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Abstract

Missing genotypes are a common feature of high density SNP datasets obtained using SNP chip technology and
this is likely to decrease the accuracy of genomic selection. This problem can be circumvented by imputing the
missing genotypes with estimated genotypes. When implementing imputation, the criteria used for SNP data
quality control and whether to perform imputation before or after data quality control need to consider. In this
paper, we compared six strategies of imputation and quality control using different imputation methods, different
quality control criteria and by changing the order of imputation and quality control, against a real dataset of milk
production traits in Chinese Holstein cattle. The results demonstrated that, no matter what imputation method and
quality control criteria were used, strategies with imputation before quality control performed better than strategies
with imputation after quality control in terms of accuracy of genomic selection. The different imputation methods
and quality control criteria did not significantly influence the accuracy of genomic selection. We concluded that
performing imputation before quality control could increase the accuracy of genomic selection, especially when
the rate of missing genotypes is high and the reference population is small.
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Background
Genomic selection is becoming prevalent and practic-
able in dairy cattle breeding, where genomic breeding
values of animals are estimated using high density single
nucleotide polymorphisms (SNPs) and are the basis for
the selection of elite animals [1]. Genomic selection
combines information on genotypes, phenotypes and
pedigree to increase the accuracy of the estimated
breeding values (EVBs). Low-, medium- and high-den-
sity platforms have become available and this new tech-
nology has revolutionized dairy cattle breeding and has
led to an extraordinary amount of research activity
[2-4]. Tens of thousands of dairy cattle have been geno-
typed using the BovineSNP50 BeadChip (Illumina Inc.
San Diego, CA) or related platforms, and the resulting
genomic data have been evaluated [5]http://www.inter-
bull.org/. Genomic estimated breeding values (GEBVs)
are at the core of genomic selection. The GEBV is cal-
culated as the sum of all SNP effects; the estimation of

SNP effects therefore plays an important role in geno-
mic selection. In the SNP genotype data obtained from
the SNP chip technique, missing genotype information
is a common phenomenon that leads to a low call rate
for some SNPs and for some animals. The routine data
quality control procedure in genomic selection elimi-
nates SNPs and animals with low call rates from the
data sets, resulting in the loss of information and a
decrease in the accuracy of the GEBV. Imputation can
be used to deduce the missing genotypes and could be
helpful in increasing the accuracy of genomic selection.
Imputation also allows for the use of low-density chips
that may be more cost-effective, facilitating the wide-
spread implementation of whole-genome selection [5,6].
Several imputation methods have been proposed and

are implemented in programs like fastPHASE [7], Beagle
[8], and findhap [9]. These methods impute the missing
genotypes based on reconstructed haplotypes informed
by linkage disequilibrium between SNPs. They all use dif-
ferent methods of haplotype reconstruction which leads
to differences in the accuracy of estimated genotypes and
different computing time. FastPHASE and Beagle run
slowly as Bayesian method are applied for haplotype
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reconstruction, which may limit their practical use in
large data sets. findhap runs very fast and is comparable
with fastPHASE and Beagle in accuracy [5].
In genomic selection, quality control of the SNP data

is a necessary step before the SNP effects are estimated
[10,11]. Two alternative strategies can be considered;
imputation before or imputation after quality control.
The optimal quality control criteria might be different
with and without imputation. The objective of the pre-
sent study is to evaluate the efficiency of different impu-
tation strategies in Chinese Holstein Cattle based on the
accuracy of genomic selection. We varied the imputa-
tion strategies, the criterion of quality control, and the
order of imputation with quality control, to find out
whether these elements affect the accuracy of the geno-
mic predictions.

