Open Access

Amino acid digestibility in low-fat distillers dried grains with solubles fed to growing pigs

  • Shelby Marie Curry1,
  • Diego Mario David Labadan Navarro1,
  • Ferdinando Nielsen Almeida1,
  • Juliana Abranches Soares Almeida1 and
  • Hans Henrik Stein1Email author
Journal of Animal Science and Biotechnology20145:27

DOI: 10.1186/2049-1891-5-27

Received: 5 March 2014

Accepted: 4 May 2014

Published: 13 May 2014

Abstract

The objective of this experiment was to determine the standardized ileal digestibility (SID) of amino acids (AA) in 3 sources of distillers dried grains with solubles (DDGS) with different concentrations of fat. Twelve growing barrows (initial body weight: 76.1  ±  6.2 kg) were randomly allotted to a replicated 6 × 4 Youden square design with 6 diets and 4 periods. The fat content of the 3 sources of DDGS were 11.5, 7.5, and 6.9% respectively. Diets contained 60% DDGS and fat concentration of the diets were 7.5, 5.2, and 5.2%, respectively. Two additional diets containing the 2 sources of DDGS with 7.5 and 6.9% fat were also formulated, and corn oil was added to these diets to increase the concentration of fat in the diets to levels that were calculated to be similar to the diet containing conventional DDGS with 11.5% fat. A N-free diet was also formulated to calculate endogenous losses of crude protein (CP) and AA from the pigs. Pigs were fed experimental diets during four 7-d periods. The first 5 d of each period were an adaptation period and ileal digesta were collected on d 6 and 7 of each period. The apparent ileal digestibililty (AID) and SID of CP and all indispensable AA, except AID Pro and SID of Trp, were greater (P < 0.01) in conventional DDGS than in the 2 sources of DDGS with reduced fat. Adding oil to the diets containing the 2 sources of DDGS with reduced fat did not consistently increase SID of AA. In conclusion, conventional DDGS has greater SID values for most AA compared with DDGS that contains less fat and inclusion of additional oil to diets containing low-fat DDGS does not increase AID or SID of AA. The lower AA digestibility in low-fat DDGS could not be overcome by the inclusion of additional fat to the diets.

Keywords

Amino acid digestibility Distillers dried grains with solubles Pigs

Background

Distillers co-products have been used in swine diets for more than 50 years, but the increase in ethanol production in the last few decades has made distillers dried grains an available and attractive ingredient to use in swine diets [1]. Conventional distillers dried grains with solubles (DDGS) contains approximately 27% CP, 10% fat, 9% acid detergent fibre (ADF), and 25% neutral detergent fibre (NDF) [13]. However, new technologies have been developed and implemented to remove fat from DDGS to be able to market the oil for biodiesel production or other uses. If oil is removed by centrifugation of the solubles before solubles are added to the distilled grains, then a low-fat DDGS is produced. Low-fat DDGS contains 6 to 9% oil [3]. If oil is extracted from DDGS using a solvent extraction process, de-oiled DDGS is produced [3]. De-oiled DDGS contains less than 4% oil, and therefore, contains less energy than conventional DDGS [4], which may affect its economic value and inclusion level [5]. Oil removal improves handling issues commonly encountered when using DDGS in pig diets such as challenges with flowability [4].

The DE and ME of de-oiled and low-fat DDGS [4, 6] are less than the DE and ME of conventional DDGS. There is, however, limited information about the digestibility of AA in low-fat DDGS, but increased concentrations of dietary fat may increase the digestibility of AA in soybean meal and in mixed corn-soybean meal-DDGS diets [710]. It is, therefore, possible that the digestibility of AA is also influenced by the concentration of fat in DDGS. The objective of this research was to determine if the concentration of fat in DDGS and diets containing DDGS affects the apparent ileal digestibility (AID) or standardized ileal digestibility (SID) of CP and AA fed to growing pigs.

Materials and methods

The Institutional Animal Care and Use Committee at the University of Illinois reviewed and approved the protocol for this experiment.

