism [8–10]. The maintenance of lipid 
homeostasis is intricately dependent on the hepatic met-
abolic pathway, and the disruptions of lipid metabolism 
in turn can lead to the onset of hepatic steatosis, such 
as the high levels of free fatty acids (FFA), triglycerides 
(TG), cholesterol and other metabolites [11]. Therefore, 
alterations of metabolic signatures in the liver can be 
regarded as markers of distinct subtypes or as diagnos-
tic biomarkers for hepatic steatosis in general. Irregular 
lipid metabolism has been identified to be affected by 
numerous proteins, mainly through alterations in protein 
expression, posttranslational modifications and protein 
interactions [12–14]. Among them, lysine (K) acetylation, 
as an evolutionarily highly conserved posttranslational 
modification mechanism (PTM), plays a crucial role in 
the development and progression of the diseases related 
to metabolism [15, 16]. In particular, acetylation has been 
reported to play a significant role in numerous metabolic 
pathways, including the regulation of gluconeogenesis, 
tricarboxylic acid (TCA) cycle, and fatty acid oxidation in 
the liver [17–19]. Therefore, there may be an interaction 
among lipid metabolism, protein expression and acetyla-
tion, which are involved in the regulation of hepatic stea-
tosis. Integrated analysis of changes in transcriptome, 
proteome, acetylome, and lipidome under the context of 
hepatic steatosis can be a powerful strategy to character-
ize the relationship between highly connected molecular 
regulation and lipid content.

To date, the regulatory mechanism on hepatic steatosis 
in laying hens remains unclear, with only limited findings 
having compared changes in expression at the mRNA, 

protein, lncRNA and methylation levels in chickens with 
fatty liver [20–23]. The present study aimed to system-
atically investigate the molecular mechanisms of chicken 
hepatic steatosis with multiomic approaches.

Materials and methods
Ethics statement
The experiments were approved by the Animal Welfare 
Committee of China Agricultural University (permit no. 
AW32303202-1-1) and performed in accordance with the 
protocol outlined in the “Guide for Care and Use of Lab-
oratory Animals” (China Agricultural University, Beijing, 
China).

Animals and sample collection
A chicken population consisting of 686 female birds 
derived from Rhode Island Red breed in Beijing Huadu 
Yukou Poultry Breeding Co., Ltd., (China) was used in 
the current study. All chickens were reared in same con-
ditions from hatching, and each chicken housed in an 
individual cage. The chickens were fed the same basic 
diet and had free access to feed and water. The illumi-
nation schedule followed a photoperiod of 16  h of light 
and 8 h of darkness on a daily basis (16L:8D). Hens were 
euthanized by cervical dislocation at 90 weeks of age. 
Half of each liver tissue was frozen in liquid nitrogen and 
immediately stored at −80 °C for subsequent sequencing 
and biochemical assays. The remaining liver tissue were 
fixed in formalin for 48 h for histological analysis.

Histological analysis and evaluation of hepatic steatosis
Paraformaldehyde-fixed, paraffin-embedded livers 
were sectioned and stained with hematoxylin and eosin 
(H&E) staining reagent. Images of each liver section were 
obtained using a Canon EOS 7D digital camera (Canon, 
Tokyo, Japan). A total of 686 liver-stained sections were 
blindly evaluated by an experienced pathologist, and 90 
individuals with the most prominent characteristics were 
selected for subsequent research. These 90 individuals 
could be clearly divided into three groups, as modified 
from Kleiner et al. [24]: HS0, healthy liver without lipid 
accumulation(< 5% steatosis of hepatocytes); HS1, mild 
fat accumulation in the liver (5%–33% steatosis of hepat-
ocytes); HS2, massive fat accumulation (> 33% steatosis 
of hepatocytes). No fibrosis or hemorrhage was observed 
in the livers of any laying hens in this study.

RNA sequencing and data analysis
A total of 90 liver samples (30 samples per group) were 
used for RNA-seq. Total RNA was extracted using the 
Eastep® Super Total RNA Extraction Kit (cat no: LS1040, 
Promega, Shanghai, China) following the manufacturer’s 
instructions. Transcriptome sequencing libraries were 
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constructed according to the standard Illumina RNA-
seq protocol and sequenced on the Illumina Novaseq 
platform (150  bp paired-end reads, PE150). Reads con-
taining adaptor contamination, low quality bases, and 
undetermined bases were removed using Fastp (v.0.20.1) 
[25]. The clean reads were aligned to the chicken refer-
ence genome (GRCg6a) using HISAT2 (v.2.0.5) [26] with 
the default parameters. SAM files were converted to the 
BAM format using Samtools (v.1.11) [27]. Then, the reads 
were counted for each gene using featureCounts (v.1.6.3) 
[28]. Differentially expressed genes (DEGs) were identi-
fied with DESeq2 (v.1.32.0) [29] according to thresholds 
of an adjusted P value < 0.05 and |fold change| > 2.

