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Abstract 

Background  Chickens provide globally important livestock products. Understanding the genetic and molecular 
mechanisms underpinning chicken economic traits is crucial for improving their selective breeding. Influenced by a 
combination of genetic and environmental factors, metabolites are the ultimate expression of physiological processes 
and can provide key insights into livestock economic traits. However, the serum metabolite profile and genetic archi-
tecture of the metabolome in chickens have not been well studied.

Results  Here, comprehensive metabolome detection was performed using non-targeted LC–MS/MS on serum from 
a chicken advanced intercross line (AIL). In total, 7,191 metabolites were used to construct a chicken serum metabo-
lomics dataset and to comprehensively characterize the serum metabolism of the chicken AIL population. Regula-
tory loci affecting metabolites were identified in a metabolome genome-wide association study (mGWAS). There 
were 10,061 significant SNPs associated with 253 metabolites that were widely distributed across the entire chicken 
genome. Many functional genes affect metabolite synthesis, metabolism, and regulation. We highlight the key roles 
of TDH and AASS in amino acids, and ABCB1 and CD36 in lipids.

Conclusions  We constructed a chicken serum metabolite dataset containing 7,191 metabolites to provide a refer-
ence for future chicken metabolome characterization work.

Meanwhile, we used mGWAS to analyze the genetic basis of chicken metabolic traits and metabolites and to improve 
chicken breeding.
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Background
Metabolomics studies small molecules (< 1,000  Da) 
present in biological samples [1]. Essential for growth 
and health in organisms, metabolites are the final prod-
ucts of gene transcription and protein expression, and 
are affected by both internal and external factors [2, 3]. 
Generally regarded as a bridge between genes and phe-
notypes [4, 5], the combination of metabolomics with 
genomics and transcriptomics has proven to be powerful 
in analyzing metabolic diversity and pathways [6, 7]. For 
example, metabolome genome-wide association studies 
(mGWAS) in crops such as tomato, corn, and wheat have 
revealed that many metabolite-associated loci control the 
effects of fruit color, crop yield, and enzyme activity on 
the metabolism of specific substances [4, 8, 9]. Metabolite 
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GWAS has found effective therapeutic targets for meta-
bolic diseases, such as human kidney disease and type 2 
diabetes [10].

Growth in chickens is determined by quantita-
tive  traits  regulated  by  multiple genes [11–14]. Tradi-
tional genome-wide association studies (GWAS) can 
identify SNPs associated with phenotypes but have lim-
ited ability to analyze the mechanisms underlying these 
phenotypes [15, 16]. Investigating metabolic phenotypes 
(metabotypes)—which are determined  by  the  interac-
tion of genetics and environment—instead of traditional 
complex phenotypes may help to solve this problem [17]. 
Currently, the mGWAS approach in livestock has been 
limited to small-sample comparisons so there is a need to 
characterize metabotypes in population samples.

Blood contains a variety of substances required for 
maintaining normal physiological functioning; this makes 
it a powerful tool for assessing the nutritional and health 
status of humans and animals. In agricultural animal 
studies, the association of serum and plasma metabo-
lites with disease [18], meat quality traits [19], feed intake 
[20] and growth traits [21] has been reported. Serum and 
plasma are now commonly used as biological samples in 
metabolomic studies because of their easy accessibility 
and ability to reflect the overall metabolic characteristics 
of an organism [22, 23].

In this study, we aim to examine serum metabolome of 
chickens using a non-targeted metabolomics approach 
and construct a metabolite dataset for chickens. At 
the same time, the metabolic phenotype was used for 
genome-wide association analysis to analyze its genetic 
model and identify genes related to metabolite synthesis 
and metabolic pathways. This could greatly improve our 
understanding of chicken serum metabolic profiles and 
metabolic phenotypes, providing a strong foundation 
for future studies on the mechanisms and localization of 
chicken economic traits.

Materials and methods
Advanced intercross line
We created the AIL in this study by crossing individuals 
from two distinct chicken lines, namely a quality chicken 
Line A03 (HQLA) and a native Chinese breed Huiyang 
Bearded chicken (HB). Detailed feeding patterns, as well 
as F0–F2 mating schemes, were described in a previously 
published article [24]. Later, AIL generations (F3 to F16) 
were established from birds in the F2 population and 
reproduced using random mating [13, 25].

