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Abstract 

Background  Subclinical intramammary infection (IMI) represents a significant problem in maintaining dairy cows’ 
health. Disease severity and extent depend on the interaction between the causative agent, environment, and host. 
To investigate the molecular mechanisms behind the host immune response, we used RNA-Seq for the milk somatic 
cells (SC) transcriptome profiling in healthy cows (n = 9), and cows naturally affected by subclinical IMI from Proto-
theca spp. (n = 11) and Streptococcus agalactiae (S. agalactiae; n = 11). Data Integration Analysis for Biomarker discov‑
ery using Latent Components (DIABLO) was used to integrate transcriptomic data and host phenotypic traits related 
to milk composition, SC composition, and udder health to identify hub variables for subclinical IMI detection.

Results  A total of 1,682 and 2,427 differentially expressed genes (DEGs) were identified when comparing Prototheca 
spp. and S. agalactiae to healthy animals, respectively. Pathogen-specific pathway analyses evidenced that Proto-
theca’s infection upregulated antigen processing and lymphocyte proliferation pathways while S. agalactiae induced 
a reduction of energy-related pathways like the tricarboxylic acid cycle, and carbohydrate and lipid metabolism. The 
integrative analysis of commonly shared DEGs between the two pathogens (n = 681) referred to the core-mastitis 
response genes, and phenotypic data evidenced a strong covariation between those genes and the flow cytometry 
immune cells (r2 = 0.72), followed by the udder health (r2 = 0.64) and milk quality parameters (r2 = 0.64). Variables with 
r ≥ 0.90 were used to build a network in which the top 20 hub variables were identified with the Cytoscape cyto‑
hubba plug-in. The genes in common between DIABLO and cytohubba (n = 10) were submitted to a ROC analysis 
which showed they had excellent predictive performances in terms of discriminating healthy and mastitis-affected 
animals (sensitivity > 0.89, specificity > 0.81, accuracy > 0.87, and precision > 0.69). Among these genes, CIITA could play 
a key role in regulating the animals’ response to subclinical IMI.

Conclusions  Despite some differences in the enriched pathways, the two mastitis-causing pathogens seemed to 
induce a shared host immune-transcriptomic response. The hub variables identified with the integrative approach 
might be included in screening and diagnostic tools for subclinical IMI detection.
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Background
Mastitis in dairy cattle is a well-established problem 
that firstly affects animal welfare but also hinders milk 
production and quality, leading to significant economic 
losses at the expense of farmers [1]. Mastitis typically 
occurs in response to the penetration of a wide range of 
microorganisms in the mammary gland. It exists in two 
forms: the clinical one, with overt signs of inflammation, 
udder swelling, and changes in milk physical composi-
tion, and the subclinical one, where usually the only alter-
ation observed is the increase in the somatic cell count 
(SCC) derived from the proliferation and migration of 
the immune cells in the udder [2]. Subclinical mastitis is 
the most challenging form, estimated to be 15–40 times 
more frequent than its clinical counterpart [3]. It rep-
resents a significant source of infection for the animals 
within the herds leading to an essential decrease in milk 
production [4] while going unnoticed. The most common 
causative agents of mastitis, accounting for over 80% of 
the infections [5], are Escherichia coli (E. coli), Staphy-
lococcus aureus (S. aureus), Streptococcus agalactiae (S. 
agalactiae), Streptococcus uberis (S. uberis) and Strepto-
coccus dysgalactiae (S. dysgalactiae). However, in the last 
few decades, the spreading of other microorganisms, like 
microalgae of the genus Prototheca, has rapidly become 
an emerging threat for the dairy sector, mainly because 
nowadays, there is still no treatment effective towards 
this type of microorganism [6].

The different etiology of invading pathogens can trigger 
a diverse host immune response, consequently affecting 
the extent and outcome of the infection [7]. For exam-
ple, Gram-negative bacteria like E. coli usually induce 
an intense stimulation of cytokine production, leading 
to fully activating both the local and generalized host-
immune response [8, 9], Gram-positive pathogens elicit 
a weaker immune reaction with usually no systemic 
repercussion [10]. In addition, the immuno-cytofluori-
metric study conducted in subclinical mastitis induced 
naturally by S. agalactiae and Prototheca [11] highlighted 
a differential immune reaction between the two microor-
ganisms, primarily directed towards an innate response 
in the case of S. agalactiae, as opposed to the adaptive 
response triggered by Prototheca spp. Therefore, a deeper 
understanding of the pathogen-specific molecular mech-
anisms underlying the pathogenesis of mastitis and the 
induced immune response is pivotal for uncovering new 
ways of predicting the infection outcome and designing 
practical diagnostic and therapeutic tools for battling this 
costly disease.

In this context, RNA sequencing (RNA-Seq) represents 
a suitable tool for investigating the complexity of the 
host–pathogen interaction [12]. Different transcriptomic 
studies have evaluated the mammary gland [10, 12] or 

hepatic [13] response to intra-mammary infection with 
different types of pathogens in cows. However, only a few 
studies evaluated the changes in somatic milk cells (SC) 
transcriptome [14, 15] in response to subclinical intra-
mammary infection (IMI), and, more importantly, to the 
best of our knowledge, no studies are currently available 
on the investigation of milk SC transcriptomic signature 
of Prototheca spp. infection in dairy cattle. Finally, most 
of the previous transcriptomic studies were conducted 
using experimentally induced models of clinical masti-
tis [16], while less information is available on naturally 
occurring subclinical mastitis [17].

Work on identifying putative candidate genes asso-
ciated with mastitis has already been carried out in 
genome-wide association studies (GWAS) and transcrip-
tomic profiling [14, 18, 19]. However, the concordance 
among these studies could be higher, highlighting the 
difficulty in identifying reliable and reproducible bio-
markers for mastitis detection and mastitis resistance. In 
this context, integrating transcriptomic with phenomic 
information might represent the ultimate step not only 
to strengthen the information on the complexity of the 
molecular system by reinforcing complementary levels 
of knowledge but also to create more reliable prediction 
models [20].

Therefore, this study aimed to i) evaluate the milk SC 
transcriptomic signatures upon natural infection of S. 
agalactiae and Prototheca spp., ii) integrate transcrip-
tomic and phenomic information to explain better the 
complexity underlying the molecular mechanisms of 
mastitis, and identify hub variables for early mastitis 
detection and prediction and, iii) perform a meta-analy-
sis using three publicly available datasets to confirm the 
reproducibility of our results.

Methods
Animal cohort, housing, and diet
Thirty-one multiparous Holstein cows (ranging from 3 to 
7  years of age) between 98 and 448  days in milk  (DIM) 
were selected from a commercial herd of 450 lactat-
ing cows (Veneto region, Italy) regularly monitored for 
S. agalactiae and Prototheca spp. between January and 
February 2021. Herd selection was based firstly on a 
prevalence study conducted by the Istituto Zooprofilat-
tico delle Venezie (IZSVe) for the identification of the 
most common pathogen responsible for mastitis in the 
Veneto region and on ease of access to the farm location 
and the cooperation of the dairy farm owners and their 
associated veterinary practices. For successful participa-
tion in the study, we required the following criteria: (i) 
absence of clinical signs of infection; (ii) no antibiotic 
treatment or anti-inflammatory medications before 
enrollment; (iii) being multiparous and non-pregnant; 
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and (iv) having > 98  DIM. Moreover, we required that 
animals used as negative control had no previous his-
tory of mastitis. Information was collected from the herd 
management software (Dairy Comp Sata, Alta Italia Srl, 
Milan, Italy). Based on these criteria, an initial bacte-
riological screening (time 0, T0) was performed on 188 
lactating cows to identify healthy individuals and cows 
with subclinical mastitis from S. agalactiae or Prototheca 
spp. Animals with co-infection were excluded from the 
experiment. Moreover, cows with chronic mastitis cases 
(apparently healthy cows with lumps palpable in the 
udder and milk quality changes) were not enrolled. Fol-
lowing the bacteriological test results, we created three 
experimental groups from eligible animals: (i) healthy 
individuals (n = 9) with a negative bacteriological exami-
nation in all glands at T0 and time 1 (T1, two weeks after 
T0); (ii) naturally infected animals with S. agalactiae 
(n = 11) and (iii) naturally infected animals with Proto-
theca spp. (n = 11). At T1, a second bacteriological assess-
ment was made on all the animals enrolled to confirm the 
bacteriological evaluation made at T0 (Table S1).

