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Abstract 

Background  Carcass traits are crucial for broiler ducks, but carcass traits can only be measured postmortem. 
Genomic selection (GS) is an effective approach in animal breeding to improve selection and reduce costs. However, 
the performance of genomic prediction in duck carcass traits remains largely unknown.

Results  In this study, we estimated the genetic parameters, performed GS using different models and marker densi-
ties, and compared the estimation performance between GS and conventional BLUP on 35 carcass traits in an F2 
population of ducks. Most of the cut weight traits and intestine length traits were estimated to be high and moder-
ate heritabilities, respectively, while the heritabilities of percentage slaughter traits were dynamic. The reliability of 
genome prediction using GBLUP increased by an average of 0.06 compared to the conventional BLUP method. The 
Permutation studies revealed that 50K markers had achieved ideal prediction reliability, while 3K markers still achieved 
90.7% predictive capability would further reduce the cost for duck carcass traits. The genomic relationship matrix nor-
malized by our true variance method instead of the widely used 2pi(1− pi) could achieve an increase in prediction 
reliability in most traits. We detected most of the bayesian models had a better performance, especially for BayesN. 
Compared to GBLUP, BayesN can further improve the predictive reliability with an average of 0.06 for duck carcass 
traits.

Conclusion  This study demonstrates genomic selection for duck carcass traits is promising. The genomic prediction 
can be further improved by modifying the genomic relationship matrix using our proposed true variance method 
and several Bayesian models. Permutation study provides a theoretical basis for the fact that low-density arrays can be 
used to reduce genotype costs in duck genome selection.
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Introduction
Ducks play a considerable role in the structure of the 
waterfowl meat market in Asia and some European coun-
tries. Duck is also the third largest meat consumption in 
China after pork and chicken. Duck cuts, such as breasts 
and legs, offer more options for diet-conscious consum-
ers. Duck meat is generally regarded as flavorsome, rich 
in amino acids and polyunsaturated fatty acids, and 
relatively low in fat. Duck meat has a higher number of 
muscle fibers [1], lipid contents [2], lower water-hold-
ing capacity, and greater cooking loss [3] compared to 
chicken meat. Ducks’ other products, such as neck, liver, 
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gizzard, and feet were also popular. As these products 
could be processed into different ready-to-eat meat prod-
ucts, such as roasted Pekin duck, Nanjing salted duck, 
and spicy duck neck.

Several efforts have been made to improve duck pro-
ductive traits in duck breeding programs using pedigree 
and phenotypic information [4]. Although the selection 
for productive traits is feasible in ducks, measuring duck 
carcass traits increases costs and can recorded mainly 
after slaughter. Furthermore, for these traits that cannot 
be measured in vivo, sib-testing is a routine method used 
in traditional selection, with only the between-family var-
iation to be used, which limits the selection accuracy. For 
the above reasons, the current duck breeding programs 
do not pay much attention to the improvement of carcass 
composition traits [5].

Genomic selection (GS) is an effective approach in 
animal breeding to improve selection and reduce costs, 
which has been widely used in livestock [6], poultry [7] 
and aquatic animals [8]. Genomic prediction combines 
genotypic, phenotypic, and pedigree data to increase the 
accuracy of estimates of genetic merit and to decrease 
generation intervals [6]. To date, the use of genome pre-
diction in ducks has rarely been investigated. The only 
one reporting duck genome prediction is about the meat 
quality traits of the Peking duck [9]. However, this study 
only focused on seven traits: the weight and percentage 
of abdominal fat, skin fat and breast muscle, as well as 
live weight. Genomic selection in many important car-
cass traits (like carcass weight, eviscerated weight, dress-
ing rate etc.) remains uncovered. Moreover, compared to 
the best linear unbiased prediction (BLUP), the advan-
tage of genome prediction had not been reflected due to 
their small sample size [9, 10].

In ducks, a commercial single nucleotide polymor-
phism (SNP) array has not been developed, the only way 
to get genotype information is from whole or reduced-
representation genome sequencing. A lack of low-cost 
SNP arrays would increase the breed cost and delay the 
application of genomic selection. Marker density is an 
important factor affecting the accuracy of genome pre-
diction and breed cost [11]. Although high-density mark-
ers can improve prediction accuracy, when the marker 
density reached a certain degree, there will be no fur-
ther meaningful increase in prediction accuracy [12, 13]. 
On the contrary, the breeding cost will be dramatically 
increased. The optimal marker density for duck GS, such 
as the density reaching a plateau, remains obscure, since 
the efficient SNP number could reduce the dimensional-
ity of the GS model and breeding cost.

The choice of statistical models also has a noticeable 
impact on the prediction accuracy of GS [14, 15]. The 
genomic best linear unbiased prediction (GBLUP) method 

has been widely used in routine genomic evaluation 
because it is easier to implement and less computationally 
demanding [16]. As the construction of the genomic rela-
tionship matrix (GRM) immediately affects the GBLUP 
model, many efforts have been made to modify GRM, 
which uses unequal weights for all SNPs [17–19]. Com-
pared to the GBLUP module, Bayesian models have the 
advantage of modeling the distribution of marker effects 
[20], which helps increase the GS accuracy in various 
studies [21, 22]. However, the advantages of the modified 
GBLUP and multiple Bayesian methods have not been 
evaluated for carcass traits in ducks.

Duck meat production is based mainly on commercial 
crossbreeds of different Pekin strains. Hence, the objec-
tives of this study were: (1) to calculate genetic parame-
ters of duck carcass traits, (2) to estimate reliability gains 
from using genomic evaluations instead of traditional 
BLUP evaluations, (3) to document how the density of 
markers affect predictive ability of GS, (4) to propose the 
best strategies to improve genomic predictions for duck 
carcass traits.

Materials and methods
Experimental population, phenotype, and genotype data
The phenotypes, pedigrees, and genotypes of ducks were 
conducted in an experimental cross-population of Peck-
ing duck × mallard. Phenotypes for 35 carcass compo-
sition traits were measured in 988 animals with age of 
8  weeks. Table  1 describes the number of animals with 
observations with mean and standard deviation (SD) for 
each trait. The 914 ducks were selected for sequencing on 
an Illumina HiSeq X Ten with an average × 5 coverage. 
The detailed information of sequencing data had been 
described in our previous study [23]. The 150-bp paired-
end clean reads were mapped to the Pekin duck reference 
genome (GCA_003850225.1) with BWA (v0.7.17) [24]. 
The alignment quality was improved by Picard (v2.24.1) 
[25]. The SNP calling was conducted by GATK Haplo-
typeCaller module (v3.5) [26]. The SNPs were removed 
according to the following criteria: (a) non-autosomal 
variants, (b) minor allele frequency (MAF) < 0.05, (c) call 
rate < 0.9, (d) individuals missing more than 10% of geno-
types were removed. Quality control of genotype data 
was conducted using PLINK (v1.90) [27]. After filtering, 
1,037,662 SNPs for 914 individuals were retained in the 
dataset.

The estimation of genetic parameters with the BLUP model
The animal model is

y = Xβ + Za + e,

Var
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e

]
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where y − the vector of phenotype value; β − the vec-
tor of fixed effects, including sex, reciprocal crosses and 
feed room; a − the vector of additive genetic effects and 
assumed that a∼N(0, Aσ 2

a  ), in which A − the matrix of 
an additive genetic relationship constructed based on the 
pedigree; σ 2

a  − the additive genetic variance; X − inci-
dence matrix for fixed effects; Z − incidence matrix to 
allocate phenotypic observations to individuals; e − ran-
dom residual effects,  σ2e is error variance. The narrow 

sense heritability ( h2 ) was calculated by σ 2
a/(σ 2

a + σ 2
e ) . 