Serum sample collection and processing
Metabolomics was used to study the serum of 508 
12-week-old chickens (266 hens and 242 cocks) of 
the F16 generation. A  serum  sample  was obtained by 

centrifugation at 2,000 × g for 10 min after blood samples 
from chickens were left at room temperature. These sam-
ples were frozen with liquid nitrogen and then stored at 
−80 ℃ for later analyses.

All frozen serum samples were initially thawed on ice 
and vortexed, and 400 μL cold methanol/acetonitrile 
mixed extract (1:1, v:v) was used for metabolome extrac-
tion and protein removal for each 100 μL serum [26]. The 
supernatant (200 μL) was rotated and dried for analysis. 
Dried supernatants were then reconstituted in 50 µL of 
water with 50% methanol (T3 sample) and 94% acetoni-
trile (Amide sample).

Metabolite analysis by LC–MS/MS
A Vanquish UHPLC system was coupled to a Q-Exactive 
HF-X Hybrid Quadrupole-Orbitrap Mass spectrom-
eter (Thermo Fisher Scientific, Waltham, Massachusetts, 
USA) for non-targeted metabonomics detection. Chro-
matographic separation was performed using a reverse-
phase ACQUITY UPLC HSS T3 column (100 Å, 1.8 μm, 
100  mm × 2.1  mm, Waters, Milford, Massachusetts, 
USA) at 40 ℃ with mobile phases of water containing 
0.1% formic acid (A1) and methanol (B1)  and HILIC-
phase ACQUITY UPLC BEH Amide column (130  Å, 
1.7 μm, 100 mm × 2.1 mm, Waters) at 40 °C with mobile 
phases of 50% acetonitrile with 10  mmol/L ammonium 
acetate (A2) and 95% acetonitrile with 10 mmol/L ammo-
nium acetate (B2), pH 9. One microliter of pretreated 
sample was injected.  The T3 flow rate was 0.2  mL/min, 
and gradient elution was performed as follows: the sys-
tem was equilibrated with A1 for 7 min followed by linear 
increases to 98% B1 over 26 min and maintained at 98% 
for 5 min. The amide flow rate was 0.2 mL/min, and gra-
dient elution was performed as follows: the system was 
equilibrated with 98% B2 for 9.9 min followed by linear 
reduced to 2% B2 over 20 min and maintained at 2% for 
2  min. The mass spectrometer was operated in positive 
ion mode with a spray voltage of 3,500 V, a capillary tem-
perature of 350  °C, a sheath gas flow rate of 30 arb, an 
auxiliary gas flow rate of 11 arb, and a probe heater tem-
perature of 220 °C.

Samples were scanned using the full-MS mode, with 
the resolution of the full scan set at 120,000 and a scan 
range of m/z = 70–1,050. To collect sufficient MS/MS 
information for metabolite identification, Quality Con-
trol (QC) samples underwent segmented secondary 
scans. These consisted of four sections: m/z = 70–160, 
m/z = 150–260, m/z = 250–410 and m/z = 400–1,050. 
Using full MS-dd MS2 scan mode, full MS resolution, 
60,000; dd-MS2 resolution, 15,000; top N, 15; isolation 
window, 1 m/z; stepped NCE at 20, 30, and 40. The final 
four-mode data were obtained using T3-pos, T3-neg, 
Amide-pos and Amide-neg representations.
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Metabolite identification and classification
XCMS is a software based on R language which is often 
used for LC–MS data pre-processing analysis [27] and 
in our study it was used for peak extraction, peak align-
ment, etc. The parameters were the maximum allowable 
deviation in m/z for continuous scanning: ppm = 20, the 
range of peak widths: peakwidth = c (5, 34), the the sig-
nal-to-noise ratio threshold: snthresh = 4, the prefiltering 
step in the first step: prefilter = c (3, 15,000), the inclu-
siveness of the grouping: bw1 = 15 and bw2 = 5 to obtain 
the initial MS feature. One-MAP (One-step Metabo-
lomics: A Smart Cloud Platform for Metabolites Identifi-
cation and Biomarkers Discovery, www.​5omics.​com) was 
used to identify the metabolites of segmented secondary 
QC sample data. Three classes of databases of One-MAP 
were used for metabolite identification: a standard data-
base, which structurally identified metabolites through 
direct comparison of their chromatographic and frag-
mentation behavior with 1,500 standards [28], a KEGG 
database, and an integrated database.