Cows were fed a total mixed ration formulated to meet 
or exceed the requirements of mid-lactation dairy cattle, 
mainly based on corn silage, sorghum silage, and con-
centrate. Feed was delivered once a day at 8:00, and the 
amount fed was adjusted daily to allow for a minimum 
of 5% refusals. Drinking water was available in automatic 
water bowls, and cows were milked twice daily, from 2:00 
to 6:00, and from 14:00 to 18:00. Individual cow milk 
yield was recorded at each milking using herd software.

Animal health was managed by the farmers and local 
veterinarians, who intervened when needed. All cows 
were subjected to the same management practices and 
environment to ensure sample homogeneity.

Ethical statement
This study was part of the LATSAN project that aimed 
to develop innovative tools for evaluating and study-
ing mammary gland health and improving dairy cows’ 
nutritional milk quality and coagulation properties. 
The research was approved by the Ethical Animal Care 
and Use Committee (OPBA—Organismo Preposto al 
Benessere degli Animali) of the Università Cattolica del 
Sacro Cuore and by the Italian Ministry of Health (proto-
col number 510/2019-PR of 19/07/2019).

Milk sample collection
Before morning milking, ~ 150  mL of milk from all 
quarters (pool sample) was aseptically collected from 
each animal according to the National Mastitis Guide-
lines [21]. Briefly, teat ends were externally cleaned with 
commercial pre-milking disinfectant, dried with indi-
vidual towels, and then washed again with alcohol 70%. 

Composite milk of the four glands was then collected 
after discarding the first streams of foremilk from each 
quarter and stored at 4  °C before microbiological analy-
sis. Four milk aliquots (~ 50  mL) of each milk sample 
were collected and gently mixed separately into sterile 
tubes for analysis as follows: (i) microbiological analysis; 
(ii) evaluation of milk composition, SCC, and differential 
somatic cell count (DSCC) measurement; (iii) milk flow 
cytometry analysis; and (iv) RNA extraction and tran-
scriptomic analysis. All the samples were immediately 
refrigerated at 4  °C to minimize the metabolic activity 
of cells and enzymes and keep the bacteriological com-
position as stable as possible. Samples were transported 
under refrigerated conditions (4  °C) to the different 
laboratories.

Microbiological analysis
Microbiological examination of milk samples was con-
ducted at the IZSVe laboratories (Legnaro, PD, Italy). 
After reception (within 4 h after sample collection), sam-
ples were frozen and analyzed within 3 d. Pegolo et  al. 
[11] reported specifics of the microbiological analyses 
in detail. Briefly, 10 μL of every composite sample were 
inoculated in each of the following selective media: i) 
Baird Parker agar with rabbit plasma fibrinogen (BP-
RPF; Biokar Diagnostics, Beauvais, France), ii) tallium 
kristalviolette tossin agar (TKT; IZSVe internal produc-
tion), and iii) Prothoteca isolation medium (PIM; IZSVe 
internal production). Suspected colonies of S. agalac-
tiae were confirmed using the Christie–Atkins–Munch-
Peterson test [21] after 24  h of incubation. At the same 
time, Prototheca isolation medium plates were observed 
at 24, 48 and 72 h, and the wet mount method confirmed 
suspected colonies [21].

Milk composition and quality traits
Milk composition (protein, casein, lactose, fat, and urea 
content), milk conductivity (mS/cm), and milk pH anal-
ysis were carried out on fresh samples using an FT6000 
Milkoscan infrared analyzer (Foss A/S, Hillerød, Den-
mark). SCC and DSCC were measured through the Fos-
somatic 7 DC analyzer (Foss A/S).

Flow cytometry analysis
A 50-mL aliquot of each sample was immediately pro-
cessed in the Comparative Biomedicine Department 
(BCA) cell laboratory of the University of Padova (Italy) 
for flow cytometry analysis. In all cases, analyses were 
performed within 12 h after sample collection with milk 
stored at 4  ºC. The whole flow cytometry methodology 
and analysis are reported in the work of Pegolo et al. [11].

Briefly, for each sample, flow cytometry analysis was 
run in four tubes containing: 1) only cells (no antibodies; 
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used as a negative control); 2) cd4pe-cd8alexa fluor 647; 
3) cd11bfitc-cd14pe; and 4) cd45fitc-cd21pe-cd18alexa 
fluor 647. Flow cytometric analyses were performed 
using a CyFlow Space flow cytometer (Sysmex Partec 
GmbH, Norderstedt, Germany) fitted with a blue laser 
(488 nm), a red laser (635 nm) and a UV laser. The data 
were analyzed with the FlowMax software version 2.82 
(Sysmex Partec GmbH, Norderstedt, Germany). The 
morphology and complexity of the cells were evalu-
ated in an FSC vs. SSC dot plot; total white blood cells 
were identified as CD45 and CD18 positive events; pol-
ymorphonuclear cells as CD11b positive CD14 nega-
tive events; macrophages as CD11b and CD14 positive 
events; T-helper lymphocytes as CD4 positive and CD8 
negative events; T cytotoxic lymphocytes as CD8 positive 
and CD4 negative events; B lymphocytes as CD45, CD21, 
and CD18 positive events. In this study, we considered 
for the statistical analyses only animals subjected to 
RNA-seq analyses which are part of the broader cohort 
of animals previously analyzed [11].

The Kruskal Wallis and Dunn test assessed significance 
among the experimental groups for pairwise comparison 
of milk production, composition, and flow cytometry 
variables. The significance was set at P < 0.05.

RNA extraction from milk somatic cells
A 50-mL aliquot from each sample was first centri-
fuged at 2,000 × g for 10 min at 4  °C. The fat layer and 
the supernatant were discarded, and the cell pellet was 
then washed with 50  mL of PBS with ethylenediamine-
tetraacetic acid (EDTA) at 0.05  mmol/L, pH 7.2. Sam-
ples were then re-centrifuged at 1,500 × g for 10 min at 
4  °C, the supernatant discarded, and the pellet was re-
suspended in 800 μL of Trizol (Invitrogen, Carlsbad, CA, 
USA) and stored at −80 °C until the RNA extraction.

Total RNA was extracted from the Trizol reagent 
and purified using a NucleoSPin miRNA kit (Mach-
erey–Nagel, Düren, Germany), following the combined 
protocol with TRIzol lysis with small and large RNA in 
one fraction (total RNA). RNA concentration and qual-
ity were determined by Agilent 2100 Bioanalyzer (Santa 
Clara, CA, USA). Extracted RNA was stored at −80  °C 
until use.

