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Abstract

The majority of pregnancy loss in ruminants occurs during the first three weeks after conception, particularly during
the period of conceptus elongation that occurs prior to pregnancy recognition and implantation. This review
integrates established and new information on the biological role of ovarian progesterone (P4), prostaglandins (PGs),
interferon tau (IFNT) and cortisol in endometrial function and conceptus elongation. Progesterone is secreted by the
ovarian corpus luteum (CL) and is the unequivocal hormone of pregnancy. Prostaglandins (PGs) and cortisol are
produced by both the epithelial cells of the endometrium and the trophectoderm of the elongating conceptus. In
contrast, IFNT is produced solely by the conceptus trophectoderm and is the maternal recognition of pregnancy signal
that inhibits production of luteolytic pulses of PGF2α by the endometrium to maintain the CL and thus production of
P4. Available results in sheep support the idea that the individual, interactive, and coordinated actions of P4, PGs, IFNT
and cortisol regulate conceptus elongation and implantation by controlling expression of genes in the endometrium
and/or trophectoderm. An increased knowledge of conceptus-endometrial interactions during early pregnancy in
ruminants is necessary to understand and elucidate the causes of infertility and recurrent early pregnancy loss and
provide new strategies to improve fertility and thus reproductive efficiency.
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Introduction
This review integrates established and new information
on the biological role of ovarian progesterone (P4), pros-
taglandins (PGs), interferon tau (IFNT) and cortisol in
endometrial function and conceptus elongation during
the peri-implantation period of pregnancy in ruminants.
Our knowledge of the complex biological and genetic
mechanisms governing conceptus elongation and im-
plantation remains limited in domestic ruminants [1],
but is essential to ameliorate early pregnancy losses and
increase fertility of ruminants.
Establishment of pregnancy in domestic ruminants

(i.e., sheep, cattle, goats) begins at the conceptus stage
and includes pregnancy recognition signaling, implant-
ation, and placentation [2-5]. The morula-stage embryo
enters the uterus on days 4 to 6 post-mating and then
forms a blastocyst that contains an inner cell mass and a
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blastocoele or central cavity surrounded by a monolayer
of trophectoderm. After hatching from the zona pellu-
cida (days 8 to 10), the blastocyst slowly grows into a
tubular or ovoid form and is then termed a conceptus
(embryo-fetus and associated extraembryonic mem-
branes) [5,6]. In sheep, the ovoid conceptus of about
1 mm in length on day 11 begins to elongate on day 12
and forms a filamentous conceptus of 15 to 19 cm or
more in length by day 15 that occupies the entire length
of the uterine horn ipsilateral to the corpus luteum (CL)
with extraembryonic membranes extending into the
contralateral uterine horn. In cattle, the hatched blasto-
cyst forms an ovoid conceptus between days 12 to 14
and is only about 2 mm in length on day 13. By day 14,
the conceptus is about 6 mm, and the elongating bovine
conceptus reaches a length of about 60 mm (6 cm) by
day 16 and is 20 cm or more by day 19. Thus, the bovine
blastocyst/conceptus doubles in length every day be-
tween days 9 and 16 with a significant increase (~30-
fold) in length between days 12 and 15 [7,8]. In both
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sheep and cattle, conceptus elongation involves exponen-
tial increases in length and weight of the trophectoderm
[9] and onset of extraembryonic membrane differenti-
ation, including gastrulation of the embryo and formation
of the yolk sac and allantois that are vital for embryonic
survival and formation of a functional placenta [5,6].
Trophoblast elongation observed in ruminants appears to
not involve geometrical changes in cell shape but rather
occurs from cell proliferation [10]. Successively, the elon-
gated conceptus begins the process of central implant-
ation and placentation around day 16 in sheep and day
19 in cattle [11].
Blastocyst growth into an elongated conceptus does

not occur in vitro, as it requires secretions supplied by
the endometrium of the uterus [12-14]. The uterine lu-
minal fluid (ULF) contains substances, collectively termed
histotroph, that govern elongation of the conceptus via ef-
fects on trophectoderm proliferation and migration as
well as attachment and adhesion to the endometrial lu-
minal epithelium (LE) [4,15,16]. Histotroph is derived pri-
marily from transport and (or) synthesis and secretion of
substances by the endometrial LE and glandular epithelia
(GE), and it is a complex and rather undefined mixture of
proteins, lipids, amino acids, sugars (glucose, fructose),
ions and exosomes/microvesicles [17-21]. The recurrent
early pregnancy loss observed in uterine gland knockout
(UGKO) ewes established the importance of uterine
epithelial-derived histotroph for support of conceptus
elongation and implantation [14]. Available evidence sup-
ports the idea that ovarian P4 induces expression of a
number of genes, specifically in the endometrial epithelia,
that are then further stimulated by factors from the con-
ceptus (e.g., IFNT, PGs, cortisol) as well as the endomet-
rium itself (e.g., PGs and cortisol) [22]. The genes and
functions regulated by these hormones and factors in the
endometrial epithelia elicit specific changes in the intra-
uterine histotrophic milieu necessary for conceptus elong-
ation [4,15,16,22,23].