We used ClassyFire (https://​cfb.​fiehn​lab.​ucdav​is.​edu/), 
an online metabolite classification software, to clas-
sify the identified metabolites into substances [29]. We 
also combined HMDB and KEGG databases to classify 
metabolites by internal and external sources: Among 
the small-molecule metabolites, those clearly attributed 
to plant and drug sources were classified as exogenous 
metabolites, while the rest were considered endogenous 
metabolites (vitamins and hormones require specific 
analysis), and all conventional lipids were considered 
endogenous metabolites.

Statistical analysis
The metabolite data were log10-transformed to improve 
normality for statistical analysis. Coefficient of varia-
tion (CV) values were calculated for each metabolite and 
expressed as S/A, where S and A represent the standard 
deviation and mean of the metabolites in the population, 
respectively. Pearson’s correlations between metabo-
lites and statistical significance were estimated using R 
(http://​www.r-​proje​ct.​org/). Metabolite pathway analy-
sis was performed using the online metabolite pathway 
enrichment software MetaboAnalyst 5.0 [30]. Gene func-
tion enrichment was performed using the Metascape 
software [31].

Genotypic information
DNA was extracted from blood samples using the DNeasy 
Blood & Tissue Kit (Qiagen 69506, Hilden, GER), evalu-
ated using a NanoDrop spectrophotometer (Thermo Fisher 
Scientific), and examined on 1% agarose gels. All samples 
were quantified using a Qubit 2.0 fluorometer (Invitrogen, 

Carlsbad, California, USA) and then diluted to 40  ng/mL 
in a 96-well plate. Libraries were constructed using the Tn5 
method, and final libraries were sequenced on two lanes of 
an MGISEQ-2000 (MGI, Shenzhen, Guangzhou, CHN) to 
generate 2 × 100 bp double-end reads or on one lane of a 
BGISEQ-500 (MGI, Shenzhen, Guangzhou, CHN) to gen-
erate 2 × 100 bp double-end reads [32].

In summary, low-coverage sequencing data from more 
than 1,000 samples were mapped to the GRCg6a refer-
ence genome and the BaseVar + STITCH pipeline was 
used to impute SNPs [32]. A subset of 962,660 SNPs that 
tagged all other SNPs with MAF > 5% at LD r2 > 0.95 were 
used for subsequent analysis.

mGWAS and heritability estimation
To integrate genomic and metabolomic data, metabo-
lome genome-wide association studies (mGWAS) were 
conducted in which each metabolite (n = 2,935) was con-
sidered a phenotype and examined for its association 
with each SNP (960 K). The mixed linear model approach 
was used for genome-wide association analysis based 
on marker SNPs, as implemented in the GCTA (1.93.2) 
package [33]. We estimated SNP heritability using the 
GREML module in the software package GCTA (1.93.2) 
metabolites heritability estimation. Heritability was esti-
mated using a mixed model as follows:

with var (y) = WW’σu
2 + Iσe

2, where y is the vector of the 
metabolite phenotypes, b is a vector of the fixed effects 
(sex and batch), with its incidence matrix X, u is the vec-
tor of additive values based on the genotype data, and 
e is a random residual error. W is a genomic additive 
relationship matrix, σu

2 is the additive variance, and σe
2 

is the residual variance. Variance components were esti-
mated by genome-based restricted maximum likelihood 
(GREML) using the reml program in GCTA [34].

SNP annotation and candidate genes
We first used SnpEff software [35] to annotate functional 
genes for 10,061 SNPs that reached the significance 
threshold. The genes obtained from mGWAS analysis of 
the same metabolite species were enriched for functions 
using Metascape software [31] to screen candidate genes 
related to the regulation, synthesis, and metabolism of 
the species, and the SNPs annotated to the respective 
gene were considered key SNPs.