Proteomic and acetylomic analyses
Four samples were randomly selected from each group 
for the proteomic and acetylomic analysis. Samples were 
removed from −80  °C, well ground to powder with liq-
uid nitrogen, and then lysed by ultrasonication. After 
removal of cell debris, the supernatant was collected, 
and the protein concentration was determined using a 
BCA kit (cat no: 23225, Thermo Scientific, Waltham, 
MA, USA). Equal amounts of protein from each sam-
ple were taken for digestion, and the precipitates were 
washed with 20% trichloroacetic acid (TCA) and pre-
chilled acetone. After drying the precipitate, triethylam-
monium bicarbonate (TEAB) at a final concentration of 
200  mmol/L was added, the precipitate was broken up 
by sonication, and trypsin (1:50) was added and digested 
overnight. Dithiothreitol (DTT) was added to a final con-
centration of 5 mmol/L and reduced for 30 min at 56 °C. 
Iodoacetamide (IAA) was added to a final concentration 
of 11  mmol/L, after which the samples were incubated 
for 15  min at room temperature while protected from 
light.

For proteomic analyses, tryptic peptides were solu-
bilized in 0.5  mol/L TEAB. The TMT labeling reagent 
(cat no: 90068, Thermo Scientific, Waltham, MA, USA) 
was dissolved in acetonitrile, mixed with peptides, and 
incubated at room temperature for 2 h. Five microliters 
of each labeled sample were pooled, then desalted with 
Strata X C18 SPE column (Phenomenex, Torrance, CA, 
USA) and dried by vacuum centrifugation. The samples 
were fractionated by high pH reverse-phase HPLC using 
Agilent 300 Extend C18 column (5 μm particles, 4.6 mm 
ID, 250 mm length). Briefly, peptides were separated into 
80 fractions using a gradient of 2% to 60% acetonitrile in 
10  mmol/L ammonium bicarbonate pH 10 for 80  min, 
and peptides were pooled into 9 fractions and dried by 
vacuum centrifugation. Then, peptides were dissolved 
and separated using the EASY-nLC 1200 ultra high 
performance  liquid chromatography (UHPLC) system 
(Thermo Scientific, Waltham, MA, USA), then added 

into the nanospray ion (NSI) source for ionization and 
then analyzed by the Q Exactive™ HF-X mass spectrom-
eter (Thermo Scientific, Waltham, MA, USA). The elec-
trospray voltage applied was 2.0  kV. For the scan range 
of 350–1,600 m/z, the full MS scan resolution was set to 
60,000. Up to the 20 most abundant precursors were then 
selected for further MS/MS analysis with 30  s dynamic 
exclusion. The higher energy collisional dissociation 
fragmentation was performed at a normalized collision 
energy (NCE) of 28%. These fragments were detected in 
Orbitrap at a resolution of 30,000. Fixed first mass set to 
100 m/z. The automatic gain control (AGC) target was 
set to 100,000, the intensity threshold was 33,000, and the 
maximum injection time was 60 ms.

For acetylomic analyses, the pre-washed acetylated 
beads (cat no: PTM-104, Jingjie PTM BioLab, Hangzhou, 
China) were added and incubated at 4  °C for modifica-
tion enrichment. After incubation, the peptide bound to 
the beads was eluted, and then the eluate was collected 
and vacuum dried. The peptides were desalted with C18 
ZipTips (Merck Millipore, Darmstadt, Germany) and 
vacuum freeze dried for liquid chromatography‒mass 
spectrometry (LC‒MS) analysis. The peptides were dis-
solved and separated by the NanoElute UHPLC system 
(Bruker Daltonics, Bremen, Germany), then injected into 
the capillary ion source for ionization and then analyzed 
by timsTOF Pro mass spectrometer (Bruker Daltonics, 
Bremen, Germany). The electrospray voltage applied was 
1.6 kV, and the peptide precursor ions and their second-
ary fragments were detected and analyzed using high-
resolution TOF. The scanning range of MS/MS was set 
at 100–1,700. The data acquisition mode uses the Parallel 
Accumulation Serial Fragmentation (PASEF) mode. After 
a primary mass spectrometer was collected, 10 times of 
PASEF mode was used to collect the secondary spectrum 
of the precursor ion charge number in the range of 0–5. 
The dynamic exclusion time of the tandem mass spec-
trometry scan was set to 30 s to avoid repeated scanning 
of the precursor ion.

The resulting data were processed using the MaxQuant 
search engine (v.1.6.15.0) [30]. Tandem mass spectra 
were searched against the Gallus_gallus database (27,535 
entries) concatenated with a reverse decoy database. 
Carbamidomethyl on Cys was specified as a fixed modi-
fication, and acetylation on the protein N-terminus and 
oxidation on Met were specified as variable modifica-
tions. The FDR was adjusted to < 1%.