Progesterone regulation of endometrial function and
conceptus elongation
Progesterone stimulates and maintains endometrial func-
tions necessary for conceptus growth, implantation, placen-
tation, and development to term. In cattle, concentrations
of P4 during early pregnancy clearly affect embryonic sur-
vival [13,24]. In both lactating dairy cows and heifers,
there is a strong positive association between the post-
ovulatory rise in P4 and embryonic development. In-
creasing concentrations of P4 after ovulation enhanced
conceptus elongation in beef heifers [25,26], dairy cows
[27], and sheep [28], while lower P4 concentrations in
the early luteal phase retarded embryonic development
in sheep and cattle [24,29,30]. Supplementation of cat-
tle with P4 during early pregnancy has equivocal effects
to increase embryonic survival [31] and is unlikely to
rescue development of embryos with inherent genetic de-
fects or in high-producing dairy cows [27,32,33].
Progesterone predominantly exerts an indirect effect on

the conceptus via the endometrium to regulate blastocyst
growth and conceptus elongation [28,30,34-36]. Similar to
humans [37,38], the endometria of both cyclic and preg-
nant sheep and cattle express genes implicated in uterine
receptivity, which can be defined as a physiological state
of the uterus when conceptus growth and implantation
for establishment of pregnancy is possible. The absence of
a sufficiently developed conceptus to signal pregnancy
recognition results in those genes being turned ‘off ’ as
luteolysis ensues and the animal returns to estrus for
another opportunity to mate. The outcome of the P4-
induced changes in the cyclic and pregnant uterus is to
modify the intrauterine milieu, such as an increase in
select amino acids, glucose, cytokines and growth fac-
tors in histotroph, for support of blastocyst growth into
an ovoid conceptus and elongation to form a filament-
ous conceptus [4,15,22,23].

Sheep
Actions of ovarian P4 on the uterus are essential for
conceptus survival and growth in sheep [28]. Between
days 10 and 12 after onset of estrus or mating in cyclic
and pregnant ewes, P4 induces the expression of many
conceptus elongation- and implantation-related genes
(Figure 1 and Table 1). The initiation of expression of
those genes requires P4 action and is temporally associ-
ated with the loss of progesterone receptors (PGR) be-
tween days 10 and 12 in the endometrial LE and between
days 12 and 14 to 16 in the GE after onset of estrus; how-
ever, PGR remain present in the stroma and myometrium
in the ovine uterus throughout pregnancy [39]. In the
endometrial LE and superficial GE (sGE), P4 induces
genes that encode secreted attachment and migration
factors (galectin-15 [LGALS15] and insulin-like growth
factor binding protein one [IGFBP1]), intracellular en-
zymes (prostaglandin G/H synthase and cyclooxygenase
2 [PTGS2] and hydroxysteroid (11-beta) dehydrogenase
1 [HSD11B1]), secreted proteases (cathepsin L1 [CTSL1]),
secreted protease inhibitors (cystatin C [CST] 3 and 6), a
secreted candidate cell proliferation factor (gastrin re-
leasing peptide [GRP]), glucose transporters (SLC2A1,
SLC2A5, SLC5A1), and a cationic amino acid (arginine,
lysine and ornithine) transporter (SLC7A2) [3,4,15]. In
the endometrial GE, P4 induces genes that encode for a
secreted cell proliferation factor (GRP), a glucose trans-
porter (SLC5A11), secreted adhesion protein (secreted
phosphoprotein one or SPP1), a candidate regulator of
calcium/phosphate homeostasis (stanniocalcin one or
STC1), and a potential immunomodulatory factor (SER-
PINA14, also known as uterine milk proteins or uterine
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Figure 1 Schematic illustrating the effects of ovarian hormones and factors from the endometrium and conceptus trophectoderm on
expression of elongation- and implantation-related genes in the endometrial epithelia of the ovine uterus during early pregnancy.
Progesterone action for 8–10 days down-regulate expression of the progesterone receptor (PGR). The loss of PGR is correlated with the induction
of many genes in the endometrial LE and sGE, including PTGS2 and HSD11B1 involved in prostaglandin (PG) and cortisol production, respectively,
in both cyclic and pregnant ewes. If the ewe is pregnant, the trophectoderm synthesizes and secretes PGs, interferon tau (IFNT), and cortisol that
act on the endometrium in a cell-specific manner to up-regulate the expression of many P4-induced genes that govern endometrial functions
and/or elongation of the conceptus. Legend: GE, glandular epithelia; IFNT, interferon tau; LE, luminal epithelium; PG, prostaglandins; PGR,
progesterone receptor; sGE, superficial glandular epithelia.
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serpins) [3,4,15]. Several of those P4-induced genes in
the epithelia are further stimulated by the actions of
PGs, IFNT and/or cortisol, resulting in changes in com-
ponents of the uterine luminal fluid histroph that regu-
late conceptus elongation via effects on trophectoderm
proliferation and migration (Figures 1 and 2).