Library preparation
The 31 RNA samples, including control (n = 9), positive 
for S. agalactiae (n = 11), and positive for Prototheca 
(n = 11), were subsequently sent on dry ice to the Nuova 
Genetica Italiana (NGI, Como, Italy) facility for library 
preparation and sequencing. MGIEasy rRNA Deple-
tion kit V1.1 (MGI Tech Co., Ltd., Shenzen, China) was 
used to remove ribosomal rRNA and maximise unique 
sequencing reads. RNA-seq libraries were then prepared 

from 500  ng of total RNA using the MGIEasy RNA 
Library Prep Set V3.1 (MGI Tech  Co., Ltd., Shenzen, 
China), according to the manufacturer’s protocol. RNA-
seq experiments were performed on a DNBSEQ-G400 
high throughput machine (MGI Tech CO., Ltd.) using a 
paired-end approach using the DNBSEQ-G400 sequenc-
ing kit (MGI TechCo., Ltd., Shenzen, China).

RNA‑seq data processing and analysis
Data pre-processing was made following the consensus 
pipeline built by Overbey et  al. [22]. First, the quality 
control of RNA sequences was assessed with the FastQC 
software (v. 0.11.9). Clean reads were obtained by remov-
ing low-quality bases and adaptors with the TrimGalore 
software (v. 0.6.4) [23]. FastQC was used again on the 
trimmed sequences to check the quality of the reads. 
MultiQC package (v.1.8) [24] was run to create summary 
statistics reports that included the sample quality con-
trol result categories from FastQC across all experiment 
samples. The sample information of clean data is shown 
in Table S2.

The paired-end clean reads were aligned against the 
Bos taurus DNA reference genome (ARS-UCD1.2) from 
the USDA’s Agricultural Research Service with the splice-
aware STAR (v.2.7.3a) [25]. The genome indexing was 
performed using ARS-UCD1.2 as the reference FASTA 
and the Ensembl gene annotation file (Bos_taurus.ARS-
UCD1.2.106.gtf.gz; http://​ftp.​ensem​bl.​org/​pub/​relea​se-​
106/​gtf/​bos_​taurus/).

We subsequently used RSEM (v.1.3.3) [26] to quan-
tify gene expression. Similar to STAR, RSEM was run in 
two distinct phases. The first phase used the reference 
genome and GTF files to prepare indexed genome files. 
The second phase used the indexed files and the mapped 
reads from STAR to assign counts to each gene.

Gene expression evaluation and differential expression 
analysis
Counts filtering, data normalization, and differential 
expression analysis were performed in R studio (R v.4.1.2, 
R studio v. 1.4.1103). Only protein-coding genes were 
considered for the analysis.

We first normalized the transcriptome count matrix 
with the sequencing depth for each sample by calculat-
ing counts per million (CPM). We filtered out genes 
expressed in less than 10 samples with CPM < 0.5 using 
the edgeR package (v. 3.36.0) [27]. Genes failing these cri-
teria were removed before the exploration and differen-
tial expression analysis.

Exploratory analysis of the expressed genes matrix 
was performed using unsupervised principal component 
analysis (PCA) and the multidimensional scaling (MDS) 
analysis after the regularized-logarithm transformation 

http://ftp.ensembl.org/pub/release-106/gtf/bos_taurus/
http://ftp.ensembl.org/pub/release-106/gtf/bos_taurus/
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(edgeR) or variance stabilizing transformation in DESeq2 
(v. 1.34.0) [28].

Differentially expressed gene (DEG) analysis was per-
formed pairwise using DESeq2 and edgeR packages: 
i) negative animals vs. S. agalactiae naturally infected 
animals; ii) uninfected subjects vs. Prototheca infected 
animals; and iii) S. agalactiae vs. Prototheca infected 
individuals. Then, the voom() function from the limma 
R package (v.3.50.0) was used to fit a generalized linear 
regression model to correct the data with the group as a 
fixed effect. The group factor and the cow dependency 
were included in the generalized linear model using the 
nbinomWaldTest() function, which estimates and tests 
the significance of regression coefficients with the fol-
lowing explicit parameter settings: betaPrior = FALSE, 
maxit = 5,000, useOptim = TRUE, useT = FALSE, 
useQR = TRUE, minmu = 0.5. The P-values were adjusted 
for multiple testing using the Benjamini and Hochberg 
procedure (FDR, false discovery rate).

Only DEGs with an adjusted P-value < 0.05 and shared 
between DESeq2 and edgeR approaches were used for 
the downstream pathway analysis.

Functional pathway analysis
The shared list of DEGs for each comparison was fed to 
the Cytoscape (v. 3.9.1, http://​cytos​cape.​org) ClueGo 
plugin (v. 2.5.8) [29] software to identify relevant bio-
logical processes and immune systems networks. A 
minimum of 10 genes were needed to be associated 
with a term. These genes would represent at least 4% of 
the total number of related genes. Only pathways with 
a P-value < 0.05 (Bonferroni step-down correction) 
were retained. Results were illustrated as a functionally 
grouped network of terms, having the most significant 
one as a leading term. The edges that show term-to-term 
interactions were obtained using a Kappa score of 0.4.

Then, coupled with DEG-driven approaches, we used 
the pathifier algorithm from the pathifier R package 
(v.1.32.0) [30], which by transforming the whole tran-
scriptome expression data into pathway-level informa-
tion, infers the pathway deregulation scores by measuring 
how much the gene expression of a sample deviates from 
normal behavior. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) annotation was used, and the quan-
tify_pathway_deregulation() function was used to quan-
tify the deregulation scores. Euclidean distance was used 
to calculate samples’ distances, then visualized using the 
Ward.D2 clustering method in a heatmap.

Phenomics: complementary data integration approaches
A global non-metric multidimensional scaling (NMDS) 
ordination was used to extract, visualize and summa-
rize the variation in the transcriptome (the “response 

variable”) using the vegan R package (v.2.5.7) [31]. 
Stress values were calculated to determine the num-
ber of dimensions for each NMDS. Stress values meas-
ure how much the distances in the reduced ordination 
space depart from those in the original p-dimensional 
space. High-stress values indicate a greater possibility 
that structuring observations in the ordination space is 
entirely unrelated to the actual full-dimensional space. 
Then, the explanatory variables related to milk composi-
tion and quality traits, cytometry cell profiles, and host 
morphometric parameters were fitted to the ordination 
plots using the envfit() function in the vegan R pack-
age [32] with 10,000 permutations. The envfit() function 
performs multivariate analysis of variance (MANOVA) 
and linear correlations for categorical and continuous 
variables. The effect size and significance of each covari-
ate were determined by comparing the difference in the 
centroids of each group relative to the total variation, 
and all P-values derived from the envfit() function were 
Benjamini–Hochberg adjusted. The obtained r2 gives the 
proportion of variability (that is, the main dimensions of 
the ordination) that can be attributed to the explanatory 
variables.

As a second integrative approach, the N-integration 
algorithm DIABLO (Data Integration Analysis for Bio-
marker discovery using Latent Components) of the mix-
Omics R package [33] (http://​mixom​ics.​org/, v. 6.18.1) 
was used. We combined host-centered transcriptomics 
with phenomics data to achieve this integrated perspec-
tive, coined holo-omics [34]. It is to be noted that, in the 
case of the N-integration algorithm DIABLO, the vari-
ables of all the data sets were also centered and scaled to 
unit variance before integration. In this case, the relation-
ships among all data sets were studied by adding a dif-
ferent categorical variable, e.g., the infection status of 
cows. Healthy cows (n = 9) were compared to infected 
individuals (n = 22). DIABLO seeks to estimate latent 
components by modeling and maximizing the correla-
tion between pairs of pre-specified datasets to unravel 
similar functional relationships [35]. The model was 
first fine-tuned using leave-one-out cross-validation by 
splitting the data into training and testing. Then, classi-
fication error rates were calculated using balanced error 
rates (BERs) between the predicted latent variables and 
the class labels’ centroid. Only interactions with |r| ≥ 0.80 
were visualized using CIRCOS.