Animals, housing, experimental design, and diets

A total of 12 growing barrows (Genetiporc, Alexandria, MN) with an initial body weight (BW) of 76.1 ± 6.2 kg were randomly allotted to a replicated 6 × 4 Youden square design with 6 diets and four 7-d periods. Pigs had a cannula surgically installed in the distal ileum to allow for collection of ileal digesta [11]. Each pig was individually housed in a 1.2 m × 1.5 m that was equipped with a feeder and a nipple drinker. Pens were in a temperature-controlled barn with a propane heater and forced air fans. Each pen has smooth sidings and a fully slatted Tri-bar steel floor.

Three sources of DDGS were produced by Poet Nutrition, Sioux Falls, SD (Table 1). The 3 sources of DDGS were produced at the same facility on 3 consecutive days in the fall of 2011. The corn that was used on these 3 days was from a common source. The DDGS that was produced on the first day consisted of distillers dried grains and all the solubles. However, fat was skimmed off the solubles that were added to the distiller dried grains on d 2 and 3, resulting in production of 2 sources of low-fat DDGS. The conventional DDGS contained 11.5% fat, and the two sources of low-fat DDGS contained 7.5% and 6.9% fat, respectively. Six diets were formulated (Tables 2 and 3). Three diets that contained 60% of each source of DDGS were formulated and these diets contained 7.5, 5.2, and 5.2% fat, respectively. Two additional diets were also formulated and these diets also contained the 2 sources of low-fat DDGS, but corn oil was added to these diets with the intent to bring the concentration of fat in the diets to the same level as in the diet with the conventional DDGS. A N-free diet was used to measure endogenous losses of CP and AA from the pigs. Chromic oxide (0.4%) was included in all the diets as an inert marker. Vitamins and minerals were included in all diets to meet requirements [12].
Table 1

Analyzed nutrient composition of ingredients (as-fed basis) 1

 

Ingredients2

Item

Conventional DDGS

Low- fat DDGS, 7.5% fat

Low-fat DDGS, 6.9% fat

DM, %

90.61

89.04

87.48

CP, %

25.73

28.03

27.93

AEE3, %

11.47

7.51

6.86

ADF, %

7.78

9.27

8.82

NDF, %

28.64

30.74

29.87

Starch, %

1.50

1.16

1.33

Ca, %

0.07

0.06

0.06

P, %

0.90

0.87

0.92

Indispensable AA, %

   

     Arg

1.22

1.22

1.24

     His

0.69

0.75

0.71

     Ile

1.03

1.12

1.06

     Leu

2.79

3.17

3.07

     Lys

0.91

0.91

0.88

     Met

0.52

0.59

0.55

     Phe

1.25

1.36

1.35

     Thr

0.97

1.02

1.02

     Trp

0.21

0.20

0.20

     Val

1.30

1.43

1.33

Dispensable AA, %

   

     Ala

1.72

1.93

1.86

     Asp

1.59

1.73

1.68

     Cys

0.62

0.62

0.63

     Glu

3.28

4.01

3.81

     Gly

1.05

1.10

1.06

     Pro

1.91

2.08

2.17

     Ser

1.07

1.13

1.18

     Tyr

1.01

1.09

1.09

1Ingredients were obtained from Poet Nutrition, Sioux Falls, SD.

2DDGS = distillers dried grains with solubles.

3AEE = acid hydrolyzed ether extract.

Table 2

Ingredient composition of experimental diets, as-fed basis

 

Diet1

Ingredient, %

Conventional DDGS

Low-fat DDGS, 7.5% fat

Low-fat DDGS, 6.9% fat

Low-fat DDGS, 7.5% fat with oil

Low-fat DDGS, 6.9% fat with oil

N-free

Cornstarch

27.60

27.60

27.60

28.20

28.25

69.00

Conventional DDGS

60.00

-

-

-

-

-

Low-fat DDGS-1

-

60.00

-

58.20

-

-

Low-fat DDGS-2

-

-

60.00

-

57.20

-

Corn oil

-

-

-

1.20

2.15

4.00

Sugar

10.00

10.00

10.00

10.00

10.00

20.00

Chromic oxide

0.40

0.40

0.40

0.40

0.40

0.40

Limestone

1.30

1.30

1.30

1.30

1.30

0.60

Salt

0.40

0.40

0.40

0.40

0.40

0.40

Vitamin-mineral premix2

0.30

0.30

0.30

0.30

0.30

0.30

Cellulose3

-

-

-

-

-

4.00

Dicalcium Phosphate

-

-

-

-

-

1.30

1DDGS = distillers dried grains with solubles.