Cattle
Comparisons of the endometrial transcriptome in cyclic
and pregnant heifers (days 5, 7, 12 and 13) found no dif-
ference prior to pregnancy recognition (days 15 or 16)
[41,42]. Indeed, the major changes required to drive
conceptus elongation and establish uterine receptivity to
implantation occur between days 7 and 13 in response to
ovarian P4, irrespective of whether an appropriately devel-
oped embryo/conceptus is present or not [23,30,41,43-46].
Similar to sheep, PGR protein is lost from the LE by day
13 and in the GE by day 16, and PGR loss is associated
with the down- and up-regulation of genes expressed in
the endometrial epithelia [47]. Using a global gene profil-
ing approach, studies have identified the temporal changes
that occur in endometrial gene expression in both cyclic
[30] and pregnant [43] heifers following an elevation or
diminution of post-ovulatory P4 during metestrus that
promotes or delays conceptus elongation, respectively
[30,34,48]. As summarized in a recent review [23], the
expression of several genes is lost in the LE and GE, in-
cluding PGR and a protease (alanyl (membrane) amino-
peptidase [ANPEP]), and in the GE, a lipase (lipoprotein
lipase [LPL]), protease (matrix metallopeptidase 2 [MMP2])
and immunomodulatory protein with antimicrobial activity
(lactotransferrin [LTF]), between days 7 and 13 after onset
of estrus or mating in cyclic and pregnant heifers. As
expected, many conceptus elongation- and implantation-
related genes appear in the endometrial epithelia between
days 7 and 13 in cyclic and pregnant heifers. Genes up-
regulated in the LE encode a mitogen (connective tissue
growth factor [CTGF]) and in the GE encode a transport
protein (retinol binding protein 4 [RBP4]), a glucose trans-
porter (SLC5A1), and a protein involved in transport and
cell proliferation (fatty acid binding protein 3 [FABP3]).
Further, some genes are up regulated in both the LE
and GE that encode secreted attachment and migration
factors (lectin, galactoside-binding, soluble, 9 [LGALS9]
and insulin-like growth factor binding protein one
[IGFBP1]) as well as an intracellular enzyme (PTGS2).
Those gene expression changes in the endometrium
elicit changes in the ULF histotroph that are hypothe-
sized to support conceptus elongation [23,49,50]. It is
quite clear that substantial differences in gene expression



Table 1 Effects of ovarian progesterone (P4) and
intrauterine infusion of interferon tau (IFNT), prostaglandins
(PGs) or cortisol on elongation- and implantation-related
genes expressed in the endometrial epithelia of the ovine
uterus1

Gene symbol P4 IFNT PGs2 Cortisol

Transport of glucose

SLC2A1 ↑ + + +

SLC2A5 n.d. n.e. + +

SLC2A12 n.d. + n.e. or + +

SLC5A1 ↑ + n.e. or + +

SLC5A11 ↑ + n.e. or + n.e.

Transport of amino acids

SLC1A5 n.d. n.d. + +

SLC7A2 ↑ + n.e. n.e.

Cell proliferation, migration and (or) attachment

GRP ↑ + + +

IGFBP1 ↑ + ++ n.e.

LGALS15 ↑ ++ ++ ++

SPP1 ↑ + n.d. ++

Proteases and their inhibitors

CTSL1 ↑ ++ n.e. or + +

CST3 ↑ + n.e. or + n.e.

CST6 + n.e. +

Enzymes

HSD11B1 ↑ + ++ +

PTGS2 ↑ n.e. (+ activity) n.e. (+ activity) n.e. (+ activity)
1Effect of hormone or factor denoted as induction (↑), stimulation (+ or ++),
no effect (n.e.), decrease (−) or not determined (n.d.). 2Summary data for
infusion of PGE2, PGF2α, or PGI2 [40].
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occur between the receptive endometrium of sheep and
cattle, as one of the most abundant genes (LGALS15) in-
duced by P4 and stimulated by IFNT in the endometrium
of sheep is not expressed in cattle [51]. However, PTGS2
and IGFBP1 are common uterine receptivity markers and
regulators of conceptus elongation in both sheep and
cattle [46,52]. Of note, in vitro produced bovine em-
bryos will elongate when transferred into a receptive
ovine uterus [53].