Materials and methods
Data
A total of 2, 180 Chinese Holstein Cattle (87 bulls and 2,
093 cows) born between 2001 and 2006 were genotyped
for 54, 001 SNP markers distributed across the 29 Bos
taurus autosomes and the × chromosome using the Illu-
mina Bovine SNP50TM chip (Illumina Inc., San Diego,
CA, USA). The 2, 093 cows formed the reference popula-
tion. Their 13 sires were used for imputation of the miss-
ing SNP genotypes. The average number of daughters per
sire was 161; the range was from 83 to 358. The cows
came from 14 Holstein cattle farms in Beijing, China,
where regular and standard performance testing (Dairy
Herd Improvement, DHI) has been conducted since 1999
[12]. The remaining 74 bulls were used as the validation
population. All cows and bulls had official EBVs for milk
production traits that were provided by the Dairy Associa-
tion of China. The EBVs were obtained using the DHI
data for the whole Chinese Holstein population and the
conventional BLUP method based on a multiple trait ran-
dom regression test-day model [13]. The bulls in the vali-
dation population were all proven bulls with the average
reliability of EBVs greater than 0.90. In this study, the
EBVs of three milk production traits of the cows, milk
yield (MY), fat percentage (FP) and protein percentage
(PP), were used to estimate the SNP effects that were then
used to calculate the GEBVs of the bulls in the validation
population. The heritabilities of the three traits were esti-
mated based on the whole Chinese Holstein population
using the DMU software [14]. Detailed descriptions of the
traits and their EBVs are given in Table 1.

Imputation and quality control strategies
Imputation method
Two imputation methods were implemented: 1) the
findhap program v1 [9] was used to impute missing
SNP genotypes using estimated genotypes (Impute A);

2) missing genotypes were directly replaced with the
heterozygote (Impute B).
Quality control
Three criteria of minor allele frequency (MAF) of SNPs
were considered, > 3% (QC3%), > 5% (QC5%) and > 0%
(QC0), for marker filtration. For all of the three criteria,
the SNP call rate and individual call rates were required
to be more than 90%.
To study the order of imputation and quality control,

six strategies were designed (see Table 2) and their
accuracy was compared with the GEBVs in the valida-
tion population. For all six strategies, the SNP data were
first checked for Mendelian errors and genotypes with
Mendelian errors were deleted and treated as missing.

Estimation of SNP effects
The BayesB method [1] was adapted to estimate the
SNP effects using the SNP data resulting from each of
the five imputation and quality control strategies and
the EBVs of cows in the reference population. The sta-
tistical model of BayesB is as follows:

Y = Xb +
N∑

i=1

Zigi + e (1)

where Y is the vector of the EBVs for MY, FP or PP, b
is a vector of fixed effects, gi is the ith marker effect, N
is the total number of markers, X and Z are design
matrices corresponding to b and g, and e is a vector of
residual errors. The design matrix Z contains indicator
variables 0, 1 and -1 corresponding to the SNP geno-
types 12, 22 and 11, respectively. It was assumed that
residuals e were independent and follow a normal distri-
bution, e ~ N (0, se

2). All marker effects gi were also
assumed to be normally distributed, gi ~ N (0, sgi

2).
The marker effects were assumed to be zero with a
probability of π or non zero with a variance that fol-
lowed a scaled inverse chi-square distribution with a
probability of (1 - π) [1].
In this study, the prior probability π was assumed to

be 0.95 based on the results of Zhang et al. [15], BayesB
was implemented with the Monte Carlo Markov Chain
(MCMC) algorithm, which is a mixture of Gibbs sam-
pling and Metropolis-Hastings sampling as described by
Meuwissen et al. [1]. The MCMC chain was run for 10,
000 cycles with 100 cycles of Metropolis-Hastings sam-
pling within each Gibbs sample. The first 2, 000 cycles
were discarded as burn-in. All the samples of SNP
effects from later cycles were averaged to obtain the
estimate of marker effects.

GEBV calculation and accuracy of GEBVs
The GEBVs for the bulls in the validation population
were calculated as the sum of all estimated SNP effects
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according to their marker genotypes [1]. The accuracies
of the GEBVs were measured as correlations between
the GEBVs and the known conventional EBVs.