2The vitamin-micromineral premix provided the following quantities of vitamins and micro minerals per kilogram of the complete diet: vitamin A as retinyl acetate, 11,128 IU; vitamin D3 as cholecalciferol, 2,204 IU; vitamin E as DL-alpha tocopheryl acetate, 66 IU; vitamin K as menadione nicotinamide bisulfate, 1.42 mg; thiamin as thiamine mononitrate, 0.24 mg; riboflavin, 6.58 mg; pyridoxine as pyridoxine hydrocloride, 0.24 mg; vitamin B12, 0.03 mg; D-pantothenic acid as D-calcium pantothenate, 23.5 mg; niacin as nicotinamide and nicotinic acid, 44 mg; folic acid, 1.58 mg; biotin, 0.44 mg; Cu, 10 mg as copper sulfate; Fe, 125 mg as iron sulfate; I, 1.26 mg as potassium iodate; Mn, 60 mg as manganese sulfate; Se, 0.3 mg as sodium selenite; and Zn, 100 mg as zinc oxide.

3Solka Floc. Fiber Sales and Development Corp., Urbana, OH.

Table 3

Analyzed nutrient composition of experimental diets, as-fed basis

 

Diet1

Item

Conventional DDGS

Low-fat DDGS, 7.5% fat

Low-fat DDGS, 6.9% fat

Low-fat DDGS, 7.5% fat with oil

Low-fat DDGS, 6.9% fat with oil

N-free

CP, %

15.62

16.49

16.59

16.01

15.65

0.28

DM, %

92.26

90.99

89.57

90.20

87.67

91.93

AEE 2, %

7.47

5.20

5.15

6.21

6.95

4.07

Indispensable AA, %

      

     Arg

0.73

0.72

0.75

0.72

0.70

0.01

     His

0.43

0.46

0.46

0.45

0.41

0.00

     Ile

0.57

0.62

0.61

0.60

0.55

0.01

     Leu

1.69

1.91

1.88

1.88

1.74

0.02

     Lys

0.51

0.51

0.51

0.50

0.47

0.01

     Met

0.31

0.35

0.33

0.34

0.31

0.00

     Phe

0.73

0.81

0.80

0.79

0.74

0.01

     Thr

0.58

0.62

0.63

0.63

0.60

0.01

     Trp

0.13

0.12

0.13

0.12

0.12

<0.04

     Val

0.81

0.88

0.87

0.84

0.77

0.01

Dispensable AA, %

      

     Ala

1.08

1.19

1.18

1.17

1.09

0.01

     Asp

1.01

1.08

1.08

1.06

1.00

0.01

     Cys

0.29

0.32

0.31

0.32

0.28

0.00

     Glu

2.38

2.62

2.58

2.56

2.40

0.03

     Gly

0.64

0.67

0.68

0.66

0.62

0.01

     Pro

1.24

1.40

1.38

1.38

1.30

0.06

     Ser

0.62

0.67

0.69

0.71

0.68

0.01

     Tyr

0.54

0.58

0.58

0.59

0.56

0.01

1DDGS = distillers dried grain with solubles.

2AEE = acid hydrolyzed ether extract.

Feeding and sample collections

Pigs were fed at a level of 3 times the maintenance energy requirement (i.e., 106 kcal ME per kgBW0.75; [12]) and the daily feed allotments were divided into 2 equal meals. Amount of feed supplied was recorded daily and pig weights were recorded at the beginning of the experiment and at the end of each 7-d period. The initial 5 d of each period was considered a diet adaptation period. Ileal digesta were collected on d 6 and 7 for 8 h as previously described [13]. All samples were stored at −20°C immediately after collection to avoid bacterial degradation of the AA. At the conclusion of the experiment, samples were thawed and mixed within animal and diet and a sub-sample was collected and analyzed.