Identification and validation of hub variables
To visualize the high-confidence variable co-associations, 
only those with |r| ≥ 0.90 and more than 15 connections 
were automatically visualized using the organic layout 
algorithm in Cytoscape (version 3.9.1). The Molecu-
lar Complex Detection (MCODE) Cytoscape plug-in 

http://cytoscape.org
http://mixomics.org/


Page 6 of 19Bisutti et al. Journal of Animal Science and Biotechnology           (2023) 14:93 

(version 2.01, [36]) was adopted to detect densely con-
nected modules within the interaction network. MCODE 
scores ≥ 3 were set as a cut-off criterion with default 
parameters.

Finally, cytoHubba (version 0.1) [37], a Cytoscape plug-
in, was used to explore the network modules for identify-
ing hub genes, defined as genes having high correlation in 
candidate modules. The top 20 variables were identified 
and ranked using the Maximal Clique Centrality (MCC) 
method.

To validate the abovementioned hub genes as putative 
markers for mastitis infection, we performed the receiver 
operating characteristics (ROC) and precision-recall 
analyses using the R package pROC (v. 1.18.0) package to 
quantify the infection status predictive power of hallmark 
variables.

The meta‑analysis cohort
To confirm the reproducibility of our prediction results 
in healthy and infected individuals, studies on the tran-
scriptome of the milk somatic cell in dairy cows with 
high-throughput RNA sequence data in.fastq format 
deposited in publicly accessible databases and available 
metadata were retrieved.

We obtained 81 somatic cell transcriptomic samples 
from three independently published studies as an orthog-
onal dataset. The three studies were labeled as Seo [38], 
Asselstine [14], and Niedziela [15]. Data included acute 
and subclinical infection regarding both naturally and 
experimentally infected animals. Raw sequence data and 
metadata from the Seo study were available at GSE60575 
in the GEO database. In contrast, Asselstine study raw 
fastq files and metadata were retrieved from the NCBI 
under PRJNA544129 Bioproject accession number. Raw 
fastq files and metadata of the Niedziela study were avail-
able in the European Nucleotide Archive (ENA) reposi-
tory with the project number PRJEB43443. The published 
data was pre-processed and annotated as described 
above. In this validation set, “healthy” subjects were 
defined as those reported as not being infected in the 
original research; alternatively, “mastitis” subjects were 
defined as those diagnosed with mastitis infection either 
by the California Mastitis Test [14] or after 24 h from the 
disease onset with two different strains of Staphylococcus 
aureus [15].

Ten-fold cross-validation sparse Partial Least Squares 
Discriminant Analysis (sPLS-DA) was employed to eval-
uate the prediction model’s performance and validate the 
essential genes responsible for the differences between 
groups using the mixOmics R package. The DESeq2 R 
package quantified differences between groups’ relative 
gene abundance.

Results
Animals and data
The 31 Holstein cows enrolled in this study were, on 
average, 4 years of age. The mean DIM at enrollment for 
all dairy cattle was 235  d, and the mean parity was 2.5, 
ranging from 2 to 5.

The average milk yield was 26.97 (± 9.01) kg/d. 
Milk had 2.19 ± 0.74% of fat, 3.49 ± 0.29% of protein, 
2.73 ± 0.27% of casein, and 4.51 ± 0.44% of lactose. Milk 
pH and conductivity were 6.46 ± 0.08 and 9.94 ± 1.30 mS/
cm, respectively (Table S1). A schematic summary of 
the experimental design and the conducted analyses is 
reported in Fig. 1.

S. agalactiae and Prototheca infections induced milk 
quality changes and divergent infiltration of immune cells
S. agalactiae and Prototheca infections were not accom-
panied by any clinical sign (e.g., udder swelling, redness, 
udder pain) or systemic reaction, but a significant drop 
in milk production (P < 0.05) compared to their unin-
fected counterparts (Fig. S1a). However, in contrast to 
the bacterial pathogen, Prototheca infection affected 
the milk quality more by reducing the lactose content 
(P < 0.05; Fig. S1b) and casein index (P < 0.05; Fig. S1c). 
Additionally, algal infection increased milk conductiv-
ity (P < 0.05; Fig. S1d), mirroring possible changes in 
the blood-milk barrier permeability. The milk protein, 
casein, and fat proportions were similar between groups 
(Fig. S1e–g) and urea concentration and milk pH (Fig. 
S1h and i). Both types of pathogens, however, increased 
the amounts of somatic cells (SC, P < 0.001; Fig. S2a) 
and the combined ratio of neutrophils and lympho-
cytes to total SCC (DSCC) compared to healthy animals 
(P < 0.05; Fig. S2b), reflecting the inflammatory status of 
the mammary gland. Although both pathogens increased 
the total leucocyte population (P < 0.001, Fig. S2c), the 
immunological cell content differed between S. agalac-
tiae and Prototheca pathogens, evoking distinctly differ-
ent immune responses to both pathogens. For instance, 
exposure to S. agalactiae primarily triggered the recruit-
ment of nearby macrophages that increased more than 
1.55-fold than the healthy animals. In contrast, Proto-
theca decreased macrophage populations by 20% (Fig. 
S2d) and sharply increased T helper cells (+ 73%), T killer 
cells (+ 110%), and B cells (+ 30%) compared to S. agalac-
tiae (Fig. S2 e–g). No significant differences were found 
among the three experimental groups for PMN cells (Fig. 
S2h), even if their proportion was slightly higher in the S. 
agalactiae-induced mastitis. Importantly, we found large 
variability of immune cell contents among individuals 
within each group, as assessed by the principal compo-
nent analysis (PCA) visualization (Fig. S2i).
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Somatic cell transcriptome changes upon Prototheca spp. 
and S. agalactiae infections
A total of seven billion paired-end reads were obtained 
from the somatic cells of 31 dairy cows (9 healthy and 22 
naturally infected subjects), corresponding to an aver-
age of 119 M ± 49.8 M per sample. After quality filtering, 
88.84% of high-quality paired reads were mapped, on 
average, to the bovine reference genome ARS-UCD1.2 
and aligned with 27,607 unique genes. After filtering 
for genes with CPM > 0.5 in at least two samples, we 
obtained 14,564 abundant genes, henceforth referred to 
as expressed genes, corresponding to ~ 53% of the tran-
scriptome (Table S3).

The generalized PCA showed that the expression of 
genes varied according to the infection status, separat-
ing infected and uninfected individuals (generalized PCA 
axis 1: 22%; Fig. 2a). Altogether, transcriptome signatures 
fell into different S. agalactiae, Prototheca, and control 
response patterns, except for two S. agalactiae and one 
Prototheca spp. samples that grouped with healthy ones. 
Besides pathogen infection, we determined to what extent 
differences in host-associated variables could further 
explain the observed patterns of transcriptional variation. 
Using NMDS ordinations (Fig.  2b) for visualizing the 
structure of gene expression (ordination stress = 12.36%, 
k = 2, non-metric fit r2 = 0.985, linear fit r2 = 0.932), the 
principal contributors explaining the total variance of the 
transcriptome were flow cytometry variables, including 

leucocytes (envfit, r2 = 0.5329, P < 0.001), T-helper 
(envfit, r2 = 0.4167, P < 0.001), T-killer (envfit, r2 = 0.3999, 
P < 0.001) cells, and PMN (envfit, r2 = 0.3512, P < 0.01), 
together with udder health parameters, such as DSCC 
(envfit, r2 = 0.4456, P < 0.001) and SCC (envfit, r2 = 0.4456, 
P < 0.001), and milk yield (envfit, r2 = 0.3569, P < 0.01) 
(Fig.  2c). Macrophages, lactose, casein index, pH, and 
conductivity also accounted for the transcriptome varia-
tion, albeit of lesser significance.