According to the definition of a previous study [28], 
we defined that the moderate heritability ranged from 
0.20 to 0.40, and high when it was greater than or equal 
to 0.40, while the low heritability should be less than 
or equal to 0.2. The estimation of the variance com-
ponents, genetic correlation and breeding values was 
performed by restricted maximum likelihood (REML) 
analysis implemented in the ASReml-R (V4.2) [29]. The 

Table 1  Summary statistics and heritabilities (h2) estimation for the 35 phenotypic traits

The percentage was abbreviated as % in trait name. The standard deviation of phenotype was denoted by SD. The standard error of h2 was denoted by SE

Traits Mean SD Records Heritability h2 SE

Weight traits, g

  Carcass weight 1,632.46 234.86 987 0.54 0.08

  Eviscerated weight 1,491.01 214.17 984 0.51 0.07

  Breast muscle weight 86.15 15.73 988 0.44 0.07

  Leg muscle weight 89.74 14.02 987 0.46 0.07

  Skin and subcutaneous 
fat weight

376.73 89.79 988 0.60 0.08

  Abdominal fat weight 32.52 12.68 975 0.63 0.08

  Skeleton weight 597.42 79.47 988 0.43 0.07

  Head weight 77.19 9.66 988 0.47 0.07

  Neck weight 88.11 13.02 987 0.31 0.06

  Swing weight 72.69 9.57 965 0.43 0.07

  Heart weight 11.70 1.81 976 0.41 0.07

  Gizzard weight 52.37 9.91 987 0.41 0.07

  Liver weight 35.84 7.06 973 0.32 0.06

  Feet weight 41.27 6.33 988 0.51 0.07

Length traits, cm

  Neck length 22.54 1.51 983 0.17 0.05

  Total intestine length 144.57 14.91 966 0.36 0.07

  Duodenum length 26.67 2.84 967 0.21 0.06

  Jejunum length 117.90 13.35 966 0.35 0.07

  Ileum length 14.63 1.54 966 0.37 0.07

  Shank length 5.19 0.26 942 0.16 0.05

Percentage traits, %

  Dressed percentage 85.80 2.77 984 0.08 0.05

  Eviscerated carcass 78.39 2.97 984 0.10 0.05

  Lean meat 23.64 1.59 984 0.37 0.07

  Breast muscle 11.55 1.45 984 0.38 0.07

  Leg muscle 12.09 1.33 984 0.30 0.07

  Skin & subcutaneous fat 21.29 2.38 984 0.55 0.08

  Abdominal fat 2.10 0.67 971 0.56 0.08

  Skeleton 35.33 1.97 986 0.28 0.06

  Head 5.21 0.48 987 0.28 0.06

  Neck 5.93 0.56 986 0.47 0.07

  Swing 4.90 0.38 961 0.27 0.06

  Heart 0.72 0.09 975 0.25 0.06

  Gizzard 3.23 0.54 986 0.45 0.07

  Liver 2.20 0.33 972 0.09 0.05

  Feet 2.78 0.33 987 0.24 0.06
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correlation coefficient values were interpreted as follows 
[30]: 0.0–0.2 little; 0.2–0.4 weak; 0.4–0.7 moderate; 0.7–
1.0 strong.

Genome prediction with the GBLUP model
The linear mixed models are formulated as

where y, X, β, and e are the same as in the BLUP model, 
while g − vectors of additive genetic values. GBLUP was 
calculated using the genomic marker information pro-
vided by the SNPs. The genomic relationship matrix was 
calculated by VanRaden’s method [16], the formula was 
listed as follows:

y = Xβ + Zg + e

G =

ZZ′

2
∑

pi(1− pi)

where Z − the SNP markers’ incidence matrix, and it is 
the genotype matrix (M, 0 1 2) minus the mean of marker 
across individuals 2 pi , Z = M − 2 pi , where pi is the 
minor allele frequency (MAF) at each SNP.

Building GRM using different methods
The GRM construction method proposed by VanRaden 
[16] was widely used in the genome prediction of ani-
mals and plants, which has been mentioned above. 
This method assumed that each marker has the same 
variance of genotype across individuals, then the ZZ’ 
should be divided by 

∑
2pi(1− pi) , meaning the mark-

ers’ weighting was equal.

The second method was commonly used by human 
genetics studies, such as Yang et al.’s GCTA [17, 31], as 
follows:

Z is mentioned above, D − a diagonal matrix with Dii,

G = ZDZ′

Dii =
1

m[2pi(1− pi)]

where m is the number of SNP markers. This method 
assumed that each marker has a different variance of 
genotype across individuals. Each marker should be 
scaled by itself variance 2pi

(

1 − pi
)

 , meaning the markers’ 
weighting was different.

Both of the above two methods used the 2pi(1− pi) 
as the variance of each SNP genotype. The reason is that 
they assumed that the markers obey the Hardy–Wein-
berg principle. Then, for the ith SNP with two alleles, one 
allele with frequencies pi , we could know that the geno-
type (0, 1, 2) frequencies under random mating were

The expectation Ei and variance Vi under the Hardy–
Weinberg principle would be:

However, in most cases, the SNPs could be influenced 
by artificial selection, inbreed, mutation, genetic drift, etc., 
which were not fully satisfied for the Hardy–Weinberg 
principle. Using pi(1− pi) as variance would bring a bias. 
Here we used each marker’s true variance Vari∗ instead of 
2pi(1− pi) . The true variance Vari∗ of each marker could 
be immediately calculated from the genotypes across indi-
viduals. Here, we assumed that the frequencies of ith SNP 
genotypes 1 and 2 were p1i and p2i , respectively. Then

The true expectation Ei∗ and variance Vari∗ would be:

When the SNP marker across individuals obeys the 
Hardy–Weinberg principle, its MAF pi = 0.5p1i + p2i . 
Then Ei∗ and Vari∗ were equal to Ei and Vi , respectively.

Using p1i and p2i instead of MAF pi , we could get the 
modified VanRaden’s formula:

The modified Yang et al.’s formula should be:

f (0) = (1− pi)
2,

f (1) = 2pi(1− pi),

f (2) = p2i .

Ei = 1× 2pi(1− pi)+ 2× p2i = 2pi,

Vi = (0− Ei)
2
× f (0)+ (1− Ei)

2
× f (1)+ (2− Ei)

2
× f (2) = 2pi(1− pi).

f (0)∗ = 1− p1i − p2i,
f (1)∗ = p1i,
f (2)∗ = p2i,

E∗

i = 1× p1i + 2× p2i = p1i + 2p2i

Var∗i =

(
0− E∗

i

)2
× f (0)∗ +

(
1− E∗

i

)2
× f (1)∗ +

(
2− E∗

i

)2
× f (2)∗ = p1i + 4p2i − (p1i + 2p2i)

2.

G =

(M − p1i − 2p2i)(M − p1i − 2p2i)
′

∑
[p1i + 4p2i − (p1i + 2p2i)

2
]

.
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The markers’ diagonal D matrix should be:

Therefore, we generated four different GRM models 
used for estimating SNP heritability and genome predic-
tion reliability: VanRaden’s model (Sum 2p(1 − p), SP), 
Yang’s model (Independent 2p(1  −  p), IP), VanRaden’s 
model with true variance (Sum Var, SV) and Yang et al.’s 
model with true variance (Independent Var, IV).