Interferon tau regulation of endometrial function and
conceptus elongation
Maternal recognition of pregnancy is the physiological
process whereby the conceptus signals its presence to
the maternal system and prolongs the lifespan of the
ovarian CL [54]. In ruminants, IFNT is the pregnancy
recognition signal secreted by the elongating conceptus
that acts on the endometrium to inhibit development of
the luteolytic mechanism [15,16,55,56]. Interferon tau is
secreted predominantly by the elongating conceptus before
implantation [57,58]. The antiluteolytic effects of IFNT in-
hibit transcription of the estrogen receptor alpha (ESR1)
gene in sheep and oxytocin receptor (OXTR) gene in both
sheep and cattle specifically in the endometrial LE. The ab-
sence of OXTR in the endometrium prevents the release
of luteolytic pulses of PGF2α, thereby ensuring mainten-
ance of the CL and continued production of P4 [3,59]. Al-
though IFNT inhibits OXTR expression, it does not inhibit
expression of PTGS2, which is important for the gener-
ation of PGs that are critical regulators of conceptus
elongation during early pregnancy [60]. In addition to
antiluteolytic effects, IFNT acts in a paracrine manner
on the endometrium to induce or enhance expression
of IFN-stimulated genes (ISGs) that are hypothesized to
regulate uterine receptivity and conceptus elongation
and implantation [4,40,61,62].

Classical type I IFN-stimulated genes in the endometrium
A number of transcriptional profiling experiments con-
ducted with human cells, ovine endometrium, bovine
endometrium, and bovine peripheral blood lymphocytes
have elucidated classical ISG induced by IFNT during
pregnancy [3,4,41,42,63]. In cattle, comparisons of days
15 to 18 pregnant and non-pregnant or cyclic endome-
tria revealed conceptus effects on endometrial gene ex-
pression, particularly the induction or up-regulation of
classical ISGs [23,41-43,64,65]. In sheep, ISG15 (ISG15
ubiquitin-like modifier) is expressed in LE of the ovine
uterus on days 10 or 11 of the estrous cycle and preg-
nancy, but is not detected in the LE by days 12 to 13 of
pregnancy [66]. In response to IFNT from the elongating
conceptus, ISG15 is induced in the stratum compactum
stroma and GE by days 13 to 14, and expression extends
to the stratum spongiosum stroma, deep glands, and myo-
metrium as well as resident immune cells of the ovine
uterus by days 15 to 16 of pregnancy [66,67]. As IFNT
production by the conceptus trophectoderm declines, ex-
pression of ISG in the stroma and GE also declines, but
some remain abundant in endometrial stroma and GE on
days 18 to 20 of pregnancy. Similar temporal and spatial
alterations in ISG15 expression occur in the bovine uterus
during early pregnancy [68,69].
In vivo studies revealed that the majority of classical ISG

(B2M, GBP2, IFI27, IFIT1, ISG15, IRF9, MIC, OAS, RSAD2,
STAT1, and STAT2) are not induced or up-regulated by
IFNT in endometrial LE or sGE of the ovine uterus
during early pregnancy [66,70-73]. This finding was ini-
tially surprising, because all endometrial cell types
express IFNAR1 (interferon [alpha, beta and omega] re-
ceptor 1) and IFNAR2 subunits of the common Type I
IFN receptor [74]. Further, bovine endometrial, ovine
endometrial, and human 2fTGH fibroblast cells were used
to determine that IFNT activates the canonical janus
kinase-signal transducer and activator of transcription-



Figure 2 Schematic illustrating working hypothesis of the biological role of interferon tau (IFNT) and prostaglandins (PGs) in uterine
function and conceptus elongation during early pregnancy in sheep. See text for detailed description. Legend: ABCC4, ATP-binding cassette,
sub-family C (CFTR/MRP), member 4; CREB, cAMP responsive element binding protein; IFNAR, interferon (alpha, beta and omega) receptor; DP,
prostaglandin D receptor (PTGDR); EP, prostaglandin E receptor (PTGER); FP, prostaglandin F receptor (PTGFR); IP, prostaglandin I receptor (PTGIR);
PLA2, phospholipase A2; PPARD, peroxisome proliferator-activated receptor delta; PPARG, peroxisome proliferator-activated receptor gamma;
PTGS2, prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase); PG Synthases, prostaglandin synthases (AKR1C3,
PTGDS, PTGES, PTGFS, PTGIS, TBXAS); SLCO2A1, solute carrier organic anion transporter family, member 2A1 (prostaglandin transporter); TBXA2R,
thromboxane A2 receptor.
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interferon regulatory factor (JAK-STAT-IRF) signaling
pathway used by other Type I IFNs [75]. About the same
time, it was discovered that IRF2, a potent transcriptional
repressor of ISGs [76], is expressed specifically in the
endometrial LE and sGE and represses transcriptional ac-
tivity of genes containing IFN-stimulated response ele-
ment (ISRE)-containing promoters [70,77]. In fact, all
components of the ISGF3 transcription factor complex
(STAT1, STAT2, IRF9) and other classical ISGs (B2M,
GBP2, IFI27, IFIT1, ISG15, MIC, OAS) contain one or
more ISRE in their promoters. Thus, IRF2 in LE appears
to restrict IFNT induction of most classical ISG to stroma
and GE of the ovine uterus. The silencing of MIC and
B2M genes in endometrial LE or sGE during pregnancy
may be a critical mechanism preventing immune rejection
of the semi-allogeneic conceptus [71]. As IRF2 is not
expressed in other uterine cell types, classical ISGs are
substantially increased in the endometrial stroma, GE and
immune cells by IFNT from the conceptus during early
pregnancy. Of particular note, several reports indicate in-
duction or increases in ISGs in peripheral blood lympho-
cytes and the CL during pregnancy of sheep and cattle or
in ewes receiving intrauterine injections of IFNT [61,63].
Recent evidence indicates that IFNT exits the uterus to
exert systemic effects that alter maternal physiology, in-
cluding function of the CL [61,78-80].
One challenge has been to determine which of the large