A total of 1,682 DEGs were detected in Prototheca-
infected animals (671 downregulated, 1,011 upregulated; 
P < 0.05) compared to the healthy controls, and these 
differences were even more significant for the S. aga-
lactiae-infected group (n = 2,427 DEGs; 890 down- and 
1,537 up-regulated; P < 0.05). DEG lists shared significant 
similarities between the two types of pathogens, as 40% 
of Prototheca’s DEGs were also expressed in the S. aga-
lactiae group. When comparing S. agalactiae with Proto-
theca infections, 974 genes were differentially expressed 
(378 under and 596 over-expressed genes; P < 0.05). The 
list of all the DEGs belonging to each comparison is 
reported in Table S4. To gain insights into the biological 
and immune processes in response to the type of infec-
tion, we performed a functional enrichment analysis of 
the differentially up and downregulated genes.

Following Prototheca infection, 33% of DEGs were 
involved in immune system response (n = 228), antigen 
processing (n = 41), and response to other organisms’ 

Fig. 1  A schematic flow chart of the experimental design
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invasion (n = 293) (Fig.  3a). Immune activation involved 
pathways related to innate response, such as toll-like 
receptors (TLR9) and pro-inflammatory molecules 
like IL-15, IL-17A, and IL-17F and adaptive immune 
response. The adaptive immune response mainly guided 
the defense line against Prototheca through the activation 
of class II MHC molecules (BoLA-DMA, BoLA-DMB, 
BoLA-DOA, BoLA-DOB, BoLA-DRA, BoLA-DRB3), 
stimulation of IFN-γ and IL4I1 (interleukin 4 induced 
1), and proliferation of lymphocytes (n = 86 genes). The 
induction of CD48 and CD80 promoted T cell activation 
following Prototheca infection. At the same time, B lym-
phocyte upregulation was conducted by B lymphocyte 
differentiation (IKZF3) and B-cells response to antigens 
(POU2AF1).

In the context of S. agalactiae infection, the innate 
immune cells development and differentiation (n = 137) 
appeared as the first line of defense against the disease, 
coupled with a reduction of mitochondrial energy metab-
olism (n = 526, 21% of DEGs), that is, depletion of the 
TCA (n = 83), oxoacid (n = 266), and carbohydrate deriv-
ative metabolic processes (n = 177) (Fig. 3b). At a closer 
look, the immune response to S. agalactiae infection 
seemed to be led by Notch receptor 1 (NOTCH1), NF-κB 
signaling pathway, and pattern recognition receptors 
(PRR) like TLR9 and NOD2. Other pathways involved in 

cell–cell adhesion (SELL, CD274, BOLA-DRA, CSF3R), 
pro-inflammatory chemokines, and cytokine secretion 
(IL-17A, IL-17F, OSM, LTA, LTB) and activation of the 
complement system C3 mediated were also enriched. 
Additionally, S. agalactiae modulated the expression of 
myeloid-derived suppressor cells (MDSCs) by activating 
the transcription factor STAT3. Despite the high number 
of differentially expressed genes in comparing the two 
pathogen infections (S. agalactiae vs. Prototheca; Table 
S4), no differential enriched pathways resulted from the 
analysis.

Last, we sought to support further that S. agalactiae 
and Prototheca triggered different immune responses 
using Pathifier. Through this algorithm, we identified 
69 KEGG pathways with Pathway Deregulation Scores 
(PDS) significantly associated with the two types of infec-
tion compared to healthy individuals (Fig.  3c). Notably, 
the peroxisome proliferator-activated receptor (PPAR) 
pathway, an essential modulator of the immune response, 
was firmly (more than twofold) deregulated in S. agalac-
tiae-infected animals compared to healthy counterparts. 
Additionally, NK cells mediated cytotoxicity path, which 
can be considered a more innate defense, was almost two 
times more deregulated in the S. agalactiae infection 
concerning the healthy animals. The energy-related paths 
(e.g., TCA cycle, carbohydrate metabolism, oxidative 

Fig. 2  Plots of samples spatial separation. a Principal component analysis (PCA) of the 14,564 expressed genes; b Non-metric multidimensional 
scaling (NMDS) for the visualization of the variation of the 14,564 expressed genes according to the phenotypic traits; c The principal contributors 
explaining the total variance of the transcriptome. Dim1: dimension 1; Dim2: dimension 2; DSCC: differential somatic cell count; SCC: somatic cell 
count; prod: milk yield (kg/d)

Fig. 3  Pathway analysis of the differentially expressed genes in milk somatic cells. a ClueGO functionally grouped network of up and 
downregulated genes within the healthy and Prototheca’s infected cows. b ClueGO functionally grouped network of up and downregulated genes 
within the healthy and S. agalactiae’s infected cows. Terms are represented as nodes linked according to a kappa score ≥ 0.4. The node size means 
the term enrichment significance. Functionally related groups partially overlap. c Heatmap built on the pathway deregulation scores (PDSs) of the 
whole transcriptomic data of healthy, Prototheca’s, and S. agalactiae’s infected animals. Each row corresponds to a pathway, and each column to a 
sample. Blue corresponds to “no deregulation”, and yellow to high deregulation

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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phosphorylation) in the S. agalactiae infection resulted 
in twofold deregulation compared to the healthy animals. 
At the same time, no significant alterations were detected 
for Prototheca’s infected animals.

Specific alteration in Prothotheca’s PDS involved a clear 
focal adhesion path, almost threefold lower than healthy 
animals and more than twofold lower than S. agalactiae. 
Conversely, the adherens junction path was specifically 
deregulated in S. agalactiae infection. Both disorders’ 
pathways involving extracellular matrix receptor inter-
action (ECM) and gap junction were mildly deregulated. 
A closer look at the immune paths showed that both 
infections displayed strong PDS concerning the NF-κB 
signaling pathway. Despite it, the S. agalactiae infection 
showed the most diverging scores, especially when con-
sidering innate response-related functions such as leuco-
cyte migration, endocytosis, and neutrophil extracellular 
trap formation. Interestingly, PDS concerning Th17 cell 
differentiation and B cell receptor signaling, pathways 
more explicit for the adaptive immune response, were 
significantly deregulated (more than twofold) in Proto-
theca-infected animals, even if a modest alteration was 
also observed in S. aglactiae infection.

A set of core mastitis‑response genes
Even if there were differences in intensity between the 
pathways regulated by the two microorganisms, the core 
immune transcriptome did not seem to respond so dif-
ferently. For this reason, beyond the type of pathogen, we 
identified 1,954 DEGs in response to mastitis, of which 
1,289 were under-expressed and 665 were over-expressed 
in infected individuals compared to healthy ones. Among 
them, 681 DEGs were commonly shared with the patho-
gen-specific DEGs lists. These were considered the core 
mastitis-response genes (Table S4). Enzymes make up 
the most significant gene function category (67%), out-
ranking transcription factors (TF, 8.8%), transporters 
(6.7%), transmembrane receptors (4.4%), kinases (3.8%), 
and G-protein coupled receptors (2.5%). Around 9.8% 
of genes were unannotated. Two hundred twenty-nine 
genes were highly expressed in infected samples. The 
functional analysis showed that roughly 23% of these 
genes (n = 156) were directly involved in activating and 
regulating the immune response. In contrast, 69 genes 
were associated explicitly with catabolic and oxidative 
pathways (Fig. S3). Interestingly, inflammasome activa-
tion and regulation were enriched upon encountering a 
pathogenic agent (e.g., NLRC5, TLR9, GBP5, PLCG2) and 
the mitochondrial-related genes (n = 80; hypergeometric 
test, an adjusted P-value of 5.29 × 10–5). Moreover, we 
found the downregulation of pathways involved in the 
lipid metabolism and synthesis of de-novo fatty acids 
(FASN, ACACA​).