Bayesian models
The module is

where y, X, β, Z, and e are the same as terms described 
in GBLUP model, and s − the sum of the vector of 
SNP effects derived from different assumed distribu-
tions. Here, we used five Bayesian models with different 
assumed distributions of SNP effects. BayesB assumes 
that most of the genetic markers have zero effect, which 
can be described as a mixture prior of a scaled t-distribu-
tion with probability π and a point mass at 0 with prob-
ability 1 − π [20]. BayesCπ assumes that SNP effects have 
a mixture prior of a normal distribution that has mean 0 
and variance σ2 with probability π and null effect markers 
with probability 1 − π [32]. BayesN is the nested BayesCπ 
model, where the SNPs within a 0.2 Mb non-overlapping 
genomic region are collectively considered as a window. 
BayesS is similar to BayesCπ but the variance of SNP 
effects (for SNPs with non-zero effects) is related to MAF 
( pi ) through a parameter S ( σ 2

i = [2pi(1− pi)]
Sσ 2 ) [33]. 

BayesR assumes that SNP effects follow a mixture of four 
normal distributions N(0,γkσ 2

k  ), the γk are 0, 0.01, 0.1 
and 1 with probability π1 , π2 , π3 and π4 , respectively, and 
π1 + π2 + π3+π4 = 1 [34]. The unknown parameters 
and SNP effects of Bayesian models were obtained from 
a Gibbs scheme based on the Markov chain Monte Carlo 
(MCMC) iterations implemented in the GCTB (V2.01) 
software [33].

Cross‑validation and prediction reliability
The prediction reliability of the models was estimated 
based on a fivefold cross-validation. In fivefold cross-vali-
dation, the phenotypes of 20% of the animals were masked 
and then estimated using the phenotypes and genotypes 
of the remaining 80% of animals. The dataset of geno-
typed animals with phenotypes was randomly divided into 
five subsets, predicting one subset at a time and using the 

G = (M − p1i − 2p2i)D(M − p1i − 2p2i).

Dii =
1

m[p1i + 4p2i − (p1i + 2p2i)
2
]

y = Xβ + Zs + e

phenotypes of the remaining four subsets. Genomic pre-
diction reliability was calculated as the Pearson correla-
tion coefficient between adjusted phenotypic values and 
genomic predicted genetic values. The mean correlation 
value was used as the reliability for each trait.

The permutation of marker densities
To evaluate the influence of marker density on the SNP 
heritability estimation and genome prediction, we ran-
domly selected 0.5K, 1K, 3K, 5K, 10K, 50K, 100K and 
500K from the original 1.04 million (M) markers. We 
built the genomic relationship matrix, and estimate SNP 
heritabilities and genomic breeding values using the 
GBLUP model for each selected marker. The prediction 
reliability of the models was estimated based on a fivefold 
cross-validation. We repeated this process 30 times to 
obtain stable results for each marker density. The predic-
tive capability was equal to the current reliability divided 
by the best performance of reliability within the nine dif-
ferent density markers for a given trait.

Results
The genetic parameters
The phenotype information of 35 traits was described 
in Table  1, which contained the mean and SD for each 
trait. The estimates of heritability based on the pedigree 
BLUP model were also presented in Table 1 and Fig. 1A. 
The heritability estimations were high for the abdominal 
fat weight (0.63), skin and subcutaneous fat weight (0.60), 
abdominal fat percentage (0.56), skin and subcutaneous 
fat percentage (0.55), carcass weight (0.54), eviscerated 
weight (0.51) and feet weight (0.51), while some traits 
had relatively low heritability, such as dressed rate (0.08), 
liver percentage (0.09), eviscerated percentage (0.10), 
shank length (0.16) and neck length (0.17). We detected 
both phenotypic and genetic relationships between the 
weight/length traits were usually positive. As expected, 
the weight traits were also positively correlated with their 
corresponding percentage traits (Fig.  1B and Table S1). 
The strongest correlations were observed between jeju-
num length and total intestine length (rg = 0.998 ± 0.002, 
rp = 0.976 ± 0.004), carcass weight and eviscerated weight 
(rg = 0.994 ± 0.002, rp = 0.976 ± 0.004). The negative cor-
relation between some of the percentage traits was due 
to their competitive ratio on whole carcass. Interest-
ingly, we found the gaps between genetic and pheno-
type correlation were considerable in several trait pairs 
(absolute value > 0.8), such as eviscerated percentage 
and liver (rg = −0.976 ± 0.328, rp = −0.089 ± 0.045), lean 
meat percentage and skeleton weight (rg = 0.706 ± 0.127, 
rp = −0.133 ± 0.071), and dressed rate and shank length 
(rg = 0.774 ± 0.275, rp = −0.026 ± 0.049).
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Fig. 1  The genetic parameters of duck carcass traits. A The heritabilities of carcass traits, containing 14 weight traits, 6 length traits, and 15 
percentage traits, were marked by green, orange, and blue color, respectively. B The genetic correlation (above the diagonal) and phenotype 
correlation (below the diagonal) between carcass traits. The color of each box represents a positive correlation (red) or a negative correlation (green)
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Genome prediction performance for carcass traits
The genomic predictive reliability for carcass traits using 
pedigree BLUP and GBLUP methods are summarized in 
Table S2 and Table 2. Globally, the reliability of genome 
prediction (GBLUP) varied from 0.12 to 0.48 for carcass 
traits (Fig. 2). The reliability of genome prediction was rel-
atively high for several weight traits, such as skin and sub-
cutaneous fat weight (0.48), abdominal fat weight (0.47), 
carcass weight (0.47), skin and subcutaneous fat percent-
age (0.46), eviscerated weight (0.45), gizzard percentage 

(0.44), while we observed low predictive reliability for 
liver percentage (0.13), dressed rate (0.17), eviscerated 
percentage (0.17), neck length (0.19) and shank length 
(0.20). Compare to the conventional pedigree BLUP strat-
egy, the predictive ability of the GBLUP model was signifi-
cantly higher (P < 0.001, paired t-test). For each trait, we 
observed 32 out of 35 traits were increased by genome 
prediction. The increment in predictive ability obtained 
using GBLUP respect to pedigree BLUP was more notice-
able in the neck weight (0.12), dressing rate (0.12), and 

Fig. 2  The predictive reliability of duck carcass traits by GBLUP and pedigree BLUP. The average of predictive reliability was calculated by 5-fold 
cross-validation. The predictive reliability of GBLUP and pedigree BLUP were denoted by the black and orange bars, respectively. The three colors in 
the background represent the different trait groups

Table 2  The predictive reliability of (genomic) breeding values for duck carcass traits using different strategies

Data showing the average of predictive reliability in each trait group. The predictive reliability is computed using 5-fold cross-validation. The true variance method, 
denoted with an asterisk (*), is a newly proposed method for improving GRM in the GBLUP model

Methods Weight traits Length traits Percentage traits All 35 traits

BLUP 0.318 0.205 0.250 0.269

Sum 2p(1 − p) GBLUP 0.395 0.240 0.298 0.327

Independent 2p(1 − p) GBLUP 0.400 0.240 0.300 0.330

*Sum true variance GBLUP 0.399 0.243 0.302 0.331

*Independent true variance GBLUP 0.404 0.243 0.304 0.334

BayesB 0.468 0.274 0.304 0.364

BayesCπ 0.405 0.244 0.305 0.334

BayesR 0.360 0.205 0.285 0.301

BayesS 0.407 0.244 0.308 0.337

BayesN 0.507 0.301 0.307 0.386
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Fig. 3  The permutation of marker density affects the estimation of SNP heritability and predictive reliability of GS in duck carcass traits. A Pearson 
correlation coefficients between all genomic relationship matrixes built from 30 times randomly selected markers. B The estimation of SNP 
heritability was increased with a high density of markers in three trait groups. All sequencing variants (1.04M) were also used to compute the SNP 
heritability, which was marked with the last brown color. C The predictive reliability of GS changes by the various markers’ density in three trait 
groups. D–F The predictive reliability of GS changes by the various markers density across each trait for percentage traits, weight traits and length 
traits
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carcass weight (0.11). The average increment of predictive 
reliability between GBLUP and BLUP was 0.06 (ranged 
from −0.02 to 0.12) across all 35 traits.