Enrichment analysis
The Metascape online tool (http:// metas cape. org) was 
used to annotate genes. Eggnog-mapper (v.2.0) [31] was 
used to annotate proteins. For each protein sequence, the 
result with the highest score in the BLAST alignment is 

http://metascape.org
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selected for annotation. The gene ontology (GO) anno-
tations were based on categories of biological process, 
cellular component, and molecular function. The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database 
was used to annotate pathways. P < 0.05 was set as the 
threshold for significant enrichment.

Soft clustering of protein expression
The R package “Mfuzz” (v.2.52.0) [32] was used to cluster 
the proteins with the same expression patterns. Pathway 
enrichment analysis was performed for the proteins in 
each cluster separately. Cluster membership was visual-
ized by a heatmap using the “heatmap.2” function of the 
R package “gplots” (v.3.1.1).

Protein‒protein interaction (PPI) network
PPI analysis was performed using STRING (v.11.0) [33]. 
Functional protein association networks with confidence 
scores ≥ 0.7 (high confidence) were retained and visual-
ized using the R package "networkD3" (v.0.4) [34].

Lipid sample preparation and lipidomic assay
Six replicates were randomly selected from each group 
of RNA-seq analysis samples for the lipidomic analysis. 
Each group contained at least three samples that are the 
same as the proteomics and acetylomics analysis. Lipid 
contents were extracted from livers and detected by Met-
Ware (http:// www. metwa re. cn/). The sample was thawed 
on ice, approximately 20  mg homogenized with a steel 
ball in 1 mL of a mixture that consisting mainly of meth-
anol, methyl tert-butyl ether (MTBE), and an internal 
standard mixture. After removing the steel ball, the mix-
ture was whirled for 15 min. Then, 200 μL of water was 
added and the mixture was whirled for 1 min. Afterward, 
the mixture was centrifuged at 12,000 r/min and 4 °C for 
10 min, and 300 μL of the supernatant was extracted and 
concentrated. The resulting powder was dissolved in 200 
μL of reconstituted solution and stored at −80 °C, before 
being taken into the sample bottle for LC–MS/MS anal-
ysis. The sample extracts were analyzed using an ultra 
performance liquid chromatography (UPLC) (ExionLC™ 
AD,  SCIEX, Framingham, MA, USA) and tandem mass 
spectrometry (MS/MS) (QTRAP® 6500+ , ABsciex, Los 
Angeles, CA, USA). In brief, a reversed phase Thermo 
Accucore™ C30 column (2.6 μm, 2.1 mm × 100 mm ID) 
was used at 45  °C. The gradient elution consisting of 
mobile phase A (10  mmol/L ammonium formate and 
0.1% formic acid in 60% acetonitrile/water) and mobile 
phase B (10  mmol/L ammonium formate and 0.1% for-
mic acid in 90% propan-2-ol/water) was applied. The 
column temperature was set to 55  °C, and the injection 
volume was 2 μL. The effluent was alternately connected 
to an ESI triple quadrupole linear ion trap (QTRAP)-MS, 

followed by LIT and triple quadrupole (QQQ) scans. 
The system was equipped with an ESI Turbo ion spray 
interface, operating in positive and negative ion modes. 
The ESI source operation parameters were as follows: 
ion source, turbo spray; source temperature 500  °C; ion 
spray voltage (IS) 5,500 V (Positive), −4,500 V(Neagtive); 
Ion source gas 1 (GS1), gas 2 (GS2), curtain gas (CUR) 
were set at 45, 55, and 35 psi, respectively. Instrument 
tuning and mass calibration were performed with 10 
and 100 μmol/L polypropylene glycol solutions in QQQ 
and LIT modes, respectively. Based on the MWDB data-
base (Metware database), the substances were quantified 
using the multiple reaction monitoring mode (MRM) of 
the triple quadrupole mass spectrometer.

The identified metabolites were annotated and 
mapped to the pathway database using the KEGG data-
base (http:// www. kegg. jp/ kegg). Significantly regulated 
metabolites between groups were determined by vari-
able importance of the projection (VIP ≥ 1) and |log2 fold 
change| ≥ 1. VIP values were generated from the OPLS-
DA results using the R package MetaboAnalystR (v.3.2) 
[35]. The data were log-transformed  (log2) and mean-
centered before OPLS-DA. To avoid overfitting, a per-
mutation test (200 permutations) was performed.

