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Abstract

Only in recent years, the draft sequences for several agricultural animals have been assembled. Assembling an
individual animal’s entire genome sequence or specific region(s) of interest is increasingly important for agricultural
researchers to perform genetic comparisons between animals with different performance. We review the current
status for several sequenced agricultural species and suggest that next generation sequencing (NGS) technology
with decreased sequencing cost and increased speed of sequencing can benefit agricultural researchers. By taking
advantage of advanced NGS technologies, genes and chromosomal regions that are more labile to the influence
of environmental factors could be pinpointed. A more long term goal would be addressing the question of how
animals respond at the molecular and cellular levels to different environmental models (e.g. nutrition). Upon
revealing important genes and gene-environment interactions, the rate of genetic improvement can also be
accelerated. It is clear that NGS technologies will be able to assist animal scientists to efficiently raise animals and
to better prevent infectious diseases so that overall costs of animal production can be decreased.
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1. Current Status of Domestic Animal Reference
Sequences

As the new genomics era matures, with large-scale gen-
ome research and the development of sophisticated
bioinformatics tools that can be applied to the agricul-
tural field, agricultural researchers should take advan-
tage of and benefit from new sequencing and mapping
technologies. In recent years, the genomes of several
domesticated livestock animals (chicken, pig, cow,
sheep, and horse) have been partially or completely
sequenced. In this review, we first examine the current
sequencing status for several sequenced agricultural spe-
cies. Next, we discuss the different platforms used for
genome sequencing, tools available for mapping
sequences to the genome, and several additional applica-
tions for which next generation sequencing can be used.
We also list tools available for analyzing data from these
additional applications.
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Due to the high recombination rate of its micro-chro-
mosomes, the chicken is an ideal model for studying
genetic linkage [1]. The chicken genome sequence of
Red Junglefowl (RJF) was the first livestock species to be
sequenced. The first draft of the chicken genome was
built from an assembly with 6.6-fold whole-genome
shotgun coverage, although sex chromosomes were
poorly annotated in the initial assembly [1,2]. The
updated version of NCBI build 2.1 was released recently
with a significant improvement on the annotation of the
sex chromosomes. Roughly 2.8 million SNPs for chicken
were identified [1,3,4] between the base (wild type) RJF
sequence assembly and a partial genome scan of three
chicken breeds: a female layer (White Leghorn); a male
broiler (Cornish); and a female Silkie. A moderate den-
sity (60 k) Illumina SNP BeadChip for commercial
chicken (broilers and layers) containing 352,303 SNPs
was designed and additional SNPs not covered by the
current chicken genome assembly (Gallus_gallus-2.1)
were identified and selected recently [5]. The BBSRC
ChickenEST Database (http://www.chick.manchester.ac.
uk/) provides the most comprehensive database [6,7] of
ESTs/cDNAs for the chicken genome. Chicken Varia-
tion Database (ChickVD) (http://chicken.genomics.org.
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cn/) was released in 2005 [4] for geneticists to use, and
contains the genes, variants, chicken orthologs of
human disease genes, and QTLs which are stretches of
DNA containing or linked to the genes that underlie a
quantitative trait. Large scale breeding research projects
are still needed (http://www.nih.gov/science/models/gal-
lus/).

In November 2009 the first draft (98% complete) of
the pig genome (Sus scrofa) assembled from global col-
laborative efforts was released. The diploid pig genome
has 38 chromosomes (including meta- and acrocentric
ones) and is roughly 2.7 x 10° bp. Both high-throughput
fingerprinting and BAC (bacterial artificial chromosome)
end sequencing over 600,000 BAC end sequences) were
used as templates for sequencing the whole swine gen-
ome. Specifically, the restriction enzyme fingerprinting
method [8] was used to construct a physical map
through bacteria-based clones for the swine genome.
The sequence will be used as the basis to identify genes
that are important to pork production and/or are
involved in immune or physiological processes (http://
www.sanger.ac.uk/about/press/2009/091102.html). The
finished pig assembly will not only help researchers to
understand its genetic complexity, but it will also
change pork production and breeding technology. The
completed swine genome is critical to helping research-
ers study human nutrition and disease, due to these ani-
mals’ similar physiology and nutritional needs to
humans (http://www.sanger.ac.uk/).