number of classical ISGs induced in the endometrium by
IFNT have a biological role in conceptus-endometrial in-
teractions, as traditionally the main function of Type I IFN
is to inhibit viral infection and has primarily been associ-
ated with cellular antiviral responses [81]. One classical
ISG with reported biological effects on trophectoderm
growth and adhesion in ruminants is CXCL10 [chemokine
(C-X-C motif) ligand 10; alias IP-10], a member of the C-
X-C chemokine family that regulates multiple aspects of
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inflammatory and immune responses primarily through
chemotactic activity toward subsets of leukocytes [82,83].
ISG15 conjugates to intracellular proteins through a ubi-
quitin-like mechanism [40], and deletion of Isg15 in mice
results in 50% pregnancy loss manifest during early pla-
centation [84]. In addition, MX proteins are thought to
regulate secretion through an unconventional secretory
pathway [85]. The enzymes which comprise the 2′,5′-
oligoadenylate synthetase (OAS) family regulate ribo-
nuclease L antiviral responses and may play additional
roles in control of cellular growth and differentiation [72].

Non-classical IFNT-stimulated genes in the endometrium
Although IFNT is the only known IFN to act as the
pregnancy recognition signal, IFNs appear to have a bio-
logical role in uterine receptivity, decidualization, and
placental growth and development in primates, rumi-
nants, pigs, and rodents [40,62]. Transcriptional profiling
of human U3A (STAT1 null) cells and ovine endomet-
rium, as well as candidate gene analyses were used to
discover novel ‘non-classical’ ISG in the endometrial
LE during pregnancy such as CST3, CTSL, HSD11B1,
IGFBP1, LGALS15 and WNT7A (wingless-type MMTV
integration site family, member 7A) [28,86-90]. Subse-
quently, a series of transcriptomic and candidate gene
studies found that IFNT stimulates expression of a num-
ber of elongation- and implantation-related genes that are
initially induced by P4 (CST3, CST6, CTSL, GRP, HSD11B1,
IGFBP1, LGALS15, SLC2A1, SLC2A5, SLC5A11, SLC7A2)
specifically in the endometrial LE, sGE, and (or) GE
[3,4,62,90] (Figure 1). None of these genes are classical
Type I ISG, and are referred to as ‘non-classical or novel’
ISG. Indeed, IFNT stimulation of these non-classical ISG
requires induction by P4 and loss of PGR in the epithelia.
Importantly, all of the non-classical ISG encode factors that
have actions on the trophectoderm (proliferation, migra-
tion, attachment and (or) adhesion, nutrient transport) im-
portant for conceptus elongation (Table 1). For example,
knockdown of an arginine transporter (SLC7A1) in the
conceptus trophectoderm and inhibition of PTGS2 or
HSD11B1 activity in utero compromised conceptus elong-
ation in sheep [60,91,92]. The effects of IFNT in the bovine
endometrium are not as well understood in terms of non-
classical ISGs, but recent studies have started to unravel
those effects in cattle [41,42,93].
Given that the critical signaling components of the

JAK-STAT signaling system (STAT1, STAT2, IRF9) are
not expressed in endometrial LE or sGE [70], IFNT
must utilize a noncanonical, STAT1-independent signal-
ing pathway to regulate expression of genes in endomet-
rial LE and sGE of the ovine uterus. The noncanonical
pathway mediating IFNT stimulation of genes in the endo-
metrial LE and sGE has not been entirely elucidated, but
other Type I IFN utilize mitogen-activated protein kinase
(MAPK) and phosphatidylinositol 3-kinase (PI3K) cas-
cades [94]. Available evidence suggests that IFNT activates
distinct epithelial and stromal cell-specific JAK, epidermal
growth factor receptor, MAPK (ERK1/2), PI3K-AKT, and
(or) Jun N-terminal kinase (JNK) signaling modules to
regulate expression of PGE2 receptors in the endometrium
of the ovine uterus or in ovine uterine LE cells in vitro
[95,96]. As discussed subsequently, recent evidence indi-
cates that PTGS2-derived PGs and HSD11B1-derived cor-
tisol are part of the noncanonical pathway of IFNT action
on the endometrium in sheep [60,97].