Integration of core mastitis‑response genes and phenomic 
data
Using DIABLO, we observed the strongest covaria-
tion between the core mastitis genes and the immune 
cells populations (IS) (r2 = 0.72), followed by the udder 
health (UH) (r2 = 0.64) and milk quality (MQ) parameters 
(r2 = 0.64; Fig.  4a). No important covariation was found 
between the core mastitis response genes and the host 
variables (e.g., parity and DIM; r2 = 0.33). Concomitantly, 
the immune cells co-varied with the udder health-related 
variables (r2 = 0.64). Then, to add biological meaning to 
the predicted model, we investigated the relationship 
between the DIABLO-selected features with the high-
est covariation. The first latent variable of the immune 
cells data set supported induction of the immune system 
response in mastitis cows, with increased infiltrations of 
leucocytes and T-killer cells, and to less extent, PMN, 
T-helper cells, macrophages, and B cells (Fig. 4b). Paired 
with these immune-related cells, the first latent vari-
able for the udder health parameters pointed at higher 
levels of DSCC, SCC, and milk conductivity upon mas-
titis but lower casein index, lactose, and pH (Fig.  4c). 
Regarding the genes selected, the first latent variable of 
the expected model indicated that subjects with mastitis 
overexpressed the prostate androgen-regulated mucin-
like protein 1 (PARM1) gene. Moreover, in infected ani-
mals, we observed the induction of genes involved in 
the transcription of class II MHC molecules (CIITA), 
cell proliferation and apoptosis (SAMD9), and adhesion 
and diapedesis of granulocytes (SELPLG) (Fig. 4d). Con-
versely, healthy subjects were primarily defined by genes 
related to molecules transportation and transmembrane 
proteins (LAPTM4A, ANO10, GNA11).

Identification of mastitis hub variables
The co-association of gene expression and phenomic data 
obtained from CIRCOS (Fig.  4e) resulted in a network 
construction consisting of 116 interactors (nodes) and 
4,430 interactions (edges). This network was further ana-
lyzed using the Molecular Complex Detection (MCODE) 
Cytoscape plug-in, which identified four densely con-
nected modules. The two most significant modules 
showed MCODE scores of 54.732 and 6.667, respectively. 
Seven variables (AGFG1, CEMIP2, ITGB7, RRAD, Urea, 
T killer cells, and leucocytes) were not assigned to any 
module (Fig. S4).

Lastly, with cytoHubba, we identified the top 20 hub 
variables, which are displayed in Fig.  5 and ordered 
as follows according to the MCC ranking method: 
milk conductivity, lactose, P2RY6, SPTBN5, BoLA-
DOA, ENSBTAG00000053850, CIITA, GNA11, ENS-
BTAG0000003367, casein index, ENSBTAG0000003408, 
HIP1, CLMN, RESEF, EFHD1, LAPTM4A1, FCRL5, milk 
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yield, PAH, ELF5 (Full MCC ranking in Table S5). The 
genes that were commonly shared by both DIABLO and 
cytoHubba (P2RY6, SPTBN5, BoLA-DOA, CIITA, GNA11, 
ENSBTAG0000003367, ENSBTAG0000003408, HIP1, 
LAPTM4A, FCRL5) were then submitted to a ROC analy-
sis resulted in having excellent prediction performances in 
terms of discriminating healthy and mastitis animals with 
sensitivity > 0.89, specificity > 0.81, accuracy > 0.87 and 
precision > 0.69. The detailed predictive performances of 
the hub genes are presented in Table S6.

Meta‑analysis of subclinical mastitis
To validate the core mastitis response genes, we addition-
ally gather publicly available somatic cell transcriptome 

RNA-seq datasets (n = 81) derived from three independ-
ent studies in dairy cows: i) pooled milk sampled from 
12 healthy cows [38], ii) quarter samples from 6 cows 
(n = 12) [14], and iii) 14 cows sampled at five different 
times (n = 48) [15]. As with the study cohort, the tran-
scriptome profiles could be distinguished based on the 
infection status (Fig. 6a), with higher transcriptome dis-
persion in infected individuals. The first principal com-
ponent accounted for 51% of the total variance, and the 
first two accounted for 74%. Consistent with the training 
set, many genes (n = 7,226) were differentially expressed 
between the healthy and infected individuals, including 
3,912 up- and 3,314 down-regulated. We then intersected 
the list of core mastitis-response genes and the list of 

Fig. 4  Integration of transcriptomic and phenomic information using the DIABLO approach. a Correlation plot among the different sets of 
categories; b–d The loading plots of flow cytometry immune cells (b) udder health traits (c) and differentially expressed genes (DEGs) (d). Pink and 
light blue bars represent healthy animals and cows with subclinical intramammary infection (sIMI), respectively. The negative values of the loading 
weights (light blue bars) signify that the corresponding variables had higher expression/value in infected animals. The positive values (pink bars) 
mean that related variables had higher expression/values in healthy animals. e Circos plot showing the correlation between candidate variables. 
MQ: milk quality, IS: immune system, UH: udder health
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DEGs from these published datasets (Fig. 6b). We found 
that 53% of these core-mastitis response genes were DEG 
in the validation set, strengthening the shared transcrip-
tional response to infection, independently on the path-
ogen, regional, and other potential differences, such as 
diet, medication, energy expenditure, age, and DIM of 
the dairy cows.

To further assess the feasibility of the previously 
selected hub genes for discriminating healthy and 
infected animals, we re-performed a ROC analysis on the 
unified training-validation dataset (n = 112). The class II 
transactivator (CIITA) had the best prediction perfor-
mances, having sensitivity, specificity, and accuracy > 0.7 
and precision equal to 0.8.

Fig. 5  Cytohubba top 20 hub variables according to the maximal clique centrality method (MCC). Higher ranking is represented by a redder color

Fig. 6  The meta-analysis. a Principal component analysis (PCA) of the present dataset and the ones downloaded from public repositories on milk 
somatic cell transcriptome. b Venn diagram of differentially expressed genes (DEGs) among the different experimental comparisons (Prototheca vs. 
healthy, S. agalactiae vs. healthy, mastitis vs. healthy, mastitis vs. healthy external data set). 1: transcriptomic data from the work of Seo et al. [38]; 2: 
transcriptomic data from the work of Asselstine et al. [14]; 3: transcriptomic data from the work of Niedziela et al. [15]; 4: transcriptomic data from 
the present dataset
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Discussion
Somatic cells are released in milk as the first line of 
defense against mammary infections, and they are 
widely applied as an indicator for mastitis screening and 
detection. Moreover, their expression signatures fit suit-
ably for performing mastitis mammary-gland-specific 
studies and monitoring the pathogen-specific molecular 
response.