The marker density affects genome predictions
We randomly selected 0.5K, 1K, 3K, 5K, 10K, 50K, 100K, 
and 500K, from the original sequencing markers, each 
permutation was repeated 30 times. To check whether 
the marker density could affect the genomic relation-
ships, we calculated the Pearson correlation coefficients 
between permutations in each density group after build-
ing the GRM. We found that the correlation coefficients 
between permutations rapidly increased from 0.5K to 3K 
density, and moderately increased from 3 to 50K den-
sity (Fig.  3A). The correlation coefficients tended to be 
steady with the average value exceeding 0.996 for 50K 
SNPs. We observed that estimated SNP heritabilities 
increased rapidly with the density increasing from 0.5K 
to 50K, and then slightly increased with 50K higher den-
sity (Fig. 3B). The SNP heritabilities of permutations were 
listed in Table S3. The increment of SNP heritabilities 
was more noticeable for weight traits with high herit-
abilities (Fig. S1). The predictive reliability for each trait 
was calculated by averaging the cross-validation results 
of 30 random permutations. We found that the predictive 
reliability rapidly increased with the increase of marker 
density from 0.5K to 3K, then moderately increased from 
3 to 5K. The predictive reliability was limited improve-
ment when the marker density exceeded 50K (Fig.  3C). 
The average of predictive reliability was 0.27 for 1K SNP 
markers, which is close to reliability of pedigree BLUP 
(Table S4). The predictive capability (current reliability 
divided by the best performance of reliability within the 
nine different density markers) of 50K density reached 
99%. (Fig. S2 and Fig. 3D–F). The 3K SNP markers with a 
predictive capability of 90.7% needed attention (Fig. S2). 
It should be noticed that the predictive reliability of most 
traits would not be increased when we fitted all 1.03M 
sequence variants (Fig. 3D–F).

The GRM methods affect the GBLUP performance
The genomic matrix methods proposed by VanRanden 
[16] and Yang et al. [17] was widely used in animal breed-
ing and human genetics study. The difference between 
the two methods lies in correcting the genotype vari-
ance of ZZ’. VanRaden [16] believed that all SNPs should 

be corrected by an equal variance 
∑

2pi(1− pi) , while 
Yang et  al. [17] argued that each SNP should be inde-
pendently corrected itself variance 2pi(1− pi) . Here we 
found the independent 2pi(1− pi) method had a signifi-
cantly better performance in both SNP heritability (paired 
t-test P < 2.29E−05) and GBLUP reliability (paired t-test 
P < 1.78E−05) than sum 2pi(1− pi) in most carcass traits 
(Fig.  4A and B). The increment in SNP heritability and 
predictive ability obtained using independent 2pi(1− pi) 
respect to sum 2pi(1− pi) was 0.0041 and 0.0033, respec-
tively (Table S5). Then we proposed to use the p1i and p2i 
for the frequencies of genotype 1 and 2 instead of MAF 
pi , which calculated the true variance of genotype for 
each SNP was [p1i + 4p2i − (p1i + 2p2i)

2 ] rather than 
2pi(1− pi) . Compared to GRM using the experienced 
2pi(1− pi) method, using our true variance method 
on both two methods could capture more SNP herit-
ability (paired t-test P < 4.16E−23 for sum variance, and 
P < 2.72E−22 for independent variance). The average of 
SNP heritability gained was 0.039 for both sum and inde-
pendent true variance methods. For the prediction, we also 
found a significant improvement in predictive reliability of 
GS for most traits in both sum (paired t-test P < 4.77E−9) 
and independent (paired t-test P < 7.86E−11) methods 
by true variance (Fig. 4C). Compare with the widely used 
VanRaden’s method, using the independent true variance 
of GRM could obtain an average of 0.007 increments in 
reliability of all traits (Table 2 and Table S5). The reliabil-
ity increment obtained using the independent true vari-
ance method was more noticeable in these traits with high 
heritabilities, such as the abdominal fat percentage (0.026), 
feet weight (0.021), head weight (0.019), abdominal fat 
weight (0.019), and carcass weight (0.013) and eviscerated 
weight (0.013).

Bayesian models can improve the prediction accuracy
The reliability of genome prediction was greater for the 
Bayesian models (except for BayesR) than for the GBLUP 
models in most traits, while the advantage of Bayesian 
models in percentage traits was meager (Fig. 5A). For each 
Bayesian model, both BayesN and BayesB achieved vis-
ible performance for most weight traits and length traits 
(Fig. 5C–D). The BayesN was the best model for increasing 
the predictive reliability of most carcass traits (Fig. B–D and 
Table 2). The increment in predictive ability obtained using 
BayesN respect to GBLUP was more noticeable in the neck 

(See figure on next page.)
Fig. 4  The predictive reliability of duck carcass traits by different GRM methods implemented in GBLUP model. A The SNP heritabilities were 
estimated by four GRM methods implemented in GBLUP for 35 duck carcass traits. B The predictive reliability of GBLUP with four GRM methods for 
carcass traits. C The increased gains between four GRM methods in predictive reliability of carcass traits. The label in each box is the percentage 
value of the gained reliability between the two methods. SP: sum 2p(1 − p), IP: Independent 2p(1 − p), SV: sum true variance, IV: Independent true 
variance. The IV-SP on y-axis means the predictive reliability gain in IV compared to SP
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Fig. 4  (See legend on previous page.)
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length (0.24), neck weight (0.24), head weight (0.19), swing 
weight (0.19), and feet weight (0.18) (Table S6). To our sur-
prise, we found BayesR had a poor performance in most 
traits, even worse than GBLUP. Interestingly, the BayesS 
model, accounting for MAF and LD weights of markers, 
had the best reliability performance in several percentage 
traits, such as skin and subcutaneous fat percentage, skel-
eton percentage, neck percentage, swing percentage, liver 
percentage and feet percentage (Table 2 and Table S6). The 
reliability of genome prediction using BayesN increased by 
an average of 0.117 compared to pedigree BLUP.

Discussion
Genomic selection expects to speed up genetic progress 
in animal breeding programs [35]. Practically, to imple-
ment GS in duck breeding, it is necessary to know the 
performance of GS in predicting GEBV, as well as assess 

various marker densities and GS models to create appro-
priate strategies for an effective breeding program in 
ducks. In this study, we estimated the genetic param-
eters, performed GS using different models and marker 
densities, and compared the estimation performance 
between GS and traditional BLUP on 35 carcass traits in 
an F2 population of ducks.