The genome sequence of Taurine cattle was initially
sequenced and assembled with approximately 7-fold cov-
erage and was published by the Bovine Genome Sequen-
cing and Analysis Consortium in April 2009. This initial
assembly reported roughly 22,000 genes and 14,345
orthologs shared among seven mammalian species [9].
Bovine Genome Sequencing Projects led by the Baylor
College of Medicine Human Genome Sequencing Center
in Houston, Texas released an improved assembly ver-
sion (Btau_4.2) for the cow genome in 2009. The BCM4
assembly was constructed using the Atlas assembly pro-
gram [10]. The assembly of UMD2 from Steven Salzberg
and his colleagues in Baltimore, Maryland was con-
structed using NCBI traces and strengthened using sev-
eral modified, powerful assembly and mapping tools.
Roughly 24 million reads from whole genome sequencing
and 11 million reads from BACs were used to create the
UMD?2 assembly [11]. The Salzberg lab recently created
an updated assembly (UMD3.1) of 2.86 billion base pairs
with 9.5x coverage of the genome [11]. Even with all of
these efforts that researchers have invested, the cow gen-
ome is still not completely assembled. The Illumina Bovi-
neSNP50 is a high-density, genome-wide genotyping
array. The v2 Bead Chip contains 54,609 SNPs of major
breed types. The probes were validated in 19 common
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beef and dairy breeds. This makes certain types of
research, such as QTL discovery and genetic improve-
ment possible (http://www.illumina.com/products/bovi-
ne_snp50_whole-genome_genotyping_Kkits.ilmn).
Although BovineSNP50 was successfully used, several
new chips have been designed and/or are being designed.
Besides keeping BovineSNP50 SNPs, Bovine High-Den-
sity (HD) Bead Chip (778K SNP) includes some Y-speci-
fic and mitochondrial SNPs. Other chips, such as Bovine
Low-Density (3K) Bead Chip, 96 SNP parentage chip,
384 SNP chip, and 700 K SNP Affymetrix chip were
designed to use for different genetic purposes (http://
www.slideserve.com/Download/143258/Walking-the-
Cattle-Continuum-Moving-From-the-BovineSNP50-to-
Higher-and-Lower-Density-SNP-Panels). A new colla-
borative project between Australian beef and dairy indus-
tries and international partners is constructing a database
of functional polymorphisms and sequence information
on 1,000 cattle. This will facilitate research on identifying
features in the genome that are related to economically
important traits (http://www.beefcrc.com.au/Assets/819/
1/BeefBulletin-September20117-9-11webspreads.pdf).
Given the importance of the Bovine sequence in impact-
ing the dairy industry’s genetic gains, future technology
and novel assembly methods are desired to bring the cow
genome annotation to a more complete state and to pro-
vide a faster, cost-efficient way of sequencing other cattle
breeds. Such sequencing projects could help understand
variation in resistance to disease and lead to improved
breeding programs.

The interim assembly version OARv2.0 for sheep was
released recently [12] with the goal of identifying genes
associated with production, quality, and disease traits in
sheep (http://www.sheephapmap.org/). The OARv3.0 is
projected to be released in late 2011 with the expected
improvement that chromosomal gaps will be filled and
many of the unassigned sequences in v2.0 will be correctly
assigned to chromosomes. In addition, transcriptomic and
SNP datasets are expected in the new release as well
(http://sheephapmap.org/news/Scheduled_OARv3.php).

The horse is a model organism for studying biome-
chanics and exercise physiology (http://www.ncbi.nlm.
nih.gov/projects/genome/guide/horse/). The sequence of
the horse is also important to help veterinarians study
new therapies for horse laminitis and respiratory dis-
eases. In recent years, there has been progress in the
identification of mutations in genes related to morphol-
ogy, immunology, and metabolism in the horse [13].

The detailed sequencing description for the above
mentioned domestic animals is listed in Table 1.

2. Next Generation Sequencing Technologies
Next generation sequencing technologies (NGS), using
modern methods/platforms to produce significant
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Table 1 Various sequenced livestock genomes
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Animal Species Genome size Sequencing methods Recent Sequencing center
release
version
Chicken  Gallus 1.2 Gb (39 Bacteria Artificial Chromosomes NCBI Washington University Genome Sequencing Center
gallus  chromosome pairs) (BAQ), fosmid, and plasmid-based build 2.1
whole genome shotgun (WGS)
Pig Sus 2.7 Gb (18 Clone based NCBI The Swine Genome Sequencing Consortium
scrofa  autosomes, X and build 3.1
Y sex
chromosomes)
Cow Bos 2.86 hillion base Mixture of hierarchical and whole- ~ UMD_3.1  The original sequencing was conducted at the Baylor
taurus/ pair genome shotgun College of Medicine in Houston, Texas, but the genome
B. was reassembled by Salzberg lab in Baltimore, Maryland
indicus
7.15x mixed assembly of whole- Btau_4.2  Bovine Genome Sequencing Project led by the Baylor
genome shotgun and BAC sequence College of Medicine's Human Genome Sequencing
Center in Houston, Texas
Sheep Ovis 271 Gb (91% of WGS OARV2.0 International Sheep Genomics Consortium
aries sheep genome) (working
draft)
Horse Equus 24-27 Gb 6.79x WGS EquCab2.0 The Broad Institute and the Horse Genome Project
caballus