To the best of our knowledge, this is the first study 
on the milk somatic cell transcriptome variations in 
response to the infection of two pathogens: S. agalac-
tiae, a Gram-positive bacterium, and Prototheca spp., a 
microscopic alga. Prototheca’s molecular mechanism of 
action is still poorly understood and has only recently 
been recognized as a non-negligible mastitis agent, with 
an estimated 11.2% prevalence on Italian territory [6]. 
In addition, for the first time, we integrated somatic cell 
transcriptome data with a wide range of phenotypic traits 
in a joint analysis to identify hub variables affected by 
subclinical intramammary infection in dairy cattle.

We tried to minimize any possible source of varia-
tion that might modify the transcriptional response by 
excluding primiparous cows and animals during their 
periparturient period. In fact, in early lactating cows, the 
decreased feed intake and the increased energy demand 
often result in an energy-negative balance condition 
[39], which can also affect the proper activation of the 
immune cell’s metabolism in response to pathogens’ 
invasion [40].

In terms of production performances, the significant 
drop in milk yield in the infected animals (regardless of 
the pathogen) was in line with what was observed by 
previous studies conducted on subclinical mastitis [41]. 
Instead, the most quality-impaired milk was the one 
from Prototheca infection. Pegolo et  al. [42] reported 
similar results on a broader cohort of animals affected by 
subclinical IMI from four pathogens: S. aureus, S. aga-
lactiae, S. uberis, and Prototheca spp. Both pathogens 
significantly increased milk SCC compared to the nega-
tive control samples but resulted in different leucocyte 
proportions. Exposure to S. agalactiae primarily trig-
gered an innate immune response by recruiting nearby 
macrophages at the site of infection. At the same time, 
Prototheca seemed to show resistance to the phagoso-
mal defense mechanism and a more adaptive-driven 
response through the crucial role of T-cells. Even though 
the diverse leucocyte profile suggests a different immune 
response, the large variability of the immune cells 
assessed by the PCA (Fig. S2i) evokes that beyond infec-
tion and protection, immune cell patterns could also be 
driven by a range of genetic and non-genetic factors such 
as the inflammation stage as well as individual environ-
mental exposures.

SC transcriptome response upon S. agalactiae 
and Prototheca infection
To further dissect these phenotypic phenomena, the 
RNAseq approach was applied. Antigen-presenting and 
processing was a critical pathway enriched in Proto-
theca spp. infected samples, suggesting that the adaptive 
immune response was mainly guided by the activation 
of MHC class II molecules. The bovine MHC genes are 
called the bovine lymphocyte antigen (BoLA) [43]. Spe-
cifically, class II is expressed on antigen-presenting cells 
and activates CD4+ T cells, resulting in the coordination 
and regulation of effector cells [44].

S. agalactiae was found to modulate the expression of 
MDSCs, a heterogeneous subset of immature monocytes 
and granulocytes, by activating STAT3, which stimu-
lates myelopoiesis, inhibiting myeloid-cell differentiation 
[45]. Interestingly, the infection of S. agalactiae induced 
a down-regulation of mitochondrial energy related-
pathways like the TCA cycle, oxoacid, and carbohydrate 
derivative metabolic processes, which might be partially 
linked to the relationship existing between macrophages 
and mitochondria. With the onset of inflammation, mac-
rophages activate, showing a proinflammatory profile 
metabolically characterized by an increased glycolysis 
and lactate production [46]. In contrast, even in the pres-
ence of oxygen, mitochondrial oxidative phosphorylation 
(OXPHOS) is reduced in pro-inflammatory macrophages 
(the so-called Warburg effect), presumably as an effect of 
the tricarboxylic acid (TCA) cycle fragmentation [47].

Finally, using the Pathifier algorithm, we identified 69 
KEGG pathways which explained the differential gene 
expression profile in the two types of infection for the 
negative control. In line with our previous findings, we 
observed the significant deregulation in the TCA cycle, 
carbohydrate metabolism, oxidative phosphorylation 
pathways as well as the peroxisome proliferator-activated 
receptor (PPAR), which is an essential modulator of the 
immune response tightly linked to mitochondrial metab-
olism [48], confirmed the role of mitochondria as major 
hubs in inflammatory and immune response carried out 
by S. agalactiae.

Pathways involving ECM, focal adhesion, and gap junc-
tion, which comprehend the group of genes involved in 
the communication and integrity of the epithelial cells 
[49], were mildly deregulated in both infections, con-
firming transcriptomic and iTRAQ-proteomics patterns 
on Chinese Holstein cows challenged with S. agalactiae 
via nipple tube perfusion [50]. Altered gene expression 
within these pathways might be related to the reorganiza-
tion of the actin cytoskeleton, which may represent one 
way of reducing tissue damage caused by invading patho-
gens. Our previous functional analysis supported these 
findings in which we found some integrin family coding 



Page 14 of 19Bisutti et al. Journal of Animal Science and Biotechnology           (2023) 14:93 

genes. In S. agalactiae-positive samples, we found ITGA5 
upregulated, similar to the work of Niedziela et al. [15]. 
This gene encodes the light and heavy chains that create 
the α5 subunit, which, by associating with the β1 subunit, 
form the receptors for fibronectin and fibrinogen. These 
two glycoproteins are essential mediators of the patho-
gen adhesion [51]. Their abundance increased in the 
work of Mudaliar et al. [52], where a label-free proteomic 
approach analyzed the changes in the protein profile of 
milk whey in a cohort of animals experimentally infected 
by S. uberis. In Prototheca infection, we found instead 
ITGA9, which encodes integrin subunit β7, necessary for 
the leukocyte adhesion [53].

Moreover, PDS concerning Th17 cell differentiation 
and B cell receptor signaling, pathways more specific for 
the adaptive immune response, were significantly deregu-
lated in Prototheca-infected animals, even if a modest 
alteration was observed in S. agalactiae infection.

It is crucial to notice that with this approach, we also 
found significant differences in PDS within samples 
belonging to the same group. This is partially linked to 
the fact that we did not have the species identification for 
Prototheca or the strain identification for S. agalactiae, 
which led to divergent responses. Secondly, as we worked 
on naturally occurring mastitis, we could have had differ-
ent stages of inflammation in our samples.

Common transcriptomic signature of subclinical 
intramammary infection
Despite some differences in the DEGs expression within 
the activation of the immune system pathways, we did 
not find extreme differences in the two microorganisms’ 
transcriptomic profiles, despite the great phylogenetic 
distance between them. This was further confirmed by 
the enrichment analysis comparing the DEGs among the 
two pathogens that did not produce significant pathways. 
It is, however, important to remember that S. agalac-
tiae and Prototheca are known to induce a weak immune 
reaction compared to Gram-negative bacteria like E. coli, 
which results in subclinical mastitis with usually no sys-
temic repercussions [10]. Both pathogens can put in place 
mechanisms of immune evasion that might explain a more 
moderate inflammatory response. Indeed, in S. agalactiae, 
synthetase proteins such as FbsA and FbsB are involved in 
fibrinogen binding that can decrease the risk of opsoniza-
tion by phagocytic cells. Moreover, the production of the 
serine protease CspA allows this pathogen to further evade 
the immune response by cleaving specific chemokines 
responsible for the neutrophil recruitment [54]. Prototheca, 
conversely, seems to be able to form a biofilm which could 
be implicated in its pathogenicity, partial immune invasion 
[11], and ability to persist in the environment [55].

Regardless of the pathogen, we identified several highly 
expressed genes in animal samples with subclinical 
IMI. This suggests these “core mastitis-response genes” 
may represent a typical infection signature and pro-
vide a potential therapeutic window for mastitis drug 
development.