Prostaglandin regulation of endometrial function and
conceptus elongation
Results of recent studies in sheep support the concept
that PGs regulate expression of elongation- and implant-
ation-related genes in the endometrial epithelia of rumi-
nants during early pregnancy and are involved in conceptus
elongation [46,60,98] (Figures 1 and 2). The conceptus and
endometria synthesize a variety of PGs during early preg-
nancy in both sheep and cattle [99-104]. The endometrium
produces and uterine lumen contains substantially more
PGs during early pregnancy than during the estrous cycle
[105-107]. The dominant cyclooxygenase expressed in both
the endometrium and trophectoderm of the elongating
conceptus is PTGS2 [104-106]. Although the antiluteolytic
effects of IFNTare to inhibit expression of the OXTR in the
endometrial LE and sGE of early pregnant ewes, it does not
impede up-regulation of PTGS2, a rate-limiting enzyme in
PG synthesis [102,107]. In sheep, PTGS2 activity in the
endometrium is stimulated by IFNT, and PTGS2-derived
PG were found to mediate, in part, the effects of P4 and
IFNT on the endometrium of the ovine uterus. In those
studies, the abundance of HSD11B1 and IGFBP1 mRNA in
the endometrium was considerably reduced by intrauterine
infusion of meloxicam, a selective PTGS2 inhibitor. As il-
lustrated in Figure 1, PTGS2 expression appears between
days 10 and 12 post-estrus and mating in the endometrial
LE and sGE and is induced by ovarian P4 [98,102]. In the
bovine uterus, PTGS2 is also not down-regulated in endo-
metria of early pregnant cattle, but rather is up-regulated
by IFNT [108,109]. Thus, IFNT acts as a molecular switch
that stimulates PGE2 production in the bovine endomet-
rium [110]. Indeed, Type I IFNs were found to stimulate
phospholipase A2 (PLA2) and synthesis of PGE2 and PGF2α
in several different cell types over 25 years ago [111,112].
Prostaglandins are essential for conceptus elongation,

as intrauterine infusions of meloxicam prevented concep-
tus elongation in early pregnant sheep [60,98]. The elong-
ating conceptuses of both sheep and cattle synthesize and
secrete more PG than the underlying endometrium
[99,100,113]. Thus, PG levels are much greater in the uter-
ine lumen of pregnant as compared with cyclic or non-
pregnant cattle [106]. In sheep, Charpigny and coworkers
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[103] found that PTGS2 was abundant in day 8 to 17 blas-
tocysts/conceptuses, whereas PTGS1 was undetectable.
PTGS2 protein increased in the conceptus trophectoderm
between days 8 and 14 and was maximal between days 14
and 16. In fact, there was a 30-fold increase in PTGS2
content per protein extract between days 10 and 14, corre-
sponding to a 50,000-fold increase in the whole concep-
tus, and PTGS2 protein in the conceptus then declined
substantially after Day 16 to become undetectable by day
25 of pregnancy. Other studies found that Day 14 sheep
conceptuses in vitro release mainly cyclooxygenase metab-
olites including PGF2α, 6-keto-PGF1α (i.e., a stable me-
tabolite of PGI2), and PGE2 [103], and day 16 conceptuses
produce substantially more of those PGs than day 14 con-
ceptuses [101]. Given that membrane and nuclear re-
ceptors for PGs are present in all cell types of the ovine
endometrium and conceptus during early pregnancy
[60,114], PTGS2-derived PGs from the conceptus likely
have paracrine, autocrine, and perhaps intracrine effects
on endometrial function and conceptus development
during early pregnancy (Figure 2). Indeed, expression of
PTGS2 in biopsies of day 7 bovine blastocysts is a pre-
dictor of the successful development of that blastocyst
to term and delivery of a live calf [114]. Further, pregnancy
rates were substantially reduced in heifers that received
meloxicam, a partially selective inhibitor of PTGS2, on
day 15 after insemination [115]. Thus, PGs are critical
regulators of conceptus elongation and implantation in
ruminants, as they are for blastocyst implantation and
decidualization during pregnancy in mice, rats, ham-
sters, mink and likely humans [116-118].
Recently, Dorniak and coworkers [52] infused PGE2,

PGF2α, PGI2, or IFNT, at the levels produced by the day
14 conceptus, into the uterus of cyclic ewes. In that
study, expression of GRP, IGFBP1, and LGALS15 were
increased by PGE2, PGI2, and IFNT, but only IFNT in-
creased CST6 (Table 1). Differential effects of PG were
also observed for CTSL1 and its inhibitor CST3. For glu-
cose transporters, IFNT and all PG increased SLC2A1, but
only PG increased SLC2A5 expression, whereas SLC2A12
and SLC5A1 were increased by IFNT, PGE2, and PGF2α.
Infusions of all PGs and IFNT increased the amino acid
transporter SLC1A5, but only IFNT increased SLC7A2. In
the uterine lumen, only IFNT increased glucose levels,
and only PGE2 and PGF2α increased total amino acids
[52]. Thus, available results support the idea that PG and
IFNT from the conceptus coordinately regulate endomet-
rial functions important for growth and development of
the conceptus during the peri-implantation period of
pregnancy [22] (Figures 1 and 2).
Prostaglandins also have intracrine effects within cells.