Genetic parameters of 35 carcass traits
There are few reports on the genetic parameters of duck 
carcass traits [4, 36–38]. We provide the most comprehen-
sive estimates of genetic parameters for carcass traits to 
date. Most of the 35 traits were never reported before. Most 
weight traits were estimated to be high heritabilities (> 0.4), 
except for neck and liver weight with moderate heritabili-
ties. The high heritabilities in weight of carcass, wing, breast 
muscle, leg muscle, skin and subcutaneous fat, abdominal 

Fig. 5  The predictive reliability of duck carcass traits by Bayesian models. A The predictive reliability of GS changed using GBLUP and different 
Bayesian models in three trait groups. B–D The predictive reliability of GS varied using GBLUP and different Bayesian models in each trait for weight 
traits, percentage traits and length traits



Page 12 of 15Cai et al. Journal of Animal Science and Biotechnology           (2023) 14:74 

fat and skeleton were also reported in another F2 crossbreed 
of Pekin type ducks study (0.47–0.75) [36]. Moderate her-
itability was obtained for the liver weight (0.32), which was 
similar to the results of 0.29 by Mucha et al. [36] and 0.36 by 
Deng et al. [38]. This is the first study to report the heritabil-
ity of heart (0.41) and gizzard (0.41) weight in ducks, which 
were close to broiler chicken’s study (heart weight: 0.41 and 
gizzard weight: 0.41) [39]. The duck products of the intes-
tine and neck were popular in Asia countries. However, the 
length heritabilities of the intestine, neck and shank have 
not been reported before. Here we observed that intestine 
length traits were moderate heritabilities, while the length 
of the shank and neck were low heritabilities. The genetic 
mechanisms of weight percentage traits were complicated, 
which were calculated by dividing the two traits, resulting in 
dynamic heritabilities. The breast muscle percentage (0.38) 
was lower than the result (0.47) shown by Xu et  al. [37], 
but higher than the result (0.16) shown by Xu et al. [4]. The 
leg muscle percentage (0.30) and abdominal fat percentage 
(0.56) were higher than the result (0.16 and 0.32, respec-
tively) shown by Xu et al. [37].

Both phenotypic and genetic correlations of weight 
traits were usually positive and high. Similar results 
for duck populations were generally reported by previ-
ous studies [36, 37, 40, 41]. The strongest correlations 
between jejunum length and total intestine length were 
in a greement with the biological background of par-
ticular recorded traits. In the study by Mazanowski et al. 
[41], breast and leg muscle weight, and carcass weight 
positively correlated with shank length and trunk with 
neck length, which was partly confirmed in our study. 
Dressing percentage showed positive and low correla-
tions with weight traits, which is consistent with a pre-
vious study [40]. Some percentage traits with large gaps 
between genetic and phenotype correlation implied the 
complicated genetic mechanisms in these ratio-recorded 
traits.

Genome prediction performance
The high predictive ability of GS in skin and subcuta-
neous fat weight, abdominal fat weight, carcass weight, 
skin and subcutaneous fat percentage, eviscerated 
weight, and gizzard percentage, suggests that the better 
performance of GS could be found in traits with high 
heritability. Similar results were seen in other research 
where there was a significant association between trait 
heritability and prediction reliability [42, 43]. This phe-
nomenon was reported in other species. The skin and 
subcutaneous fat had a relatively high prediction abil-
ity, which was also observed in Pekin ducks of a previ-
ous study [9]. We found an obvious benefit of GS in 
predicting the breeding values. The reliability of genome 

prediction using GBLUP increased by an average of 0.06 
compared to BLUP. These improvements are consistent 
with validation results of GS in other poultry [7, 44] or 
livestock [6, 45, 46]. Among the 35 traits in this study, 
using GS improved reliabilities most for neck weight 
and dressing rate, which indicated GS might have more 
potential in low heritabilities.

In Bayesian models, the differences among meth-
ods are the assumptions on the genetic marker effects, 
which outperform GBLUP when the number of quan-
titative trait loci (QTLs) underlying the trait is smaller 
than the number of independent chromosome segments 
[47]. In this study, we found most of the Bayesian mod-
els had a better performance than the GBLUP method, 
which implied these carcass traits are controlled by a 
limited number of major QTLs. We have found that the 
BayesN method was the most accurate method to predict 
breeding values in most traits. The advantage of BayesN 
related method was also reported by Zeng et al. [48] and 
Karaman et  al. [49]. BayesR had a poor performance 
in the carcass traits of our population. BayesR could 
not increase the accuracy of genomic prediction com-
pared to GBLUP in other studies [50, 51]. BayesR model 
assumpted four marker distributions, can shrink large 
effects heavily, which tend to overperform GBLUP when 
a small number of loci with large effects exist in trait [52]. 
Such major loci may be rare in carcass traits of this study. 
The reliability of genome prediction using BayesN could 
bring an average increase of 0.117 compared to pedigree 
BLUP, which further verified that the GS is promising in 
duck breeding programs.

Effects of marker density on GS
An increase in marker densities generally resulted in 
raised accuracy predicted. In our study, the marker den-
sity of 1K could achieve the predictive ability of the tra-
ditional BLUP breeding strategy, which indicated GS has 
great potential in broiler duck breeding. The predictive 
ability was dramatically increased when marker density 
was below 3K, then the increase of predictive ability was 
slowed down. With a marker density of 50K, the predic-
tion accuracy for most carcass traits reached a plateau. A 
similar phenomenon was found in other species although 
the threshold might be different [13, 53]. The threshold 
of the plateau might be affected by the linkage disequilib-
rium of markers. The number of independent segments is 
usually small in populations with strong LD, which means 
fewer markers are needed to capture all segments [54]. 
The 50K marker density could achieve 99% of predic-
tive capability, which suggesting 50K density marker can 
achieve ideal predictive ability for duck carcass traits. The 
3K marker density still had a high predictive capability 
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(90.7%), which implied that it is feasible to reduce breed-
ing costs by designing low-density chips on ducks.

The improvement of GS by modifying GRM
In recent years, GBLUP has been a widely used method 
for genomic evaluation in livestock. The predictive ability 
of genomic breeding values estimated by GBLUP can be 
affected by the characteristics of GRM, which was signifi-
cantly affected by the number of markers, markers’ weights 
and standardized methods [16, 52]. Although VanRaden 
[16] suggested ZZ’ should be corrected by 

∑
2pi(1− pi) 

in dairy cattle breeding, we found both SNP heritabili-
ties and GS reliability were improved by the standardized 
method of independent 2pi(1− pi) of each SNP in duck 
carcass traits. We guess that small animals may be more 
often selected than large livestock, which causes the geno-
type variance of each SNP to not be equal. We proposed 
the true variance method using the p1i and p2i for the fre-
quencies of genotypes 1 and 2 instead of MAF pi . Then 
we found that the true variance method robustly achieved 
high performance in both SNP heritability and GS reli-
ability. When the population obeys the Hardy–Weinberg 
principle, the genotype variance of each SNP was equal 
to 2pi(1− pi) (See Method). However, in most cases, the 
SNPs were not fully satisfied for Hardy–Weinberg equi-
librium, especially for a small selected population, which 
lead to the bias of variance evaluation using 2pi(1− pi) , 
which may explain the reason for the improvement in both 
SNP heritability and GS reliability using our true variance 
method. The independent true variance method of GRM 
could bring more noticeable improvement in both SNP 
heritability and GS reliability in most traits, which was 
worth further investigation and use in other species.