Liver biochemical assays
Liver biochemical assays were performed according to 
the manufacturer’s instructions (Nanjing Jiancheng Bio-
engineering Institute, Nanjing, China). The concentra-
tions of triglyceride (cat no: A110-2-1), free fatty acid (cat 
no: A042-2-1), total bile acid (TBA, cat no: E003-2-1), 
cholesterol (cat no: A111-1-1) and high-density lipopro-
teins (HDL, cat no: A112-1-1) were measured by colori-
metric methods based on protein quantification (cat no: 
A045-2), while the concentration of very low-density 
lipoproteins (VLDL) were measured using an ELISA kit 
(cat no: H249). Thirty biological replicates (same as the 
RNA-seq samples) were performed for TG, FFA, TBA 
and cholesterol tests. Ten biological replicates (ran-
domly selected from each hepatic steatosis group, and 
each group contained at least 4 samples that are the same 
as the lipidomic analysis) were performed for HDL and 
VLDL.

Results
Hepatic lipid accumulated with the severity of hepatic 
steatosis
We divided 686 individuals into three groups, about 217 
individuals had healthy liver, 265 individuals had mild 
hepatic steatosis, and 204 individuals had severe hepatic 
steatosis. In each group, 30 individuals with the most 
prominent characteristics were selected for subsequent 
research, and each group had typical histological features, 

http://www.metware.cn/
http://www.kegg.jp/kegg
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i.e., HS0 (n = 30) corresponded to the control group, with 
almost no lipid droplets in liver tissue. HS1 (n = 30) cor-
responded to the mild hepatic steatosis group, with small 
lipid droplets scattered in liver tissue and occasional large 
lipid droplets. HS2 (n = 30) corresponded to the severe 
hepatic steatosis group, enriched with large lipid drop-
lets evenly dispersed in liver tissues (Fig.  1A). To verify 
the grouping accuracy, the TG and FFA in liver were 
quantified by biochemical assays. Consistent with the 
histology results, the TG content exhibited a significant 
increase with the severity of hepatic steatosis (P < 0.001, 
Fig.  1B). The hepatic concentration of FFA also showed 
an increasing pattern, with significantly higher abun-
dance of FFA in hepatic steatosis groups (HS1 and HS2) 
than control group (P < 0.001, Fig. 1C).

Ninety liver tissues from one control and two 
hepatic steatosis groups (30 samples per group) were 
used for RNA-seq and transcriptomic analysis. Gene 
expression-based principal component analysis (PCA) 
revealed clear separation among groups, indicating high 
reproducibility of the transcriptomic profile of hepatic 
steatosis, and hepatic steatosis severity differentiated 

along the PC1 direction with 63.6% of explained vari-
ance (Fig.  1D). To identify DEGs, we performed pair-
wise comparative analysis among these three groups, 
and screened a total of 6,181 DEGs. Specifically, 3,407, 
1,943 and 5,725 DEGs were identified between HS0 
and HS1, between HS1 and HS2 and between HS0 and 
HS2, respectively (Additional file  1: Table  S1, Addi-
tional file  2: Fig. S1A). The DEGs between HS0 and 
HS2 accounted for the majority of the entire DEG set 
(Additional file  2: Fig. S1B), suggesting dynamic tran-
scriptional changes from control to the severe hepatic 
steatosis group. The unsupervised hierarchical cluster-
ing of all DEGs showed a distinct expression pattern 
among three groups (Additional file 2: Fig. S1C). Some 
DEGs were enriched in lipid metabolic terms, such as 
the non-alcoholic fatty liver disease and lipid biosyn-
thetic process (Fig.  1E), which confirmed the ration-
ality of hepatic steatosis grouping. We also identified 
that the expression of some genes in response to insu-
lin pathway were changed significantly (Fig.  1E). Insu-
lin plays a central role in regulation of lipid metabolism 

Fig. 1 Hepatic lipid accumulation increased in laying hens with hepatic steatosis. A Histologic sections with H&E staining of livers from laying 
hens in different groups. B and C The concentrations of TG (B) and FFA (C) in different groups. The values are the mean ± SEM, n = 30 per group. * 
represents P < 0.05, ** represents P < 0.01 and ***represents P < 0.001. D PCA plot for RNA-seq. The points represent biological replicates. E Pathways 
of enrichment analysis with up- and down-regulated DEGs between different groups
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[36], suggesting the dysregulated insulin response in 
hepatic steatosis groups.

Acetylation modification involved in maintaining 
the metabolic balance in the liver
Since the number of DEGs was huge, the further inves-
tigation was performed from proteome and acetylome 
to identify candidate genes more accurately. In total, 
5,967 proteins and 7,319 acetylated sites were quantified 
after filtration. The PCA plots showed clear separation 
between the control (HS0) and hepatic steatosis groups 
(HS1 and HS2) in both protein expression and acetyla-
tion (Fig.  2A). Further analysis revealed 920 DEPs and 
707 differentially acetylated sites in 488 proteins (Addi-
tional file 1: Table S2 and S3, Additional file 2: Fig. S1D 
and E). The greatest number of DEPs occurred between 
HS0 and HS2, which is consistent with DEGs (Addi-
tional file  2: Fig. S1F). Given that protein acetylation is 
an important determinant of protein function and inter-
action, we compared the 488 DAPs between each of two 
groups. The number of acetylated sites and DAPs was 
greatest between HS1 and HS2 (Additional file  2: Fig. 
S1G), suggesting that protein acetylation may contribute 
to the development from mild to severe hepatic steatosis.