Both PGI2 and PGJ2 can activate nuclear peroxisome
proliferator-activating receptors (PPARs) [119]. PGI2 is a
ligand for PPARD, and PGD2 spontaneously forms 15-
deoxy-Δ12,14-PGJ2 within cells that is a ligand for
PPARG [120-123]. PPARs dimerize with retinoid X re-
ceptors (RXRs) and regulate transcription of target genes.
Although PGs are lipid-derived, their efflux out and influx
into cells depends on specific PG transporters (PGT)
termed solute carrier organic anion transporter family,
member 20A1 (SLC20A1) and ATP-binding cassette, sub-
family C (CFTR/MRP), member 4 (ABCC4 or MRP4).
PGJ2 and PGI2 are not as efficiently transported as other
PGs (PGE2, PGF2α, TBXA2). Expression of prostacyclin
(PGI2) synthase (PTGIS), PGI2 receptors (PTGIR), PPARs
and RXRs in uteri and conceptuses of sheep during early
pregnancy has been well documented [124]. In the en-
dometrium, PTGIS mRNA and protein were expressed
mainly in the endometrial LE/sGE as early as day 9 of
pregnancy, but levels declined from days 12 to 17. Expres-
sion of PTGIR, PPARs (PPARA, PPARD, PPARG) and
RXRs (RXRA, RXRB, RXRG) was detected in the endo-
metrium, and PPARD and PPARG were particularly abun-
dant in the endometrial LE and sGE. In the conceptus
trophectoderm, PTGIS expression increased and then
peaked at day 17. PTGIR and PPARA mRNAs peaked be-
fore day 12 and then declined and were nearly undetect-
able by Day 17, whereas PPARD and PPARG mRNAs
increased from Days 12 to 17 in the conceptus. These re-
sults suggest that PPARG may also regulate conceptus
trophectoderm development and differentiation due to in-
trinsic actions of PGJ2, which is spontaneously formed
within cells from PGD2.
Unexpectedly, genetic studies in mice found that Pparg

is essential for placental development, as null mutation of
Pparg in mice resulted in placentae with poor differenti-
ation and vascular anomalies, leading to embryonic death
by gestational day 10 [123]. In mink, treatment of tro-
phoblast cells with PGJ2 attenuated cell proliferation,
increased PPARG expression, elicited the appearance of
enlarged and multinuclear cells, and increased the expres-
sion of adipophilin or ADRP (adipose differentiation-
related protein), a protein involved in lipid homeostasis,
and SPP1 [125]. PPARs alter the transport, cellular uptake,
storage, and use of lipids and their derivatives [119]. In
extravillous cytotrophoblasts of human placentae, PPARG
stimulates synthesis of chorionic gonadotrophin (hCG)
and increases free fatty acid (FFA) uptake. PPARG-
regulated genes include fatty acid binding proteins (FABP)
and fatty acid transport proteins [FATP or SLC27As] re-
quired for lipid uptake and triacylglycerol synthesis, which
is undoubtedly important in rapidly growing and elonga-
ting conceptuses producing large amounts of PGs.
Mice deficient in Ppard also exhibit placental defects

and reduced or inhibited trophoblast giant cell differen-
tiation [126,127]. PPARD is activated by PGI2, and treat-
ment of rat trophoblast cells with a specific PPARD agonist
triggered early differentiation of giant cells that expressed
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CSH1 (chorionic somatomammotropin hormone one or
placental lactogen) and reduced expression of inhibitor of
differentiation two (ID2), which is an inhibitor of several
basic helix-loop-helix (bHLH) transcription factors, such
as HAND1, that promote giant cell differentiation. Further,
PPARD increases expression of ADRP, and PPARD poten-
tiates cell polarization and migration in the skin [128],
which are all cellular activities implicated in conceptus
elongation. Thus, PTGS2-derived PGs and PPARG may
impact conceptus elongation via effects on trophectoderm
growth and survival as well as expression of elongation-
and implantation-related genes in the endometrial epithelia.
Cortisol regulation of endometrial function and
conceptus elongation
Initially identified as a candidate P4-regulated gene in
the endometrium that potentially governed conceptus
elongation [36,52], HSD11B1 was found to be expressed
specifically in the endometrial LE and sGE and is in-
duced by P4 and stimulated by IFNT and PGs in the
endometrium of the ovine uterus [98] (Table 1). Expres-
sion of HSD11B1 is also up-regulated in the endomet-
rium of cattle between days 7 and 13 of pregnancy [43].
One of two isoforms of hydroxysteroid (11-beta) dehy-
drogenases that regulate intracellular levels of bioactive
glucocorticoids within key target tissues [129], HSD11B1
is a low affinity NADP(H)-dependent bidirectional de-
hydrogenase/reductase for glucocorticoids, and the dir-
ection of HSD11B1 activity is determined by the relative
abundance of NADP+ and NADPH co-factors. The
endometrium of the ovine uterus as well as conceptus
generates active cortisol from inactive cortisone [97].
Cortisol regulates gene expression via the nuclear recep-
tor subfamily 3, group C, member 1 (NR3C1 or gluco-
corticoid receptor [GR]), a transcriptional regulator that
modulates expression of primary target genes that either
directly affect cellular physiology or alter the expression
of other secondary target genes, which then confer hor-
monal responses [130,131].
Recent findings support the idea that PGs mediate, in