Conclusions
Our results demonstrate that genomic prediction is a 
feasible approach for accurate selection in duck breeding 
programs, especially for these traits which are difficult 
to be measured such as carcass traits. The genomic pre-
diction can be further improved by modifying the GRM 
using our true variance method, which is worth promot-
ing in GS. Several Bayesian models, especially for BayesN, 
could bring more noticeable improvement in the predic-
tive ability of GS, which need attention. The permutation 
studies of density markers indicate 50K markers achieved 
ideal prediction accuracy, while 3K markers still achieved 
90.7% predictive capability, which would be promised to 
further reduce cost in duck breeding. In conclusion, our 
findings offer some useful strategies for the optimizing 
predictive ability of GS and provide theoretical founda-
tions for designing a low-density panel in ducks.

Abbreviations
BLUP	� Best linear unbiased prediction
GBLUP	� Genomic best linear unbiased prediction
GRM	� Genomic relationship matrix
GS	� Genomic selection
IP	� Independent 2p(1 − p)
IV	� Independent ture variance
MAF	� Minor allele frequency
MCMC	� Markov chain Monte Carlo
REML	� Restricted maximum likelihood
SD	� Standard deviation
SNP	� Single nucleotide polymorphism
SP	� Sum 2p(1 − p)
SV	� Sum ture variance

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40104-​023-​00875-8.

Additional file 1: Table S1. Estimation of phenotypic correlation and 
genetic correlation for the 35 carcass traits.

Additional file 2: Table S2. Estimation of SNP heritabilities for duck 
carcass traits using different marker densities.

Additional file 3: Table S3. The predictive reliability of genomic breed-
ing values for duck carcass traits using different marker densities by GBLUP 
model.

Additional file 4: Table S4. The SNP heritabilities and prednishiictive 
reliability of genomic breeding values for duck carcass traits using four 
different GRM methods.

Additional file 5: Table S5. The predictive reliability of genomic breeding 
values for duck carcass traits using Bayesian models.

Additional file 6. 

Additional file 7: Fig. S1. The permutation of marker density affects the 
estimation of SNP heritability of GS in duck carcass traits. (A–C) The SNP 
heritability changes by the various markers’ density across each trait for 
weight traits (A), length traits (B) and percentage traits (C).

Additional file 8: Fig. S2. The predictive capability of genomic breeding 
values for duck carcass traits using different marker densities. The color of 
each box represents a high capability (red) or a low capability (blue).

Acknowledgements
We are grateful to all members of the Waterfowl Breeding and Nutrition 
Innovative Research Team for the F2 population phenotype data collection.

Author’s contributions
SH and WC led the experiments and designed the analytical strategy. WC, JH, 
WF, YX analyzed and interpreted the data. JT, MX, YZ, ZG and ZZ performed 
animal work, prepared biological samples and collected the phenotype data. 
WC wrote this paper. SH revised the paper. The author(s) read and approved 
the final manuscript.

Funding
This work was supported by grants from the Key Technologies Research 
on New Breed of Broiler Poultry by Integration of Breeding, Reproduction 
and Promotion (2021CXGC010805-02), Taishan Industry Leadership Talent 
Project of Shandong province in China (TSCY20190108), China Agriculture 
Research System of MOF and MARA (CARS-42), the Science and Technol-
ogy Innovation Project of the Chinese Academy of Agricultural Sciences 
(CXGC-IAS-09).

Availability of data and materials
All the gennotype data have been deposited in the Sequence Read Archive 
(https://​www.​ncbi.​nlm.​nih.​gov/​sra) with the accession numbers PRJNA471401 
and PRJNA450892.

https://doi.org/10.1186/s40104-023-00875-8
https://doi.org/10.1186/s40104-023-00875-8
https://www.ncbi.nlm.nih.gov/sra


Page 14 of 15Cai et al. Journal of Animal Science and Biotechnology           (2023) 14:74 

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors have declared no competing interests.

Received: 30 November 2022   Accepted: 2 April 2023

References
	1.	 Smith DP, Fletcher DL, Buhr RJ, Beyer RS. Pekin duckling and broiler 

chicken pectoralis muscle structure and composition. Poult Sci. 
1993;72(1):202–8. https://​doi.​org/​10.​3382/​ps.​07202​02.

	2.	 Chartrin P, Méteau K, Juin H, Bernadet MD, Guy G, Larzul C, et al. Effects 
of intramuscular fat levels on sensory characteristics of duck breast meat. 
Poult Sci. 2006;85(5):914–22. https://​doi.​org/​10.​1093/​ps/​85.5.​914.

	3.	 Joseph J, Balogun O, Famuyiwa M. Carcass evaluation and organoleptic 
assessment of quality attributes of some selected Nigerian birds. Bull 
Anim Health Afr. 1992;40(2):97–102.

	4.	 Xu Y, Hu J, Zhang Y, Guo Z, Huang W, Xie M, et al. Selection response and 
estimation of the genetic parameters for multidimensional measured 
breast meat yield related traits in a long-term breeding Pekin duck line. 
Asian-Australas J Anim Sci. 2018;31(10):1575–80. https://​doi.​org/​10.​5713/​
ajas.​17.​0837.

	5.	 Chen X, Shafer D, Sifri M, Lilburn M, Karcher D, Cherry P, et al. Centennial 
review: history and husbandry recommendations for raising Pekin ducks 
in research or commercial production. Poult Sci. 2021;100(8):101241. 
https://​doi.​org/​10.​1016/j.​psj.​2021.​101241.

	6.	 VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, 
Taylor JF, et al. Invited review: reliability of genomic predictions for North 
American Holstein bulls. J Dairy Sci. 2009;92(1):16–24. https://​doi.​org/​10.​
3168/​jds.​2008-​1514.

	7.	 Liu T, Qu H, Luo C, Shu D, Wang J, Lund MS, et al. Accuracy of genomic 
prediction for growth and carcass traits in Chinese triple-yellow chickens. 
BMC Genet. 2014;15(1):110. https://​doi.​org/​10.​1186/​s12863-​014-​0110-y.

	8.	 Joshi R, Skaarud A, Alvarez AT, Moen T, Ødegård J. Bayesian genomic 
models boost prediction accuracy for survival to Streptococcus aga-
lactiae infection in Nile tilapia (Oreochromus nilioticus). Genet Sel Evol. 
2021;53(1):37. https://​doi.​org/​10.​1186/​s12711-​021-​00629-y.

	9.	 Zhang F, Zhu F, Yang F-X, Hao J-P, Hou Z-C. Genomic selection for meat 
quality traits in Pekin duck. Anim Genet. 2022;53(1):94–100. https://​doi.​
org/​10.​1111/​age.​13157.

	10.	 Weng Z, Wolc A, Shen X, Fernando RL, Dekkers JCM, Arango J, et al. 
Effects of number of training generations on genomic prediction for 
various traits in a layer chicken population. Genet Sel Evol. 2016;48(1):22. 
https://​doi.​org/​10.​1186/​s12711-​016-​0198-9.

	11.	 Krishnappa G, Savadi S, Tyagi BS, Singh SK, Mamrutha HM, Kumar S, et al. 
Integrated genomic selection for rapid improvement of crops. Genomics. 
2021;113(3):1070–86. https://​doi.​org/​10.​1016/j.​ygeno.​2021.​02.​007.

	12.	 Wang X, Xu Y, Hu Z, Xu C. Genomic selection methods for crop improve-
ment: current status and prospects. Crop J. 2018;6(4):330–40.

	13.	 Wang Q, Yu Y, Yuan J, Zhang X, Huang H, Li F, et al. Effects of marker 
density and population structure on the genomic prediction accuracy for 
growth trait in Pacific white shrimp Litopenaeus vannamei. BMC Genet. 
2017;18(1):45. https://​doi.​org/​10.​1186/​s12863-​017-​0507-5.