Chemical analysis

A sample from each ingredient and each diet was collected at the time of diet mixing. Ileal digesta samples were lyophilized and ground prior to chemical analysis. Samples from diets and digesta were analyzed for dry matter (DM; Method 930.15; [14]), chromium (Method 990.08; [14]), CP (Method 990.03; [14]), and AA (Method 982.30 E (a, b, c); [14]). Prior to AA analysis, samples were hydrolyzed with 6 mol/L HCl for 24 h at 110°C (method 982.30 E(a); [14]). Methionine and Cys were determined as Met sulfone and cysteic acid after cold performic acid oxidation overnight before hydrolysis (method 982.30 E(b); [14]). Tryptophan was determined after NaOH hydrolysis for 22 h at 110°C (method 982.30 E(c); [14]). Each ingredient was also analyzed for DM, CP, AA, ADF (Method 973.18; [14]), NDF [15], for Ca and P by inductively coupled plasma spectroscopy (Method 985.01; [14]), and for starch using the glucoamylase procedure (Method 979.10; [14]). Each ingredient and all diets were also analyzed for total fat by acid hydrolysis using 3 N HCl [16] followed by crude fat extraction using petroleum ether (Method 2003.06; [14]) on a Soxtec 2050 automated analyzer (FOSS North America, Eden Prairie, MN).

Calculations and statistical analysis

Basal endogenous losses of CP and AA were determined from pigs after feeding the N-free diet. Values for AID, endogenous losses, and SID of CP and AA were calculated as previously described [17]. The MIXED procedure of SAS was used to analyze the data (SAS Inst. Inc., Cary, NC). The model included diet as a fixed effect whereas pig and period were included as random effects. A pig was used as the experimental unit. The UNIVARIATE procedure of SAS was used to determine if there were any outliers. However, no outliers were identified. An observation was considered an outlier if the value was more than 3 standard deviations away from the grand mean. The LSMeans statement was used to calculate mean values for each diet and the PDIFF option was used to separate means. Moreover, an orthogonal contrast was conducted to verify if the addition of oil to low-fat DDGS diets increases AA digestibility of low-fat DDGS to the same level as conventional DDGS. The contrast was performed by comparing conventional DDGS and the 2 low-fat DDGS sources with addition of supplemental oil. For all analyses, an alpha value of 0.05 was used to determine significance among means.

Results

The AID for CP and all indispensable AA was greater (P < 0.01) in conventional DDGS than in the 2 low-fat sources of DDGS, whereas no differences between the 2 low-fat sources of DDGS were observed (Table 4). The mean AID of indispensable AA and the mean of dispensable AA were also greater (P < 0.01) in conventional DDGS than in the 2 low-fat sources of DDGS. Addition of oil to the diets containing the low-fat DDGS did not increase AID values for CP or AA.
Table 4

Apparent ileal digestibilitly of CP and AA in distillers dried grains with solubles (DDGS) fed to pigs 1

 

Ingredients

  

Additional oil2

Item

Conventional DDGS

Low-fat DDGS, 7.5% fat

Low-fat DDGS, 6.9% fat

Low-fat DDGS, 7.5% fat with oil

Low-fat DDGS, 6.9% fat with oil

SEM

P-value

SEM

P-value

CP, %

71.8a

64.6b

66.1b

66.9b

68.0b

1.26

<0.01

1.54

<0.01

Indispensable AA, %

         

     Arg

81.8a

75.0b

76.9b

77.3b

75.5b

0.93

<0.01

5.88

<0.01

     His

78.0a

70.8b

71.9b

72.9b

70.3b

1.12

<0.01

1.08

<0.01

     Ile

75.6a

69.1b

69.3b

71.2b

67.8b

0.95

<0.01

1.00

<0.01

     Leu

85.4a

81.4b

80.2b

82.8b

81.2b

0.76

<0.01

0.69

<0.01

     Lys

62.2a

50.8b

56.1b

56.9b

51.4b

1.91

<0.01

1.51

<0.01

     Met

85.8a

82.8b

81.5b

83.7b

82.8b

0.68

<0.01

0.63

<0.01

     Phe

81.5a

77.2b

76.8b

78.5b

76.8b

0.75

<0.01

0.71

<0.01

     Thr

65.8a

59.9b

61.4b

63.6b

61.2b

1.30

<0.01

1.18

<0.01

     Trp

76.5a

70.8b

74.7b

74.1b

71.3b

1.23

<0.01

1.36

0.01

     Val

75.7a

69.8b

70.3b

71.4b

68.2b

0.95

<0.01

0.99

<0.01

     Mean

78.3a

72.8b

73.2b

74.9b

72.5b

0.85

<0.01

0.84

<0.01

Dispensable AA, %

         