numbers of sequence fragments, have revolutionized
research in genetic and biomedical fields and have
become increasingly popular in recent years. Several
massively parallel platforms are in widespread use by
sequencing centers or laboratories at present. These
include the Illumina (former Solexa) Genome Analyzer,
HiSeq (http://www.illumina.com), Roche/454 FLX
(http://www.454.com), and the Applied Biosystems
SOLiD™ System (http://www.appliedbiosystems.com).
These platforms can generate millions to billions of
reads in a single run with the read length in the range
of 50 to 500 bp. The difference between these technolo-
gies is embodied in many parameters such as clonal
amplification method, instrument used, sequencing
enzyme/method used, and read length generated. Since
the number of reads produced and sequencing speed
differ among technologies, the generation rate is also
different among these technologies. Current Illumina
HiSeq technology can generate 150 to 200 Gb data for
paired-end 100 bp read length in 8 days. The base call
accuracy also varies between these platforms (http://
kevin-gattaca.blogspot.com/2010/04/comparing-ngs-plat-
forms-454-solexa.html).

Several cutting-edge biological applications such as
targeted exome capture or exome sequencing, Chroma-
tin Immunoprecipitation sequencing (ChIP-Seq), and
whole transcriptome shotgun sequencing technology or
RNA-Seq have been developed to fulfill different biolo-
gical purposes. Exome-sequencing [14] overcomes the
drawback of the high cost of sequencing the whole gen-
ome by excluding intronic regions and selectively
sequencing the exonic regions that might be of more
immediate interest. ChIP-Seq [15] is used to identify

genome-wide binding patterns of a protein of interest
such as a transcription factor and is a powerful
approach to study protein-DNA/RNA interactions.
RNA-Seq [16,17] or transcriptome-wide sequencing is
used to exploit NGS technologies to sequence cDNAs
from RNA samples.

To reveal variations among different strains or large
populations of related samples, one of the above NGS
techniques can be employed because of its advantages,
such as a high efficiency to cost ratio (according to the
National Human Genome Research Institute (NHGRI)
(http://genome.gov/sequencingcosts)). The cost per
megabase of DNA sequencing was under 50 cents and
cost per genome was estimated at $11,000 in March
2011. Sequence mutation and structure variations are
commonly searched in the targeted sequencing (exome
or whole genes). Popular SNP detection tools are
SNVMix [18], SAMtools [19], and GATK application
package [20,21]. Structure variation (copy number varia-
tion) detection tools/methods, such as CNV-seq [22],
SLOPE [23], SVDetect [24], and associated statistical
methods have been developed in recent years to identify
INDELs, tandem duplications, and other genetic
variations.

RNA-Seq technology is being used as a popular
method for quantitative gene expression studies [25].
However, accurate gene expression estimation requires
accurate genome annotation [26]. By utilizing complete
or nearly completely annotated reference genomes,
RNA-Seq can assist researchers to identify differentially
expressed genes and novel transcripts for agricultural
animals in a quantitative and efficient way. The power
of RNA-Seq is not only in helping agricultural
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researchers to select differentially expressed genes
between samples under different treatment condition(s)
that could be crucial for certain traits or disease resis-
tance, but it can also reveal multiple isoforms that tem-
plate assembly does not possess in its annotation. There
are several popular differential expression testing tools
for RNA-Seq data, such as edgeR [27] and DEGSeq [28].
Powerful splice junction sites identification tools are
represented by Cufflinks [29]/TopHat [30] and Super-
splat [31]. RNA-Seq technology can also assist research-
ers in annotating transcription of the genome in a
complete manner at different developmental stages [26].

A collection of current popular NGS tools/algorithms
and their description in fulfilling the goals for different
biological applications is listed in Table 2.