Results
The original SNP dataset for the reference population
consisted of the genotypes of 54, 001 SNPs for the 2, 093
cows. The total proportion of missing genotypes in this
population was 1.92%. The call rates for the SNPs ranged
from 0% to 100% with an average of 97.98%. The call
rates for the animals ranged from 70.27% to 99.43% with
an average of 98.05%; one cow for which the call rate was
extremely low (43.52%) was discarded from the dataset.
The proportions of animals and SNPs with call rate less
than 90% were 3.01% and 2.18%, respectively. The pro-
portions of SNPs with MAFs less than 0.03 and less than
0.05 were 17.23% and 20.53%, respectively. Of the SNPs
with call rates less than 90% (average 67.83%), the aver-
age MAF was 0.165 and the proportions with MAFs of
less than 0.03 and less than 0.05 were 26.06% and
35.89%, respectively. For the SNPs with call rates greater
than 90% (average 98.77%), the average MAF was 0.228
and the proportions with MAFs less than 0.03 and less
than 0.05 were 17.03% and 20.18%, respectively. This
result indicates that SNPs with low call rates tend to have
low MAFs. After data editing using the six imputation
and quality control strategies, six different SNP datasets
were generated (Table 2). Strategies using imputation
before quality control (S1, S2, S3 and S4) produced larger

data sets with slightly more animals and many more
SNPs than strategies using imputation after quality con-
trol (S5 and S6). After imputation, the call rates or all
SNPs and all animals was as high 100%. Using Impute A
(Impute B), the proportions of SNPs with MAF < 0.03
and ≤ 0.05 deceased to 16.53% (15.53%) and 19.06%
(19.06%), respectively. The data sets generated using stra-
tegies S1, S2, S3 and S4 contained the same number of
animals, but different numbers of SNPs (the data set
from S2 contained 542 more SNPs than the data set from
S1 and 1, 904 more than the data set from S3). The strat-
egy without the requirement for MAF (S4) retained
almost all SNPs after imputation (only 28 SNPs were
excluded because they are heterozygous in all individuals
and thus non-informative). Similarly, the data sets gener-
ated from S5 and S6 contained the same number of ani-
mals, but S5 retained 1, 615 more SNPs than S6. Overall,
S4 yielded the largest data set and S6 the smallest one.
The estimated heritabilities and accuracies of the

GEBVs obtained using the different datasets arising
from the different imputation and quality control strate-
gies are shown in Table 3. For all the strategies, the
accuracy increased along with heritability. The accura-
cies from the four strategies with imputation before
quality control (S1, S2 S3 and S4) were around 1% to
2% higher than those from the two strategies with impu-
tation after quality control (S5 and S6). The perfor-
mances of S1, S2 and S3 were similar and slightly better
than S4. S5 performed slightly better than S6.

Discussion
The number of individuals in the reference population
and the number of SNPs in the genome with known
genotypes are the two major factors affecting the

Table 1 Descriptive statistics and accuracies of the EBVs of three milk production traits

Traits Mean (range) Standard deviation Mean reliability (range)

Milk yield 379.36 (-1, 667.00 to 2, 552.00) 608.65 0.63 (0.50 to 0.71)

Fat percentage -0.07 (-0.90 to 0.91) 0.27 0.52 (0.41 to 0.70)

Protein percentage -0.01 (-0.42 to 0.32) 0.10 0.52 (0.41 to 0.70)

Table 2 Datasets in the reference population generated
using five different imputation and quality control
strategies

Strategy1 No. of animals No. of SNPs

Imputation before quality control

S1: Impute A - QC3% 2, 092 45, 072

S2: Impute B - QC3% 2, 092 45, 614

S3: Impute A - QC5% 2, 092 43, 710

S4: Impute A - QC0 2, 092 53, 973

Imputation after quality control

S5: Impute A - QC3% 2, 021 43, 481

S6: Impute A - QC5% 2, 021 41, 866
1Impute A, imputation with findhap v1 [9]; Impute B, missing genotypes were
directly replaced with heterozygote.

Abbreviations: QC3%, SNP MAF > 3%; QC5%, SNP MAF > 5%; QC0, no
requirement for MAF.