     Ala

80.7a

76.5b

75.8b

77.9b

76.2b

0.89

<0.01

0.84

<0.01

     Asp

67.7a

62.3b

63.3b

65.1b

61.4b

1.13

<0.01

1.16

<0.01

     Cys

71.7a

63.4b

64.8b

67.1b

63.0b

1.60

<0.01

1.41

<0.01

     Glu

82.4a

77.4b

76.8b

78.7b

77.3b

0.96

<0.01

0.85

<0.01

     Gly

58.6a

48.5b

51.0b

51.6b

47.4b

2.13

<0.01

2.24

<0.01

     Pro

64.3

57.5

59.7

59.6

57.4

4.69

0.37

3.16

0.08

     Ser

73.4a

69.4b

70.0b

72.8b

72.0b

1.23

<0.01

1.02

0.34

     Tyr

82.3a

77.7b

77.6b

79.9b

78.5b

0.72

<0.01

0.72

<0.01

     Mean

74.3a

68.7b

69.0b

70.8b

68.7b

1.39

<0.01

1.30

<0.01

  Total AA

76.1a

70.5b

70.9b

72.7b

70.4b

1.10

<0.01

1.08

<0.01

a,bMeans without a common superscript in the same row differ; pairwise comparison.

1Data are means of 8 observations.

2Orthogonal contrast comparing conventional DDGS and the 2 sources of low-fat DDGS with additional oil.

The SID of CP and all indispensable AA except Trp was greater in conventional DDGS (P < 0.01) than in the 2 sources of low-fat DDGS (Table 5). The SID of Lys was greater (P < 0.01) in one of the sources of low-fat DDGS than in the other source. However, if fat was added, there was an increase in SID of Lys in the DDGS with 7.5% fat content, but a reduction in SID of Lys in the low-fat DDGS with 6.9% fat content. For Trp, the SID in conventional DDGS did not differ from that of the low-fat DDGS (DDGS, 6.9% fat) without added oil and low fat DDGS (DDGS, 7.5%) with added oil, but the SID Trp of conventional DDGS was greater (P < 0.05) than in the low-fat DDGS (DDGS, 7.5% fat) without added oil and low-fat DDGS (DDGS, 6.9%) with added oil. For all AA except Ser, the AID and SID of low-fat DDGS with added oil was smaller (P < 0.05) than AID and SID of conventional DDGS, indicating that the addition of oil did not increase AID and SID of low-fat DDGS to the same level as AID and SID of conventional DDGS (Table 5). The SID of all dispensable AA was greater (P < 0.01) in conventional DDGS than in the 2 sources of low-fat DDGS. Addition of oil to the diets containing low-fat DDGS did not increase SID values.
Table 5

Standardized ileal digestibility of CP and AA in distillers dried grains with solubles (DDGS) fed to pigs 1

 

Ingredients

  

Additional oil2

Item

Conventional DDGS

Low-fat DDGS, 7.5% fat

Low-fat DDGS, 6.9% fat

Low-fat DDGS, 7.5% fat with oil

Low-fat DDGS, 6.9% fat with oil

SEM

P-value

SEM

P-value

CP, %

79.8a

72.8b

73.6b

74.6b

75.3b

1.22

< 0.01

1.29

<0.01

Indispensable AA, %

         

     Arg

87.7a

81.0c

82.5bc

83.2b

81.4bc

0.93

< 0.01

0.92

<0.01

     His

80.9a

73.5b

74.6b

75.6b

73.3b

1.12

< 0.01

1.08

<0.01

     Ile

79.8a

72.9bc

73.1bc

75.2b

71.9c

0.95

< 0.01

1.00

<0.01

     Leu

87.7a

83.4bc

82.2c

84.8b

83.3bc

0.76

< 0.01

0.69

<0.01

     Lys

67.9a

56.4c

61.7b

62.6b

57.3c

1.91

< 0.01

1.51

<0.01

     Met

88.1a

84.8bc

83.6c

85.8b

85.0bc

0.68

< 0.01

0.63

<0.01

     Phe

84.9a

80.3bc

79.8c

81.6b

80.0bc

0.75

< 0.01

0.71

<0.01

     Thr

73.4a

66.9c

68.2bc

70.4b

68.2bc

1.30

< 0.01

1.18

<0.01

     Trp

83.1a

77.8c

81.1ab

81.0abc

78.0bc

1.23

< 0.05

1.36

0.02

     Val

80.5a

74.2bc

74.6bc

75.9b

73.0c

0.95

< 0.01

0.99

<0.01

     Mean

82.5a

76.7c

77.0bc

78.8b

76.6c

0.85

< 0.01

0.85

<0.01

Dispensable AA, %

         