part, P4 induction and IFNT stimulation of HSD11B1
expression in the ovine endometrium [60,97]. Similarly,
PG regulate activity of HSD11B1 in bovine endometria
[132], and PGF2α stimulates the activity of HSD11B1 in
human fetal membranes [133,134]. Whereas PG stimu-
late HSD11B1 activity, glucocorticoids enhance PG syn-
thesis by up-regulating expression and activity of PLA2

and PTGS2 in the ovine placenta, thereby establishing a
positive feed-forward loop implicated in the timing of
parturition [135]. This tissue-specific stimulatory role of
glucocorticoids on PG synthesis contradicts the classical
concept that glucocorticoids exert anti-inflammatory ef-
fects on immune cells [136].
Available results support the idea that cortisol from
the endometrium as well as conceptus regulates endo-
metrial functions important for conceptus elongation
during early pregnancy in sheep. The day 14 conceptus
expresses both HSD11B1 and HSD11B2 as well as
NR3C1 [60,98]. Indeed, the elongating sheep conceptus
generates cortisol from cortisone via HSD11B1, and ele-
vated levels of cortisol are found in the uterine lumen of
early pregnant sheep [97]. Thus, cortisol may have para-
crine and intracrine effects on the endometrium and
conceptus trophectoderm during early pregnancy (Figure 1).
As summarized in Table 1, intrauterine infusions of cortisol
at early pregnancy levels into the uterus of cyclic ewes
from day 10 to 14 post-estrus increased the expression
of several elongation- and implantation-related genes
expressed in the endometrial epithelia of the ovine uterus
and increased endometrial PTGS2 and HSD11B1 expres-
sion and/or activity [92]. Similar to IFNT actions, PTGS2-
derived PGs mediated some effects of cortisol. In order to
determine if HSD11B1-derived cortisol is important for
conceptus elongation, PF915275, a selective HSD11B1
inhibitor, was infused into the uterine lumen of bred
ewes from days 8 to 14 post-mating [92]. Inhibition of
HSD11B1 activity in utero prevented conceptus elong-
ation. Thus, HSD11B1-derived cortisol is an essential
regulator of conceptus elongation via effects on troph-
ectoderm growth and survival as well as expression of
elongation- and implantation-related genes in the endo-
metrial epithelia.
The effect of knocking out NR3C1 in the elongating

conceptus has not been reported in ruminants. Indeed,
NR3C1 targets hundreds of genes, including those in-
volved in lipid metabolism and triglyceride homeostasis,
in other organs and cell types [130,137]. In humans, the
proposed positive roles of HSD11B1-generated cortisol
at the conceptus-maternal interface include stimulation
of hormone secretion by the trophoblast, promotion of
trophoblast growth/invasion, and stimulation of placen-
tal transport of glucose, lactate and amino acids. Indeed,
glucocorticoids can have positive as well as negative
effects during pregnancy [138]. Administration of syn-
thetic glucocorticoids to women during pregnancy can
alter normal development of the fetus and compromise
pregnancy success by inhibiting cytokine-PG signaling,
restricting trophoblast invasion, and inducing apoptosis
in placenta. Similarly, administration of synthetic gluco-
corticoids to pregnant ewes reduced placental growth and
development, numbers of trophoblast giant binucleate
cells in the placenta, and circulating levels of placental lac-
togen [139]. On the other hand, natural glucocorticoids
are hypothesized to have positive effects during early
pregnancy [138]. Interestingly, administration of gluco-
corticoids increased pregnancy rates in women under-
going assisted reproductive technologies and pregnancy
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outcomes in women with a history of recurrent miscar-
riage [140,141].

Conclusions
The individual, additive and synergistic actions of P4,
IFNT, PGs and cortisol regulate expression of elong-
ation- and implantation-related genes in the endometrial
epithelia in ruminants. The outcome of the carefully or-
chestrated changes in gene expression is secretion or
transport of substances (e.g., glucose, amino acids, pro-
teins) from the endometrium into the uterine lumen that
govern conceptus survival and elongation via effects on
trophectoderm proliferation, migration, attachment, and
adhesion. Moreover, conceptus elongation is also likely
governed by intracrine factors and pathways such as PGs
and PPARs. A systems biology approach is necessary to
fully understand conceptus elongation and the multifac-
torial phenomenon of early pregnancy loss. Such infor-
mation is critical to provide a basis for new strategies to
improve the fertility and reproductive efficiency in ru-
minant livestock.
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