3. Challenges and Perspectives for Livestock
Sequencing Research

From raw draft assembly to full length cDNA/EST
resources and BAC libraries, livestock species have
undergone significant annotations in recent years. The
consequence of sequencing agricultural animals has
expanded far beyond the original goals of serving as a
model for studying human health issues and physiologi-
cal phenomena, to increasing our understanding of the
human genome, and to studying traits of economic and
biological interest to raising livestock production. We
are now at the beginning of an era where genome
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sequencing analysis of livestock will allow study of
domestication, selection of better breeds (e.g. high ferti-
lity) and understanding of quantitative differences due
to environmental factors (e.g. nutrition). Gene-gene and
gene-environment interactions related to environmental
conditions could be studied quantitatively using modern
bioinformatics tools. It can clearly be seen that sequen-
cing individual animal genomes or interesting regions
under different treatment conditions will benefit the
agricultural community by providing guidance for
experimental design and animal disease control and pre-
vention. Livestock animals serve as a major meat/egg/
dairy (protein) source for human beings. The need to
reduce the use of chemicals/antibiotics and improve
genetic resistance to pathogens is becoming increasingly
important to human beings and agricultural scientists
[1]. These new goals are too time consuming and/or
costly to be achieved using traditional genetic
approaches. NGS technologies will enable a break-
through in genetics studies by shortening the sequen-
cing time and decreasing the cost. NGS technologies
will reveal more genetic diversity for many commercial
breeds with short turnaround time. For example, NGS
can help to sequence mutant lines in a much more effi-
cient manner. By identifying genes/proteins with desir-
able traits (disease resistance and/or high milk/egg/meat
production), researchers could better control selection,
and this will in turn improve both productivity and

Table 2 Selected variant calling, RNA-Seq, and ChIP-Seq software/tools and database links

Name Description Features/Restrictions Link
SNVMix Detects single nucleotide variants from next Input files are Maq or Samtools pileup format http://www.bcgsc.ca/
generation sequencing data platform/bioinfo/software/
SNVMix
SAMTools Manipulating alignments in the SAM format The software is free and is designed for multiple  http://samtools.sourceforge.
(sorting, merging, indexing and ...) uses. net/
GATK Contains modules of depth of coverage analyzers, The software is Java based and requires input files  http://www.broadinstitute.
quality score recalibrator, SNP/Indel caller, and local as sorted, indexed BAM alignment files and a org/gsa/wiki/index.php/
realigner fasta-format reference with associated index files  The_Genome_Analysis_Toolkit
ERANGE ERANGE is a python package and uses the The software is free and gives the flexible input http://woldlab.caltech.edu/
(RNA-Seq) Cistematic package parameter choice raseq/
[llumina Counts can be visualized and analyzed in Illumina’s  License required, more robust (requires lllumina’s http//www.illumina.com/
(RNA-Seq) GenomeStudio viewer output directory contents)
TopHat Fast splice junction mapper Input files can be either FASTQ or FASTA format  http://tophat.cbcb.umd.edu/
Cufflinks Assembling transcripts and estimating their Input alignment files are in the SAM format and  http://cufflinks.cbcb.umd.edu/
abundances from RNA-Seq data the software requires reference annotation GTF
file
ERANGE Studying protein-DNA interactions Free http://woldlab.caltech.edu/
(Chip-Seq) erange/README chip-seq
HPeak The software can accurately pinpoint regions to Hidden Markov model-based approach http://www.sph.umich.edu/
which significantly more sequence reads are csg/qin/HPeak/
mapped
MACS Uses a dynamic Poisson distribution to effectively The software is publicly available open-source, http://liulab.dfci.harvard.edu/
capture local biases in the genome sequence and  and used for ChIP-Seq analysis with or without MACS/
allows for more sensitive and robust prediction control samples.
CISGenome An integrated tool for tiling arrays, ChiP-seq, N.A. http://www.biostat jhsph.edu/

genome and cis-regulatory element analysis

~hji/cisgenome/
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animal welfare. Sequencing individual agricultural ani-
mals will increase opportunities for resisting animal
pathogens that can challenge meat/egg/dairy production.
Since domestic animals are the leading source of animal
protein for human beings, the sequencing research will
provide valuable information for efficient production of
a leaner, healthier and more economical source of ani-
mal protein for human consumption.

The breeding of farm animals is entering the post-
genome era [32]. Despite some deficiencies of NGS, e.g.
poor coverage of GC rich areas and the challenges in
the assembly when a good reference genome is not
available, NGS technologies (RNA-Seq, Chip-Seq, and
Genome-resequencing) are still able to help animal
scientists study individual genomes at a pace far quicker
than previously could be achieved. We believe that
sequencing individual animals treated with different
conditions shows great promise. Sequencing micro-
organisms and parasites in agricultural animals’ organs
can also help veterinarians develop new vaccines and
therapeutics [32]. NGS will also facilitate the study of
gene expression and regulatory mechanisms of milk pro-
duction and egg/meat flavor in animals. By utilizing
NGS approaches/tools, researchers can identify and
further analyze individual genes controlling/affecting
economic traits in agricultural animals, which will even-
tually benefit the consumers.
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