     Ala

85.4a

80.6bc

79.9c

82.1b

80.6bc

0.89

< 0.01

0.84

<0.01

     Asp

73.6a

67.8c

68.7bc

70.6b

67.1c

1.13

< 0.01

1.16

<0.01

     Cys

76.0a

67.3c

68.8bc

70.9b

67.3c

1.60

< 0.01

1.41

<0.01

     Glu

85.4a

80.1b

79.5b

81.4b

80.2b

0.96

< 0.01

0.85

<0.01

     Gly

75.9a

64.8b

66.8b

68.0b

64.3b

2.13

< 0.01

2.24

<0.01

     Pro

98.5a

87.4b

89.5b

89.7b

88.4b

4.70

< 0.05

3.16

<0.01

     Ser

78.8a

74.4c

74.7bc

77.4a

76.7ab

1.22

< 0.01

1.02

0.10

     Tyr

85.7a

80.9c

80.7c

83.0b

81.7bc

0.72

< 0.01

0.71

<0.01

     Mean

84.3a

77.7b

78.0b

79.8b

78.0b

1.39

< 0.01

1.30

<0.01

  Total AA

83.5a

77.2b

77.5b

79.4b

77.4b

1.10

< 0.01

1.08

<0.01

a,bMeans without a common superscript in the same row differ; pairwise comparison.

1Data are means of 8 observations. Values for standardized ileal digestibility were calculated by correcting apparent ileal digestibility values for basal endogenous losses (g/kg of DMI), which were determined by feeding pigs a N-free diet; CP, 13.84; Arg, 0.47; His, 0.14; Ile, 0.26; Leu, 0.42; Lys, 0.32; Met, 0.08; Phe, 0.27; Thr, 0.48; Trp, 0.09; Val, 0.39; Ala, 0.55; Asp, 0.65; Cys, 0.14; Glu, 0.78; Gly, 1.20; Pro, 4.60; Ser, 0.37; Tyr, 0.20.

2Orthogonal contrast comparing conventional DDGS and the 2 sources of low-fat DDGS with additional oil.

Discussion

Distillers dried grains with solubles is a co-product from the dry-grind processing of corn and has been used in swine diets for many years. The use of DDGS in swine diets has increased because it is affordable as well as high in energy, AA, and digestible P [1, 2, 18]. However, the drying process of DDGS may cause heat damage to the ingredient because it involves high temperatures and moisture, and these conditions are favorable for initiating the Maillard reaction, which reduces AA concentration and digestibility [19]. The Lys:CP indicates heat damage, and a ratio greater than 2.8% is desirable in DDGS and implies no heat damage [20]. Samples used in this experiment had Lys:CP of at least 3.15% indicating that the 3 sources of DDGS used in this experiment were not heat damaged.

In recent years, some ethanol plants have centrifuged the solules that are produced to extract oil, which may be sold to the biodiesel industry [5]. The result of the centrifugation is a reduction in fat concentration from 10% in conventional DDGS to 6 to 9% in low-fat DDGS [3]. The 2 sources of DDGS used in this experiment that were produced after the solubles had the oil removed contained 7.5 and 6.9% fat respectively, and these sources of DDGS were classified as low-fat DDGS, according to the definition by NRC [3].

The starch level in the 3 sources of DDGS used in this experiment was less than previously reported [1], indicating that the fermentation process in the ethanol plant was very efficient. The ADF levels of DDGS used in this experiment were also less than reported by NRC [3]. The CP, fat, and AA levels were, however, in agreement with previous values reported [3]. The values for SID of AA and CP for the low-fat DDGS were within the range of expected values [3]. However, SID of CP, Arg, Met, Trp, Ala, Asp, and Ser of DDGS were greater than previously reported [3]. Moreover, the SID of the other AA are in the upper limit of the range reported [3]. It is possible that the apparent reduction in SID values in low-fat DDGS may be due to the higher coefficients of digestibility of the conventional DDGS used in this experiment compared with previously reported values [3].