To categorize and characterize the proteins that under-
went dynamic changes during the hepatic steatosis, we 
compared the functional enrichments of DEPs and DAPs 
(Fig.  2B). The terms, including regulation of fatty acid 
biosynthetic process, regulation of lipid metabolic pro-
cess and NAFLD, were mainly enriched for DEPs without 
acetylation modification. The terms related to the DAPs 
without alteration in expression were mainly enriched in 
branched chain amino acid metabolic process and NADP 
binding. In contrast, significant terms, such as fatty acid 
elongation, fatty acid oxidation and oxidoreductase activ-
ity were enriched for DEPs and DAPs (Fig. 2B, Additional 
file  1: Table  S4). Overall, both DEPs and DAPs were 
involved in the regulation of lipid metabolism. Subse-
quently, the PPI analysis was performed for DEPs and 
DAPs, and found extensive interactions between DEPs 
and DAPs. Except for spliceosomes and ribosomes, two 
highly connected clusters including metabolic pathways 
and peroxisome, were identified between HS1 and HS2 
(Fig.  2C). In addition, oxidative phosphorylation and 
metabolic pathways were identified between HS0 and 

HS2 (Fig.  2D, Additional file  3: Fig. S2A). In general, 
peroxisome and oxidative phosphorylation are associ-
ated with metabolic pathways [37, 38], which means that 
DEPs interacted with DAPs to play a role in maintaining 
the metabolic balance in the liver.

Acetylation promotes the progression from mild to severe 
hepatic steatosis
To better assess the regulatory role of acetylation in 
hepatic steatosis, a soft clustering analysis was per-
formed on all quantified acetylated proteins. In total, 
eight clusters were identified based on distinct expres-
sion patterns among HS0, HS1, and HS2 groups (Addi-
tional file  3: Fig. S2B). Interestingly, the majority of 
acetylated proteins, whose expression were significantly 
altered between HS1 and HS2 (but may not have differed 
between HS0 and HS1), were involved in lipid metabolic 
pathways, including fatty acid degradation, arachidonic 
acid metabolism, fat digestion and absorption, per-
oxisome and peroxisome proliferator-activated recep-
tor (PPAR) signaling (Additional file 3: Fig. S2B, except 
clusters 4 and 7). Therefore, we speculate that protein 
acetylation may contribute to the progression from 
mild to severe hepatic steatosis. Upon estimating the 
relative levels of acetylation of all peptides within lipid 
metabolism pathways between HS1 and HS2, we found 
that the fat oxidation pathway and the primary bile acid 
biosynthesis pathway had significantly lower acetylation 
in the HS2 group than in the HS1 group (Fig. 2E). Some 
important acetylated enzymes such as CPT2, EHHADH, 
HADHA, ACAA1, HSD17B4 and SCP2 have multiple 
significant modification sites. Given that lipid oxidation 
and primary bile acid synthesis are important biological 
processes of lipid metabolism in the liver, we preliminar-
ily hypothesized that the dysfunction caused by acetyla-
tion modification of these proteins may have hampered 
metabolic processes. Additionally, these acetylated pro-
teins are highly similar to the targets of mitochondrial 
lysine deacetylase sirtuin 3 (SIRT3) [39]. HADHA is a 
substrate widely regulated by SIRT3 [40], and its 5 acety-
lation sites were significantly differentially acetylated 
among three hepatic steatosis groups (P < 0.05, Fig. 2E). 
MDH2 is also reported to be a major SIRT3 target [41], 
and K306 in MDH2 was differentially acetylated between 

(See figure on next page.)
Fig. 2 Proteome profiling analysis of different groups. A PCA plot of proteomics (upper) and acetylation (lower). The points represent biological 
replicates. B Enrichment analysis of DAPs and DEPs. C and D PPI network of DEPs and DAPs between HS0 and HS1 (C) and between HS1 
and HS2 (D). The green circles represent the downregulated DEPs, the yellow circles represent the upregulated DEPs, the purple circles represent 
the hypoacetylated proteins, and the red circles represent the hyperacetylated proteins. E The fat oxidation and primary bile acid biosynthesis 
pathways were hypoacetylated in the HS2 group compared with the HS1 group. Proteins are labeled by gene symbols with identified acetylation 
sites. Boxes indicate protein expression (black indicates no significant change in protein expression), circles indicate acetylation sites, and the color 
scale designates fold-change (HS2/HS1 comparison for protein expression or acetylated site)
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Fig. 2 (See legend on previous page.)