	14.	 Daetwyler H, Hickey J, Henshall J, Dominik S, Gredler B, Van Der Werf 
J, et al. Accuracy of estimated genomic breeding values for wool 
and meat traits in a multi-breed sheep population. Anim Prod Sci. 
2010;50(12):1004–10.

	15.	 Goddard ME, Hayes BJ, Meuwissen THE. Genomic selection in livestock 
populations. Genet Res. 2010;92(5–6):413–21. https://​doi.​org/​10.​1017/​
S0016​67231​00006​13.

	16.	 VanRaden PM. Efficient methods to compute genomic predictions. J 
Dairy Sci. 2008;91(11):4414–23. https://​doi.​org/​10.​3168/​jds.​2007-​0980.

	17.	 Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. 
Common SNPs explain a large proportion of the heritability for human 
height. Nat Genet. 2010;42(7):565–9. https://​doi.​org/​10.​1038/​ng.​608.

	18.	 Speed D, Hemani G, Johnson MR, Balding DJ. Improved heritability esti-
mation from genome-wide SNPs. Am J Hum Genet. 2012;91(6):1011–21. 
https://​doi.​org/​10.​1016/j.​ajhg.​2012.​10.​010.

	19.	 Zhang Z, Liu J, Ding X, Bijma P, de Koning D-J, Zhang Q. Best linear 
unbiased prediction of genomic breeding values using a trait-specific 
marker-derived relationship matrix. PLoS One. 2010;5(9):e12648.

	20.	 Meuwissen TH, Hayes BJ, Goddard M. Prediction of total genetic value 
using genome-wide dense marker maps. Genetics. 2001;157(4):1819–29.

	21.	 Lopes FB, Baldi F, Passafaro TL, Brunes LC, Costa MFO, Eifert EC, et al. 
Genome-enabled prediction of meat and carcass traits using Bayesian 
regression, single-step genomic best linear unbiased prediction and 
blending methods in Nelore cattle. Animal. 2021;15(1):100006. https://​
doi.​org/​10.​1016/j.​animal.​2020.​100006.

	22.	 Shi S, Li X, Fang L, Liu A, Su G, Zhang Y, et al. Genomic prediction using 
Bayesian regression models with global–local prior. Front Genet. 
2021;12:628205. https://​doi.​org/​10.​3389/​fgene.​2021.​628205.

	23.	 Zhou Z, Li M, Cheng H, Fan W, Yuan Z, Gao Q, et al. An intercross 
population study reveals genes associated with body size and plumage 
color in ducks. Nat Commun. 2018;9(1):2648. https://​doi.​org/​10.​1038/​
s41467-​018-​04868-4.

	24.	 Li H, Durbin R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics. 2009;25(14):1754–60. https://​doi.​org/​
10.​1093/​bioin​forma​tics/​btp324.

	25.	 Institute B. Picard toolkit. Broad Institute, GitHub repository. 2019. https://​
broad​insti​tute.​github.​io/​picard/.

	26.	 Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, 
Levy-Moonshine A, et al. From FastQ data to high-confidence variant 
calls: The genome analysis toolkit best practices pipeline. Curr Protoc 
Bioinform. 2013;43(1):11.0.1–33. https://​doi.​org/​10.​1002/​04712​50953.​
bi111​0s43.

	27.	 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. 
PLINK: a tool set for whole-genome association and population-based 
linkage analyses. Am J Hum Genet. 2007;81(3):559–75. https://​doi.​org/​10.​
1086/​519795.

	28.	 Santana LG, Flores-Mir C, Iglesias-Linares A, Pithon MM, Marques 
LS. Influence of heritability on occlusal traits: a systematic review of 
studies in twins. Prog Orthod. 2020;21(1):29. https://​doi.​org/​10.​1186/​
s40510-​020-​00330-8.

	29.	 Butler D, Cullis B, Gilmour A, Gogel B, Thompson R. ASReml-R reference 
manual version 4. Hemel Hempstead,  HP1 1ES, UK: VSN International 
Ltd; 2017.

	30.	 Guilford JP. Fundamental statistics in psychology and education (2nd ed.). 
McGraw-Hill; 1950.

	31.	 Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: A tool for genome-wide 
complex trait analysis. Am J Hum Genet. 2011;88(1):76–82. https://​doi.​
org/​10.​1016/j.​ajhg.​2010.​11.​011.

	32.	 Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the bayesian 
alphabet for genomic selection. BMC Bioinform. 2011;12(1):186. https://​
doi.​org/​10.​1186/​1471-​2105-​12-​186.

	33.	 Zeng J, de Vlaming R, Wu Y, Robinson MR, Lloyd-Jones LR, Yengo L, et al. 
Signatures of negative selection in the genetic architecture of human 
complex traits. Nat Genet. 2018;50(5):746–53. https://​doi.​org/​10.​1038/​
s41588-​018-​0101-4.

	34.	 Moser G, Lee SH, Hayes BJ, Goddard ME, Wray NR, Visscher PM. Simultane-
ous discovery, estimation and prediction analysis of complex traits using 
a Bayesian mixture model. PLoS Genet. 2015;11(4):e1004969. https://​doi.​
org/​10.​1371/​journ​al.​pgen.​10049​69.

	35.	 Meuwissen T, Hayes B, Goddard M. Genomic selection: a paradigm shift in 
animal breeding. Anim Front. 2016;6(1):6–14. https://​doi.​org/​10.​2527/​af.​
2016-​0002.

	36.	 Mucha S, Gornowicz E, Lisowski M, Grajewski B, Radziszewska J, Szwacz-
kowski T. Genetic parameters of carcass traits in ducks from a crossbred 
population. Ann Anim Sci. 2014;14(1):43.

	37.	 Xu T, Liu X, Huang W, Hou S, Ye B. Estimates of genetic parameters for 
body weight and carcass composition in pekin ducks. J Anim Vet Adv. 
2011;10(23):3123–8.

https://doi.org/10.3382/ps.0720202
https://doi.org/10.1093/ps/85.5.914
https://doi.org/10.5713/ajas.17.0837
https://doi.org/10.5713/ajas.17.0837
https://doi.org/10.1016/j.psj.2021.101241
https://doi.org/10.3168/jds.2008-1514
https://doi.org/10.3168/jds.2008-1514
https://doi.org/10.1186/s12863-014-0110-y
https://doi.org/10.1186/s12711-021-00629-y
https://doi.org/10.1111/age.13157
https://doi.org/10.1111/age.13157
https://doi.org/10.1186/s12711-016-0198-9
https://doi.org/10.1016/j.ygeno.2021.02.007
https://doi.org/10.1186/s12863-017-0507-5
https://doi.org/10.1017/S0016672310000613
https://doi.org/10.1017/S0016672310000613
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.1038/ng.608
https://doi.org/10.1016/j.ajhg.2012.10.010
https://doi.org/10.1016/j.animal.2020.100006
https://doi.org/10.1016/j.animal.2020.100006
https://doi.org/10.3389/fgene.2021.628205
https://doi.org/10.1038/s41467-018-04868-4
https://doi.org/10.1038/s41467-018-04868-4
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
https://doi.org/10.1002/0471250953.bi1110s43
https://doi.org/10.1002/0471250953.bi1110s43
https://doi.org/10.1086/519795
https://doi.org/10.1086/519795
https://doi.org/10.1186/s40510-020-00330-8
https://doi.org/10.1186/s40510-020-00330-8
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1186/1471-2105-12-186
https://doi.org/10.1186/1471-2105-12-186
https://doi.org/10.1038/s41588-018-0101-4
https://doi.org/10.1038/s41588-018-0101-4
https://doi.org/10.1371/journal.pgen.1004969
https://doi.org/10.1371/journal.pgen.1004969
https://doi.org/10.2527/af.2016-0002
https://doi.org/10.2527/af.2016-0002


Page 15 of 15Cai et al. Journal of Animal Science and Biotechnology           (2023) 14:74 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	38.	 Deng MT, Zhu F, Yang YZ, Yang FX, Hao JP, Chen SR, et al. Genome-wide 
association study reveals novel loci associated with body size and carcass 
yields in Pekin ducks. BMC Genom. 2019;20(1):1. https://​doi.​org/​10.​1186/​
s12864-​018-​5379-1.