There is limited information about the AA digestibility of low-fat DDGS or effects of additional dietary fat on AID and SID of low-fat DDGS. However, data on the effect of low-fat DDGS on digestible energy (DE) and metabolizable energy (ME) indicate that dietary fat is not always a good predictor of ME for swine [5, 6, 10]. Different estimates for DE and ME have been reported for different sources of DDGS even if fat concentration was similar [4, 6].

The AID of AA in nursery and growing pigs is increased by the inclusion of additional fat to the diet [7, 21]. The increase in dietary fat delays gastric emptying [22] and although the length of the fatty acid can be different among different sources of vegetable oil, the impact of fatty acids on gastric emptying is similar regardless of chain length [22]. The slower gastric emptying may result in slower rate of passage of the diet, causing an increase in the time of exposure of feed to proteolytic enzymes, thus providing longer time for peptides and AA to be digested and absorbed, and increase in AID of AA [7]. The addition of oil to diets fed to growing pigs increase not only the AID but also the SID of AA [9, 10].

Results of this experiment indicate that the addition of dietary fat to diets containing low-fat DDGS fed to growing pigs did not improve the AID or SID of AA. These results are not in agreement with previous data [7, 9]. However, the difference in fat levels between diets without or with added fat were much greater (4.0 vs. 7.5%, 0.24 vs. 6.7%) in other experiments [7, 9] compared with the differences observed in the present experiment (5.2 vs. 6.2%, or 5.2 vs. 7.0%). Moreover, the fat level of the low-fat DDGS diets were relatively high and similar, and that could be the reason additional inclusion of fat did not result in an increase in SID of AA.

Conclusions

Results of this experiment indicate that removal of oil may result in reduced AID and SID of AA in DDGS, and that the 2 sources of DDGS used in this experiment had greater SID of AA compared with previously reported values. The AID and SID of AA in low-fat DDGS were not improved by the inclusion of additional fat in the diet.

Abbreviations

AA: 

Amino acids

ADF: 

Acid detergent fibre

AID: 

Apparent ileal digestibility

BW: 

Body weight

CP: 

Crude protein

DDGS: 

Distillers dried grains with solubles

DE: 

Digestible energy

DM: 

Dry matter

ME: 

Metabolizable energy

NDF: 

Neutral detergent fibre

SID: 

Standardized ileal digestibility.

Declarations

Acknowledgements

Financial support for this research from Poet Nutrition, Sioux Falls, SD, is appreciated.