Results
Serum metabolic profiling and non‑targeted metabolite 
dataset
In this study, non-targeted LC–MS/MS metabolomics 
was performed using serum sampled from 12-week-old 

y = Xb +Wu+ e
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chickens of the F16 generation of an advanced inter-
cross line (AIL). A total of 7,191 metabolites and 4,204 
endogenous metabolites were detected and identified 
(Fig. 1A and B, Table S1). Of these metabolites, three lev-
els of databases were used for identification, the standard 
databased identified 934 metabolites of which were 800 
endogenous; the KEGG database identified 2,782 metabo-
lites of which were 1,322 endogenous; the Integrated data-
base, identified 4,953 metabolites in total, of which 3,199 
were endogenous (Fig.  1C). The identified compounds 
covered a wide range of biochemicals, including amino 
acids, benzenoids, carbohydrates, lipids, organic acids, 

organic heterocyclic compounds, organonitrogen, pep-
tides and nucleosides, phenylpropanoids and polyketides, 
others, and exogenous compounds (Fig. 1D, Table S1).

We used the above metabolites to construct a non-
targeted dataset of chicken serum metabolites using a 
systematic and automated approach and homemade 
software (OSI/SMMS) [28]. The dataset contains basic 
metabolite information such as molecular formula, m/z, 
retention time, primary and secondary spectral scores, 
and internal and external source information. For each 
metabolite, the first- and second-level mass spectra could 
be viewed, and metabolites with a combined score higher 

Fig. 1  Chicken serum metabolic profiles based on QC samples. A Venn diagram of all metabolites identified in the four detection modes. The 
same metabolites were detected by multiple modes with a count of 1. B Venn diagram of endogenous metabolites identified in the four detection 
modes. The same metabolites were detected by multiple modes with a count of 1. C Identification of metabolites using three classes of database. 
SD, Standards Database; KD, KEGG Database; ID, Intergrated Database; T, Total metabolites; E, Endogenous metabolites. D Classification of all 
metabolites
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than 0.5, which is highly reliable, were retained in the 
dataset. Our dataset was able to help identify many more 
metabolites in a separate batch of muscle samples, than 
the traditional online database (Fig. S1).

Metabolomic characterization of the AIL F16 population
A total of 508 chicken serum samples from the F16 gen-
eration were analyzed using a non-targeted LC–MS/
MS method. After quality control, the total number of 
metabolic features extracted in each detection mode 
was 27,818, 20,274, 14,569 and 11,054 (T3-pos, T3-neg, 
Amide-pos and Amide-neg, respectively). Using the 
chicken serum metabolite dataset matching identifica-
tion, 1,238, 711, 518, and 468 metabolites were iden-
tified in four modes for a total of 2,525 metabolites 
(Fig.  2A, Table S2). The metabolites were  consisted of 
amino acids (7.52%), benzenoids (6.34%), carbohydrates 
(2.53%), exogenous compounds (9.31%), lipids (49.94%), 
organic acids (4.32%), organic heterocycles (8.32%), orga-
nonitrogen (1.47%), peptides and nucleosides (3.84%), 
phenylpropanoids and polyketides (3.09%), and other 
metabolites (3.33%) (Fig. 2B, Table S2). These metabolites 
are involved in multiple important metabolic pathways 
supporting key cellular processes.

Principal component analysis (PCA) of all features 
showed no population stratification of metabolites 
detected in the same mode (Fig. S2). The levels of metab-
olite accumulation in the samples varied considerably, 
which allowed for efficient analysis of their genetic struc-
ture. In the AIL population, the mean genetic coefficients 
of variation (CV) of these metabolites were 66.7%, 58.0%, 
67.8% and 69.5% across the four modes (Fig.  2C, Table 
S3). The substances with the maximum mean CV among 
the different modes, with amino acids (81.9% in T3-pos), 
benzenes (72.6% in T3-neg), organonitrogen (131.7% in 
Amide-pos mode) and 95% in peptides and nucleotides 
in Amide-neg mode. 5,6-Dihydroxyindole had the high-
est CV value (857.9%) of all metabolites.

The broad sense heritability (h2) distribution of meta-
bolic traits showed that more than 7.8% of the metabo-
lites showed heritability above 0.2 (Fig.  2D, Table S4). 
In Amide-neg mode, the compound with the highest 
heritability was 2’-O-Methyluridine, which had an h2 of 
0.56. Under the other three modes (T3-pos, T3-neg and 

Amide-pos), ceramide (Cer 36:3) had the highest herit-
ability, with an h2 of 0.69, 0.71 and 0.59, respectively. 
These results show that genetic factors affect the herit-
ability of the metabolites.