Page 8 of 15Guo et al. Journal of Animal Science and Biotechnology          (2023) 14:108 

the HS1 and HS2 groups (P = 0.018, Additional file 3: Fig. 
S2C). In this context, we speculate that SIRT3 may play 
a role in mediating acetylation differences in this study. 
However, the expression of SIRT3 was not significantly 
different among the hepatic steatosis groups by prot-
eomic analysis (Additional file 3: Fig. S2D).

Dysregulation of cholesterol metabolism was associated 
with altered protein acetylation
Proteome and acetylome analysis proved that hepatic ste-
atosis was accompanied by aberrant lipid metabolism. In 
order to obtain the specific lipids, we performed lipidom-
ics to measure the lipid composition and quantity in dif-
ferent hepatic steatosis groups. A total of 943 lipids were 
identified, organized into 6 categories comprising 40 lipid 
classes [42, 43] (Fig. 3A, Additional file 1: Table S5). The 
abundance of 365 lipids changed significantly among 
hepatic steatosis groups (Fig. 3B). As expected, the con-
tents of diglycerol (DG) and TG increased significantly 
with the severity of hepatic steatosis (Fig. 3C, D), which 
was consistent with the results of the biochemical assays 
(Fig. 1B). TG accumulation in the liver is a typical feature 
of hepatic steatosis, hence the correlation analysis was 
performed on all lipid classes to identify the lipids that 
significantly associated with the changes of DG and TG. 
The correlation analysis showed that the levels of DG and 
TG were negatively correlated with a variety of SPs and 
GPs (Fig. 3E), among which the decreased phosphatidyl-
choline (PC) and phosphatidylethanolamine (PE) have 
been proven to cause hepatic steatosis [44, 45].

Cholesterol was also negatively correlated with DG 
and TG (r ≤ −0.54, P < 0.05). Cholesterol is an important 
material for the synthesis of bile acids, and we demon-
strate that the acetylation of important enzymes in the 
bile acid synthesis pathway was significantly reduced. 
And cholesterol esters (CE), the storage form of choles-
terol, were positively correlated with bile acids (r = 0.56, 
P = 0.016; Fig. 3E). Subsequently, the combination analy-
sis of proteomic and lipidomic were performed to sys-
tematically understand their direct relationship. It was 
observed that the expression of several enzymes in the 
cholesterol synthesis pathway gradually decreased with 
the severity of hepatic steatosis (Fig.  4A), and the free 
cholesterol (FC) quantified by colorimetric methods also 
gradually decreased (Fig. 4B). Cholesterol is an essential 
component for the synthesis of bile acid and other ster-
oid hormones, and the expression of key enzymes for bile 

acid synthesis was decreased with the severity of hepatic 
steatosis (Fig.  2D), as did the expression of enzymes 
for steroid hormone synthesis (Fig.  4C). Among them, 
the altered expression of ACOX2, HSD17B4, SCP2 and 
ACOT8 were inextricably linked to acetylation modi-
fications (Fig.  2D). In accordance with this, the content 
of total bile acid decreased significantly according to col-
orimetric methods (Fig. 4D). However, the content of CE 
increased significantly from HS1 to HS2 (Fig. 4E), as did 
the CE/FC ratio (Additional file 3: Fig. S2E). This may be 
due to a significant increase in acetyl-CoA acetyltrans-
ferase 1 (ACAT1) expression from HS1 to HS2, which 
is a membrane-bound protein that utilizes long-chain 
fatty acyl-CoA and cholesterol as substrates to form 
cholesteryl esters [46] (Fig. 4F). Excess cholesterol from 
the blood transported into the liver in the form of HDLs 
and exogenous cholesterol in the form of chylomicrons 
(CMs), while the cholesterol in the liver is transported 
out mainly through VLDLs [47]. By ELISA analysis, 
the lipoprotein contents of VLDLs were higher in the 
hepatic steatosis groups, but HDLs did not change sig-
nificantly (Fig. 4G). Lipoproteins are composed of lipids, 
cholesterol and apolipoproteins, and the expression of 
apolipoproteins A1, A4 and C3 (APOA1, APOA4 and 
APOC3) increased significantly in the hepatic steatosis 
groups (Fig.  4H), suggesting an increased level of cho-
lesterol transport. We also found that the expression of 
the well-known lipid droplet protein perilipin 2 (PLIN2) 
was significantly increased (Fig. 4I), which could promote 
deposition of the excess cholesterol in the lipid droplets. 
Based on these results, we propose that cholesterol syn-
thesis, transport and secretion were aberrant in the liver 
of laying hens with severe hepatic steatosis (Fig. 4J).