Pathway analysis conducted on the 681 core-masti-
tis response genes (the ones commonly shared by the 
two infections) identified that most upregulated path-
ways were related to the activation of innate and adap-
tive immune system processes. Interestingly, among the 
expressed ILs, the significant upregulation of IL-17A 
and IL-17F might be specifically linked to the so-called 
“type 3” immunity, which encompasses innate and adap-
tive immune response and is characterized both by the 
recruitment of neutrophils and the stimulation of epithe-
lial antimicrobial defenses at the sites of infection [56]. 
Overexpression of IL-17A and IL-17F encoding genes was 
also observed in the mammary gland of cows infected 
with E. coli [57] and in goats infected by S. aureus [58]. In 
contrast, the downregulated ones involved oxoacid meta-
bolic processes. These biological processes were com-
monly shared with the work of Asselstine et al. [14], one 
of the few published papers that characterized the milk 
somatic cell transcriptome in Holstein cows. In addi-
tion, they found several unspecific Gene Ontology (GO) 
terms, which might be explained by the fact that genes 
expressing alternative transcripts might have been asso-
ciated with a heterogeneous role in biological functions 
[59].

NLRC5, TLR9, GBP5, and PLG2 were highly enriched 
upon encountering the pathogenic agents. These genes 
are well-known to have a pivotal role in the activation 
of NLRP3 (NLR family PYD containing 3), which is con-
sidered one of the essential activators and synergic com-
ponents of the inflammasome [60] which, in turn, are a 
class of molecules assembled by the PRRs which are well 
known to play an important role in innate immunity 
through the stimulation of pro-inflammatory cytokines 
and pyroptosis [61]. Moreover, the identification of sev-
eral mitochondrial-related DEGs was consistent with the 
hypothesis that mitochondria activity may be regulated 
by subclinical intramammary infection.

Within the pathway involved in the fatty acid meta-
bolic process, we found several lipogenic genes (FASN, 
ACACA​) that were downregulated. The decreased 
expression of these genes in animals with mastitis com-
pared with negative control was also observed in the 
work of Moyes et  al. [62] and Huma et  al. [63] might 
probably be related to the fact that with the onset of 
inflammation, the energy demand needed to produce 
new fatty acids is too high [64].
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Interestingly, the most under-expressed gene was the 
SLC34A2, according to what was observed by Asselstine 
et al. [14]. SLC34A2 encodes the solute carrier family 34 
members 2, a sodium-dependent phosphate transporter, 
which was upregulated in disease-resistant cows [65]. It 
is therefore considered a putative biomarker for selecting 
disease resistance in dairy cattle.

Identification of hub variables for subclinical 
intramammary infection
Among the candidate DE genes identified by DIABLO, 
the class II transactivator (CIITA) had one of the highest 
loading scores and was significantly upregulated in mas-
titis animals. CIITA has been recognized as one of the 
master regulators in the gene expression of MHC. More-
over, it is involved in the transcription graduation of over 
60 immunologically essential genes, including interleukin 
4 (IL-4) and IL-10 [66]. CIITA was found to be a critical 
regulator of the immune response of Cynoglossus semi-
laevis towards the infection of Vibrio harvey, suggesting 
its putative involvement also in the molecular inflam-
matory process of mastitis. Interestingly, it was also pro-
posed as one of the most important candidate genes for 
bovine paratuberculosis tolerance in the GWAS study 
conducted by Canive et al. [67]

All the immune-cells variables selected by DIABLO were 
positively associated with mastitis, with total leucocytes 
having the highest loading score. It is already widely estab-
lished for milk quality traits that SCC, and more recently 
DSCC, represent the most critical and easy-to-use indicator 
for identifying inflammation at the udder level [68, 69].

Moreover, lactose and casein index proportion are 
two traits that are highly influenced by inflammatory 
processes. The reduction in lactose proportion associ-
ated with clinical and subclinical mastitis is related to 
the reduced secretory activity of the mammary epi-
thelial cells and an increase in the permeability of the 
mammary epithelium due to tight junction impairment 
[70]. The casein index reduction upon IMI is related to 
the increased proteolytic activity due to both endog-
enous and bacterial proteases that particularly damage 
the casein fractions [71, 72]. Casein index and lactose 
content represent a useful additional tool for discrimi-
nating against healthy/infected animals.

Among the phenotypic indicators identified by the 
integrated DIABLO-cytohubba approach, milk conduc-
tivity, and lactose were the ones showing the highest 
ranking. In fact, during the inflammation of the mam-
mary gland, the osmotic balance is maintained through 
the increase in Na+ and Cl−, which are responsible for 
the rise in milk electrical conductivity [73]. In this con-
text, a study by Ebrahimie et al. [74] on Holstein cows 

identified milk lactose and conductivity, together with 
SCC, as the most reliable indicators for the detection of 
subclinical mastitis. Moreover, also a recent work con-
ducted by Antanaitis et al. [75] on 5,814 cows observed 
a strong association between lactose levels and sub-
clinical mastitis pathogens, concluding that it might be 
helpful to include lactose (as well as milk conductiv-
ity) as a biomarker of suspected udder inflammation in 
health prevention programs.

Among the selected hub genes, BoLA-DOA encodes the 
major histocompatibility complex (MHC), class II, DO 
alpha. It is already well known that molecules linked to 
MHC play a fundamental role in the antigen recognition, 
presentations, and activation of the adaptive immune 
response [43]. Among the numerous molecules that 
belong to the BoLA family, BoLA-DOA specific mecha-
nism of action has yet to be unraveled. Nonetheless, 
some studies found this gene upregulated in the presence 
of mastitis. Chen et al. [76], for example, in the transcrip-
tional survey of exosomes derived from Staphylococcus 
aureus-infected bovine mammary epithelial cells, found 
a significant upregulation of the BoLA-DOA gene. Con-
versely, Cheng et al. [77] observed the downregulation of 
BoLA-DOA and several other genes involved in antigen 
presentation and processing in the blood-circulating leu-
cocytes of animals recovering from E.  coli clinical mas-
titis. This difference in gene expression might be related 
to the fact that E. coli, unlike S. agalactiae or Prototheca, 
generally induces an acute and robust udder inflamma-
tion with a more generalized immune response [8].

One of the essential hub genes downregulated in masti-
tis animals was GNA11, which encodes for a type of gua-
nine nucleotide-binding protein (G-protein) functioning 
as a modulator or transducer in the transmembrane 
signaling systems. In the recent work of Pan et al. [78] on 
transcriptome evaluation in early calf nutrition, GNA11 
was significantly implicated in energy-related pathways, 
especially fat metabolism. Therefore, its downregulation 
in mastitis-positive samples should be further evaluated 
better to explain the relationships between energetic 
pathways and immune response.

Conclusions
This work evaluated for the first time the somatic cell 
transcriptomic signature derived from naturally occur-
ring subclinical mastitis caused by two different etio-
logical agents: S. agalactiae and Prototheca spp. Even 
though we found some differences in the immune-related 
pathways and gene expression between the two infec-
tions (e.g., more robust activation of the antigen and pro-
cessing complex in Prototheca and potent inhibition of 
energy-related pathways in S. agalactiae infection), the 
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core immune response was commonly shared between 
the two pathogens.

The integrated analysis of core mastitis response genes 
and phenotypic traits confirmed a strong correlation 
between the transcriptome and the leucocyte popula-
tions determined by flow cytometry and with udder 
health traits (SCC, lactose, conductivity, and casein 
index), strengthening the need to systematically include 
them as screening and diagnostic indicator for the IMI 
detection. Finally, the predictive performances on the 
hub genes tested within the meta-analysis highlighted 
that CIITA might have a crucial role in the molecular 
mechanism underlying the animals’ response to subclini-
cal IMI and need further evaluation in future studies, also 
taking into consideration a wider cohort of animals.
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