Metabolite correlation analysis was performed using 
Pearson’s correlation coefficient, and heat maps were 
plotted by screening metabolites with high metabolite 
correlation coefficients (r > 0.8, P < 0.05; Fig. 2E and F). 
The results showed that lipids can be divided into sev-
eral distinct clusters, while different metabolite species 
were also present in the clusters. This indicates that the 
overall similarity of metabolites of the same species 
is higher, and that metabolites in the same metabolic 
pathway are more likely to cluster.

Metabolome genome‑wide association study (mGWAS)
The AIL population was sequenced using a low-
coverage whole-genome sequencing strategy (LCS), 
and approximately 960  K SNPs were obtained 
after quality control for genomic coverage rang-
ing from 0.11  to  2.60 × , the mean coverage was 
0.91 ± 0.23 × (mean ± SD). Of the 2,935 metabo-
lites (362 metabolites present in at least two detec-
tion modes), 253 metabolites had mGWAS signals, 
with 10,061 SNPs reaching the significance threshold 
[−log10 (P) > 7.29] (Fig.  3A, Table S5). These SNP loci 
were widely distributed throughout the genome, mainly 
concentrated on chr1, chr2, chr3, chr7, and chr17 
(8,152/10,061 = 81.0%) (Fig. 3A, Fig. S3, Table S5). The 
mGWAS signal was identified at different locations in 
the genomes of different compound species (Fig.  3B, 
Fig. S4). The number of lipid-related SNPs (3,217) was 
the highest among all categorized metabolites, followed 
by amino acids, peptides, and nucleosides (Fig. 3C). For 
each metabolite reaching the threshold SNPs chromo-
some location, of which, 78.7% (199/253) metabolites 
had signal on only one chromosome, 21.3% (54/253) 
metabolites had signal on multiple chromosomes, and 
L-tyrosine methyl ester had signal on 7 chromosomes 
(Fig. 3D). All SNPs that reached the significant thresh-
old corresponded annotated to 1,689 genes, mainly 
pathways including lipid metabolism, neuronal devel-
opment, and regulation of hormone levels (Fig. 3E).

(See figure on next page.)
Fig. 2  Metabolomic characterization of chicken AIL population. A Venn diagram of metabolites identified in the four detection modes. The 
same metabolites were detected by multiple modes with a count of 1. B Pie chart showing the percentage of each type of metabolite detected 
across all four modes. C Distribution of the values of the coefficient of variation (CV) across the four detection modes, with the mean CV indicated 
by a horizontal line. D Distribution of the broad-sense heritability (h2) of metabolites across the four detection modes, with the dashed red line 
representing h2 = 0.2. E Heat map displaying paired Pearson’s correlations (r) between metabolites detected under the T3 modes, with metabolites 
classified according to a hierarchical clustering analysis based on correlations. Metabolites included in heat map had an r > 0.8, P < 0.05. F Heat 
map displaying paired Pearson’s correlations (r) between metabolites detected under the Amide modes, with metabolites classified according to a 
hierarchical clustering analysis based on correlations. Metabolites included in heat map had an r > 0.8, P < 0.05
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Fig. 2  (See legend on previous page.)
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Fig. 3  Overview of metabolites and SNPs identified in the mGWAS. A Chromosomal distribution of all SNPs, where the significance threshold 
is −log10(P) > 7.29. B Chromosomal distribution of SNPs in different metabolites classes, where the significance threshold is −log10(P) > 7.29. C The 
number of SNPs mapped by different classes of metabolites. Petides and Nucle., Petides and Nucleosides; Phenylpro. and Polyke., Phenylpropanoids 
and polyketides. D Statistics on the number of chromosomes distributed by the same metabolite SNPs. E Functional enrichment of all 
SNP-annotated genes
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Identification of candidate genes
Based on metabolite and gene function annotation infor-
mation, we identified a number of genes associated with 
multiple pathways of metabolite synthesis, metabolism, 
and regulation (Table  1). In this study, 26 amino acids 
and their derivatives had GWAS signals; 1,622 SNPs 
were significantly associated with these compounds, 
mainly on chr3 and chr6 (Fig.  3B, Table S5). The main 
metabolic pathways involved included glycine, serine, 
and threonine metabolism, glyoxylate and dicarboxylate 
metabolism, and arginine and proline metabolism (Fig. 
S5). Eight genes containing SNPs significantly associated 
with metabolites were related to amino acid synthesis 
and metabolism. For example, the SNP (3:107,175,865) 
was significantly associated with glycine (P = 1.64E−14, 
Fig. 4A), and the annotated gene for this SNP locus was 
TDH (encoding L-threonine dehydrogenase); trans-
3-aminocyclopentane-1-carboxylic acid (1:23,028,514, 
P = 5.38E−11) and homoarginine (1:23,005,471, 
P = 1.04E−11) showed a significant association with two 
SNPs located in a gene on chromosome 1, encoding a 
bifunctional enzyme that catalyzes the first two steps of 
the mammalian lysine degradation pathway (aminoadi-
pate-semialdehyde synthase, AASS; Fig. 4A).