Discussion
Fatty liver is a complex trait caused by multiple factors, 
such as genetic, insulin resistance, hormone, nutritional, 
gut microbiota and epigenetic factors. All these factors 
contribute to hepatic steatosis in an intricate and interre-
lated manner [11, 48, 49]. Therefore, a systematic strategy 
is needed to resolve the mechanisms of hepatic steato-
sis. Here, we used a multiomics approach to analyze the 
changes in gene expression, proteins expression, acetyla-
tion modification and lipid metabolism at different stages 
of hepatic steatosis. The present work provides unique 
insights into the regulatory mechanisms underlying 

Fig. 3 Identification of lipids in different groups. A Composition of lipid classes that were considered for subsequent analysis in all samples. B 
Heatmap of different lipids via hierarchical cluster analysis. Different rows correspond to different lipids, and red and green strips represent increased 
or decreased lipids, respectively. C Content of DG in different groups by lipidomic analysis. D Content of TG in different groups as determined 
by lipidomic analysis. E Heatmap and scatterplot of lipid classes (Pearson correlation). The values are the mean ± SEM. * represents P < 0.05, ** 
represents P < 0.01 and *** represents P < 0.001

(See figure on next page.)
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hepatic steatosis in laying hens, and prove beneficial for 
investigations pertaining to human MAFLD.

Hepatic steatosis develops when the formation of FAs 
(exogenous uptake and endogenous synthesis) in the 
liver is greater than the release of FAs (FA oxidation and 
VLDLs output); dysregulation of metabolism in any of 
these processes may cause the development of hepatic 
steatosis [8, 48]. Through transcriptomics, we identi-
fied numerous genes that were significantly differentially 
expressed between different hepatic steatosis groups. 
Most of these genes were involved in processes related 
to lipid synthesis, lipid transport and lipid degradation, 
demonstrating that hepatic steatosis development is 
accompanied by multifaceted disorders of lipid metabo-
lism. This was confirmed by the results of proteome and 
acetylation analyses.

DAPs were specifically enriched in multiple meta-
bolic processes. In fact, almost every enzyme in the 
TCA cycle, glucose metabolism and lipid metabolism 
process is acetylated in human liver tissue, and enzymes 
involved in intermediate metabolism are preferentially 
acetylated [50]. In recent years, accumulated research 
has shown that protein acetylation is involved in the 
regulation of the pathogenesis of fatty liver [18, 51]. 
Moreover, mitochondria are crucial for cellular energy 
metabolism processes, and acetylation modifications 
located in mitochondria play a crucial role in disorders 
of energy metabolism [52]. Mitochondrial acetylation 
is mainly controlled by the enzymatic activity of the 
 NAD+-dependent deacetylase SIRT3, which has been 
shown to regulate metabolic pathways including fatty 
acid oxidation, ketogenesis, amino acid catabolism, and 
TCA cycles [39, 53–56]. Although the acetylation status 
of many substrates of SIRT3 was significantly altered in 
the hepatic steatosis group in this study, the expression of 
SIRT3 did not explain these changes. Rather, the dynamic 
deacetylation may have been due to metabolic distur-
bances, increases in mitochondrial  NAD+ and activation 
of SIRT3 [57, 58]. We also found that some proteins con-
tained multiple acetylation sites, such as HADHA and 
EHHADH. Both of them catalyze two steps of fatty acid 
oxidation and have been reported to be significant regu-
latory factors through acetylation in the development of 

fatty liver disease in dairy cows [18]. Interestingly, acety-
lation occurs mainly in the mild hepatic steatosis group, 
when there is already a certain degree of fatty acid accu-
mulation in the liver. Consistent with this, the addition 
of fatty acids could increase the acetylation of EHHADH 
and change its activity [50]. Overall, we speculated that 
the elevated fatty acid concentrations in the mild hepatic 
steatosis group changed the acetylation statuses of meta-
bolic enzymes in several important pathways, leading to 
the changes in the expression or activity of these enzymes 
and enforcing the condition.

In chickens, changes in food composition, such as high-
fat, or high-energy, low-protein diets can induce fatty 
liver [59, 60]. A more recent study showed that low-cho-
line diet can be utilized to rapidly generate a fatty liver 
model [61]. The liver is the primary organ responsible for 
choline metabolism, where it is found primarily as PC 
[62], produced by conversion of PE. We found that the 
levels of PC and PE were significantly negatively corre-
lated with TG. It has been reported that the deficiency of 
hepatic PC reduces VLDL secretion, resulting in blocked 
TG transport [45, 63]. Thus, metabolic disorder of PC or 
PE in the liver can increase TG deposition and induce 
hepatic steatosis. In addition, PLIN2, a well-known 
lipid droplet protein, seems to correlate with hepatic 
lipid accumulation [64]. Plin2-deficient mice have been 
reported to have reduced TG content and to be protected 
against fatty liver development [65, 66]. The expression of 
PLIN2 was significantly increased in the severe hepatic 
steatosis group, which means that PLIN2 can mediate the 
increase in TG content to cause the occurrence of hepatic 
steatosis in laying hens. PLIN2 can also negatively regu-
late the secretion of VLDLs [67]. Like lipids, cholesterol 
is also an important component of VLDLs. In this con-
text, although excess TG and cholesterol in the liver can 
combine with apolipoprotein to form VLDLs, the secre-
tion of VLDLs is blocked, resulting in the accumulation 
of hepatic VLDLs, lipids and cholesterol.