Authors’ Affiliations

(1)
Department of Animal Sciences, University of Illinois

References

  1. Stein HH, Shurson GC: Board-invited review: the use and application of distillers dried grains with solubles in swine diets. J Anim Sci. 2009, 87: 1292-1303. 10.2527/jas.2008-1290.View ArticlePubMedGoogle Scholar
  2. Spiehs MJ, Whitney MH, Shurson GC: Nutrient database for distillers dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota. J Anim Sci. 2002, 80: 2639-2645.PubMedGoogle Scholar
  3. NRC: Nutrient requirements of swine. 2012, Washington, DC: Natl Acad Press, 11Google Scholar
  4. Jacela JY, DeRouchey JM, Dritz SS, Tokach MD, Goodband RD, Nelssen JL, Sulabo RC, Thaler RC, Brandts L, Litle DE, Prusa KJ: Amino acid digestibility and energy content of deoiled (solvent-extracted) corn distillers dried grains with solubles for swine and effects on growth performance and carcass characteristics. J Anim Sci. 2011, 89: 1817-1829. 10.2527/jas.2010-3097.View ArticlePubMedGoogle Scholar
  5. Kerr BJ, Dozier III WA, Shurson GC: Effects of reduced-oil corn distillers dried grains with solubles composition on digestible and metabolizable energy value and prediction in growing pigs. J Anim Sci. 2013, 91: 3231-3243. 10.2527/jas.2013-6252.View ArticlePubMedGoogle Scholar
  6. Anderson PV, Kerr BJ, Weber TE, Ziemer CJ, Shurson GC: Determination and prediction of digestible and metabolizable energy for chemical analysis of corn coproducts fed to finishing pigs. J Anim Sci. 2012, 90: 1242-1254. 10.2527/jas.2010-3605.View ArticlePubMedGoogle Scholar
  7. Li S, Sauer WC: The effect of dietary fat content on amino acid digestibility in young pigs. J Anim Sci. 1994, 72: 1737-1743.PubMedGoogle Scholar
  8. Albin DM, Smiricky MR, Wubben JE, Gabert VM: The effect of dietary level of soybean oil and palm oil on apparent ileal amino acid digestibility and postprandial flow patterns of chromic oxide and amino acids in pigs. Can J Anim Sci. 2001, 81: 495-503. 10.4141/A00-104.View ArticleGoogle Scholar
  9. Cervantes-Pahm SK, Stein HH: Effect of dietary soybean oil and soybean protein concentrate on the concentration of digestible amino acids in soybean products fed to growing pigs. J Anim Sci. 2008, 86: 1841-1849. 10.2527/jas.2007-0721.View ArticlePubMedGoogle Scholar
  10. Kil DY, Stein HH: Dietary soybean oil and choice white grease improve apparent ileal digestibility of amino acids in swine diets containing corn, soybean meal, and distillers dried grains with solubles. Rev Colomb Cienc Pecu. 2011, 24: 248-253.Google Scholar
  11. Stein HH, Shipley CF, Easter RA: Technical Note: a technique for inserting a T-cannula into the distal ileum of pregnant sows. J Anim Sci. 1998, 76: 1433-1436.PubMedGoogle Scholar
  12. NRC: Nutrient requirements of swine. 1998, Washington, DC: Natl Acad Press, 10Google Scholar
  13. Stein HH, Gibson ML, Pedersen C, Boersma MG: Amino acid and energy digestibility in ten samples of distillers dried grain with solubles fed to growing pigs. J Anim Sci. 2006, 84: 853-860.View ArticlePubMedGoogle Scholar
  14. AOAC: Official methods of analysis. 2007, Gaithersburg, MD: Association of Official Analytical Chemists, 18Google Scholar
  15. Holst DO: Holst filtration apparatus for Van Soest detergent fiber analysis. J AOAC. 1973, 56: 1352-1356.Google Scholar
  16. Sanderson P: A new method of analysis of feedstuffs for the determination of crude oils and fats. 1986. Recent Advances in Animal Nutrition. Edited by: Haresign W, Cole DJA. 1986, London, UK: Butterworths, 77-81.View ArticleGoogle Scholar
  17. Stein HH, Seve B, Fuller MF, Moughan PJ, de Lange CFM: Invited review: Amino acid bioavailability and digestibility in pig feed ingredients: terminology and application. J Anim Sci. 2007, 85: 172-180. 10.2527/jas.2005-742.View ArticlePubMedGoogle Scholar
  18. Almeida FN, Stein HH: Performance and phosphorus balance of pigs fed diets formulated on the basis of values for standardized total tract digestibility of phosphorus. J Anim Sci. 2010, 88: 2968-2977. 10.2527/jas.2009-2285.View ArticlePubMedGoogle Scholar
  19. Almeida FN, Htoo JK, Thomson J, Stein HH: Amino acid digestibility of heat damaged distillers dried grains with soluble fed to pigs. J Anim Sci Biotechnol. 2013, 4: 44-54. 10.1186/2049-1891-4-44.PubMed CentralView ArticlePubMedGoogle Scholar
  20. Stein HH: Distillers dried grains with solubles (DDGS) in diets fed to swine. 2007,http://nutrition.ansci.illinois.edu/sites/default/files/SwineFocus001.pdf.Google Scholar
  21. Imbeah M, Sauer WC: The effect of dietary level of fat on amino acid digestibilities in soybean meal and canola meal and on rate of passage in growing pigs. Livest Prod Sci. 1991, 29: 227-239. 10.1016/0301-6226(91)90068-2.View ArticleGoogle Scholar
  22. Hunt JN, Knox MT: A relation between the chain length of fatty acids and the slowing of gastric emptying. J Physiol. 1968, 194: 327-336.PubMed CentralView ArticlePubMedGoogle Scholar

Copyright

© Curry et al.; licensee BioMed Central Ltd. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Advertisement