Table 3 Estimated heritabilities (h2) and accuracies of the
GEBVs measured as correlations between the GEBVs and
the conventional EBVs in the validation population using
different imputation and quality control strategies 1

Trait h2 Accuracy

S1 S2 S3 S4 S5 S6

Milk yield 0.36 0.65 0.65 0.65 0.64 0.64 0.63

Fat percentage 0.41 0.74 0.74 0.74 0.74 0.73 0.72

Protein percentage 0.23 0.58 0.58 0.58 0.56 0.57 0.56
1S1-S6 represent the different imputation and quality control strategies as
described in the footnotes to Table 2.
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accuracy of the predicted GEBVs [16]. Missing genotype
information is a common feature of high density SNP
datasets which, after data quality control, reduces
the number of available SNPs as well as the number of
individuals available for estimating SNP effects. For
example, a reference population of 798 Australian Hol-
stein-Friesian bulls with known genotypes of 56, 947
SNPs was reduced to 730 bulls with 38, 259 SNPs after
quality control [16]. The same phenomenon was
observed in the present study. Several methods exist to
deal with missing genotypes. The simplest way is to
impute the missing genotypes with heterozygotes. A
more realistic method is to impute the missing geno-
types with estimated genotypes based on reconstructed
haplotypes informed by linkage disequilibrium between
SNPs. In addition to selecting the imputation method,
the criteria used for quality control needs to be consid-
ered and a decision about whether to perform imputa-
tion before or after data quality control needs to be
made. In this study, we compared six imputation and
quality control strategies using a real dataset. Our
results showed that the strategies with imputation before
quality control could bring the call rates of all SNPs and
animals to 100%, and increase the MAF of the SNPs; so,
fewer animals and SNPs were excluded from the original
dataset as a result of quality control. Because of the lar-
ger dataset that can be generated, the accuracies of the
GEBVs from the strategies with imputation before qual-
ity control were higher than those from the strategies
with imputation after quality control. However, MAF
was still a factor that affected the accuracy of the
GEBVs. Our results showed that the strategy without a
requirement for MAFs underperformed compared with
those with a requirement for MAF > 0.03 or > 0.05,
although the former strategy produced the largest
dataset.
It should be noted that the two imputation methods,

Impute A and Impute B, resulted in almost the same size
of dataset (Impute B gave slightly more SNPs) and the
same accuracies of the GEBVs. The likely reason for the
high similarity of the two datasets after imputation is that
the missing SNP rate in the original dataset was relatively
small (1.92%) and the majority of the missing genotypes
were probably real heterozygotes. Indeed, the two data-
sets shared 99.13% identical SNP genotypes in each indi-
vidual. When the missing SNP rate is high, based on our
result, it is reasonable to suppose that Impute A would
result in a higher accuracy for the GEBVs because this
method imputes the missing genotypes more accurately.
In this study, two criteria for MAF, > 3% and > 5% were

applied for quality control either after or before imputa-
tion. Obviously, with the stricter criterion for MAF ( > 5%)
more SNPs would be excluded from the dataset. Our
results showed that, when imputing before quality control,

the dataset with MAF > 3% contained 1, 362 more SNPs
than the dataset with MAF > 5%; when imputing after
quality control, the dataset with MAF > 3% contained 1,
615 more SNPs than the dataset with MAF > 5%. This dif-
ference is because when imputing before quality control,
the MAF of the SNPs would increase along with the
increased call rate as a result of imputation, so that some
SNPs with MAF < 5% in the original dataset become > 5%
after imputation. Our results show that, when imputing
before quality control, there is no difference in the accura-
cies of the predicted GEBVs from datasets with MAF > 3%
and MAF > 5% for all traits; when imputing after quality
control, the accuracies from the dataset with MAF > 3%
are slightly higher than those from the dataset with MAF
> 5%. This observation suggests that using MAF > 3% is
more appropriate than using MAF > 5%.
In conclusion, we found that conducting imputation

before quality control could be a useful strategy to
increase the accuracy of genomic selection, especially
when the rate of missing genotypes is high and the
reference population is small.
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