Cholesterol homeostasis is an important factor for liver 
health, and elevated liver cholesterol can induce hepatic 
steatosis [61, 68]. Cholesterol is one of the basic compo-
nents of cell membranes and is an essential precursor for 
the synthesis of bile acids and steroid hormones [69]. In 

(See figure on next page.)
Fig. 4 Lipid content and enzyme expression in the cholesterol metabolism pathway were altered in the hepatic steatosis group. A and B The 
expression of enzymes within the cholesterol synthesis pathway (A) and free cholesterol content (B) decreased with the severity of hepatic 
steatosis. C and D The expression of enzymes in the steroid hormone synthesis pathway (C) and total bile acid content (D) decreased 
with the severity of hepatic steatosis. E and F The content of CE (E) and the expression of ACAT1 (F) were increased in the HS1-HS2 stage. G and 
H The levels of cholesterol transport-related lipoproteins (G) and apolipoproteins (H) were increased with the severity of hepatic steatosis. I The 
expression of PLIN2 was increased with the severity of hepatic steatosis. The bar graphs indicate protein expression, and the box plots indicate 
metabolite content. The values are the mean ± SEM. * represents P < 0.05, ** represents P < 0.01 and *** represents P < 0.001. J Schematic of hepatic 
cholesterol metabolism in laying hens with severe hepatic steatosis. The shaded area indicates within the liver. Blue words indicate proteins, black 
words indicate lipids, and arrows indicate changes in protein expression or lipid content
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this study, hepatic cholesterol metabolism was altered in 
laying hens with hepatic steatosis. Specifically, the synthe-
sis of cholesterol and bile acid decreased significantly as 
the degree of hepatic steatosis increased. Bile acids have a 
positive effect on lipid metabolism, emulsifying fats, pro-
moting the hydrolysis activity of lipase and lipoprotein 
esterase on fat, and transporting fats in the intestine to 
promote fat absorption [4]. Reduced bile acid secretion is 
an etiology of fatty liver [70–72]. Therefore, the decrease 
in endogenous cholesterol and bile acid synthesis may 
affect the digestion and absorption of lipids, promoting 
the development of hepatic steatosis. Another important 
aspect of maintaining cholesterol dynamic balance is the 
transport of intracellular cholesterol. Excess cholesterol 
from the blood and endogenous cholesterol from food 
bind to lipoproteins and are transported into the liver as 
HDLs and CMs [47, 68]. The levels of apolipoproteins 
(APOA and APOC) involved in these processes were sig-
nificantly elevated in the hepatic steatosis group in this 
study, indicating an increase in exogenous cholesterol 
transport. Endogenous and exogenous cholesterol enter 
the bile acid synthesis pathway or are esterified to form 
neutral CE [73]. CE can be stored in liver lipid droplets or 
assembled with phospholipids and apolipoproteins to form 
VLDLs, which is subsequently secreted into the blood and 
eventually transported to the yolk for deposition [69, 74]. 
ACAT1 is the key enzyme catalyzing the synthesis of CE 
at the last step. More importantly, it is at the crossroads of 
glycolysis, fatty acid degradation, tryptophan metabolism, 
BCAA degradation, and the TCA cycle [75]. We found 
that ACAT1 expression was significantly increased in the 
severe hepatic steatosis group, possibly due to its reduced 
acetylation modification. This is supported by a previous 
report demonstrating that acetylation of several lysine sites 
in ACAT1 decreases ACAT1 activity [76].

Conclusions
The development of hepatic steatosis is accompanied by 
multifaceted disorders of lipid metabolism, where ele-
vated fatty acid concentrations can alter the acetylation 
statuses of enzymes in metabolic pathway and promote 
hepatic steatosis. Furthermore, the severity of hepatic 
steatosis was associated with a decrease in cholesterol 
and bile acid synthesis and an increase in exogenous 
cholesterol transport. The blockade of VLDLs secretion 
caused the accumulation of hepatic lipids and choles-
terol, which promoted the development of hepatic stea-
tosis. The framework of the multiomics approach offer a 
distinct new perspective for elucidating the pathogenesis 
and mechanism of hepatic steatosis in laying hens.
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