	39.	 Gaya LG, Ferraz JBS, Rezende FM, Mourão GB, Mattos EC, Eler JP, et al. 
Heritability and genetic correlation estimates for performance and 
carcass and body composition traits in a male broiler line. Poult Sci. 
2006;85(5):837–43. https://​doi.​org/​10.​1093/​ps/​85.5.​837.

	40.	 Kokoszyński D, Wasilewski R, Saleh M, Piwczyński D, Arpášová H, Hrnčar 
C, et al. Growth performance, body measurements, carcass and some 
internal organs characteristics of Pekin ducks. Animals. 2019;9(11):963. 
https://​doi.​org/​10.​3390/​ani91​10963.

	41.	 Mazanowski A, Książkiewicz J. Comprehensive evaluation of meat traits of 
ducks from two sire strains. J Anim Feed Sci. 2004;13(1):173–82. https://​
doi.​org/​10.​22358/​jafs/​67401/​2004.

	42.	 Luan T, Woolliams JA, Lien S, Kent M, Svendsen M, Meuwissen THE. The 
accuracy of genomic selection in Norwegian Red cattle assessed by 
cross-validation. Genetics. 2009;183(3):1119–26. https://​doi.​org/​10.​1534/​
genet​ics.​109.​107391.

	43.	 Clark SA, Hickey JM, Daetwyler HD, van der Werf JH. The importance of 
information on relatives for the prediction of genomic breeding values 
and the implications for the makeup of reference data sets in livestock 
breeding schemes. Genet Sel Evol. 2012;44(1):1–9.

	44.	 Hidalgo J, Lourenco D, Tsuruta S, Masuda Y, Breen V, Hawken R, et al. 
Investigating the persistence of accuracy of genomic predictions over 
time in broilers. J Anim Sci. 2021;99(9):skab239. https://​doi.​org/​10.​1093/​
jas/​skab2​39.

	45.	 Saatchi M, McClure MC, McKay SD, Rolf MM, Kim J, Decker JE, et al. Accura-
cies of genomic breeding values in American Angus beef cattle using 
K-means clustering for cross-validation. Genet Sel Evol. 2011;43(1):1–16.

	46.	 Tribout T, Larzul C, Phocas F. Efficiency of genomic selection in a purebred 
pig male line. J Anim Sci. 2012;90(12):4164–76.

	47.	 van den Berg S, Calus MPL, Meuwissen THE, Wientjes YCJ. Across popula-
tion genomic prediction scenarios in which Bayesian variable selection 
outperforms GBLUP. BMC Genet. 2015;16(1):146. https://​doi.​org/​10.​1186/​
s12863-​015-​0305-x.

	48.	 Zeng J, Garrick D, Dekkers J, Fernando R. A nested mixture model for 
genomic prediction using whole-genome SNP genotypes. PLoS One. 
2018;13(3):e0194683. https://​doi.​org/​10.​1371/​journ​al.​pone.​01946​83.

	49.	 Karaman E, Lund MS, Su G. Multi-trait single-step genomic prediction 
accounting for heterogeneous (co)variances over the genome. Heredity. 
2020;124(2):274–87. https://​doi.​org/​10.​1038/​s41437-​019-​0273-4.

	50.	 Daetwyler HD, Swan AA, van der Werf JHJ, Hayes BJ. Accuracy of pedigree 
and genomic predictions of carcass and novel meat quality traits in 
multi-breed sheep data assessed by cross-validation. Genet Sel Evol. 
2012;44(1):33. https://​doi.​org/​10.​1186/​1297-​9686-​44-​33.

	51.	 Pérez-Enciso M, Forneris N, de los Campos G, Legarra A. Evaluating 
sequence-based genomic prediction with an efficient new simulator. 
Genetics. 2017;205(2):939–53. https://​doi.​org/​10.​1534/​genet​ics.​116.​
194878.

	52.	 Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA. The impact of 
genetic architecture on genome-wide evaluation methods. Genetics. 
2010;185(3):1021–31. https://​doi.​org/​10.​1534/​genet​ics.​110.​116855.

	53.	 Ning C, Xie K, Huang J, Di Y, Wang Y, Yang A, et al. Marker density and 
statistical model designs to increase accuracy of genomic selection for 
wool traits in Angora rabbits. Front Genet. 2022;13:968712. https://​doi.​
org/​10.​3389/​fgene.​2022.​968712.

	54.	 Wientjes YCJ, Veerkamp RF, Calus MPL. The effect of linkage disequilib-
rium and family relationships on the reliability of genomic prediction. 
Genetics. 2013;193(2):621–31. https://​doi.​org/​10.​1534/​genet​ics.​112.​
146290.

https://doi.org/10.1186/s12864-018-5379-1
https://doi.org/10.1186/s12864-018-5379-1
https://doi.org/10.1093/ps/85.5.837
https://doi.org/10.3390/ani9110963
https://doi.org/10.22358/jafs/67401/2004
https://doi.org/10.22358/jafs/67401/2004
https://doi.org/10.1534/genetics.109.107391
https://doi.org/10.1534/genetics.109.107391
https://doi.org/10.1093/jas/skab239
https://doi.org/10.1093/jas/skab239
https://doi.org/10.1186/s12863-015-0305-x
https://doi.org/10.1186/s12863-015-0305-x
https://doi.org/10.1371/journal.pone.0194683
https://doi.org/10.1038/s41437-019-0273-4
https://doi.org/10.1186/1297-9686-44-33
https://doi.org/10.1534/genetics.116.194878
https://doi.org/10.1534/genetics.116.194878
https://doi.org/10.1534/genetics.110.116855
https://doi.org/10.3389/fgene.2022.968712
https://doi.org/10.3389/fgene.2022.968712
https://doi.org/10.1534/genetics.112.146290
https://doi.org/10.1534/genetics.112.146290

	Strategies to improve genomic predictions for 35 duck carcass traits in an F2 population
	Abstract 
	Background 
	Results 
	Conclusion 

	Introduction
	Materials and methods
	Experimental population, phenotype, and genotype data
	The estimation of genetic parameters with the BLUP model
	Genome prediction with the GBLUP model
	Building GRM using different methods
	Bayesian models
	Cross-validation and prediction reliability
	The permutation of marker densities

	Results
	The genetic parameters
	Genome prediction performance for carcass traits
	The marker density affects genome predictions
	The GRM methods affect the GBLUP performance
	Bayesian models can improve the prediction accuracy

	Discussion
	Genetic parameters of 35 carcass traits
	Genome prediction performance
	Effects of marker density on GS
	The improvement of GS by modifying GRM

	Conclusions
	Anchor 27
	Acknowledgements
	References