A total of 123 lipids had mGWAS signals, mainly glyc-
erophospholipids, steroids, sphingolipids, and other sub-
stances (Fig. S6). A total of 3,217 SNPs of lipids reached 
the significance threshold, with signals mainly from chr1, 
chr2 and ch7 (Fig.  3B). The SNPs were annotated to 19 
genes related to lipid metabolism (Table 1), mainly involv-
ing fatty acid metabolism, medium-chain fatty acid meta-
bolic processes, and linoleic acid metabolic processes. 
The SNP (2:20,748,311) located within the ATP- binding 
cassette subfamily B member 1 gene (ABCB1) was associ-
ated with 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glyce 
ro-3-phosphoserine (PC(16:0/18:1(9Z))) (P = 7.58E−09) 
and PA 37:10 (P = 1.87E−20, Fig.  4B); 8(R)-hydroxy-
(5Z,9E,11Z,14Z)-eicosatetraenoic acid (8R-HETE) is 
a metabolite of arachidonic acid, which reached a sig-
nificance threshold SNP (6:18,456,793) located in the 
intergenic region of ALOX5 and CYP2C23a genes 
(P = 9.44E−12, Fig.  4B). Arachidonic acid can be oxy-
genated by a variety of enzymes, including lipoxyge-
nases (ALOX5, etc.), cyclooxygenases, and cytochrome 
P450s (CYP2C23a), and can be converted to a complex 
mixture of oxygenated products as a result of lipid per-
oxidation. The three SNPs (1:11,301,220, P = 9.05E−13; 
1:11,358,208, P = 1.33E−18; 1:11,370,522, P = 4.19E−14; 
1:11,301,220, P = 1.31E−12), which were significantly 
associated with the sphingolipid metabolite Cer were 
located within the CD36 molecule gene (CD36), the most 
important transmembrane glycoprotein mediating the 
uptake of oxidized LDLs (Fig. 4B).

In addition to these amino acids and lipids, oxypurinol 
an inhibitor of xanthine oxidase, a metabolite of allopu-
rinol. XDH (Xanthine dehydrogenase) is a key enzyme 
involved in purine degradation and is related to hydroxy-
purinol. The SNP located in XDH (3:4,488,553) was sig-
nificantly associated with oxypurinol (P = 8.79E−09, 
Fig.  4C). The SNP (7:5,826,779) in bilirubin was 
detected in both T3-pos (P = 3.70E−19) and T3-neg 
(P = 6.92E−34), reached a significance threshold, and 
was located within UDP glucuronosyltransferase family 
1 member A1 gene (UGT1A1), which is associated with 
cholesterol synthesis (Fig. 4C).

Discussion
Chicken metabolite dataset and metabolite identification
This study established the first large-scale serum metabo-
lomic profile in chickens. A total of 7,191 metabolites 
were identified using non-targeted metabolomics; these 
were integrated to form a chicken serum metabolite 
public reference dataset that can provide a reference for 
future chicken metabolomics studies.

The identification of unknown metabolites is an urgent 
problem in metabolomics research. In this study, more 
than 70,000 MS features were obtained by peak extrac-
tion and filter correction; however no more than 5% of 
the metabolites could be identified because of the limi-
tations of the current metabolite database, which greatly 
limited the subsequent tests. Metabolite structure iden-
tification based on metabolic reaction networks can 
largely identify unknown metabolites [36]; alternatively, 
a widely targeted metabolomics strategy combining the 
high resolution and wide coverage of non-targeted tech-
nologies with the accuracy benefits of targeted MRM 
technologies could improve the efficiency of metabo-
lomic assays [37]. Once the method is established, all 
samples can be assayed using a triple quadrupole liquid 
mass spectrometry instrument to obtain more accurate 
quantitative information [38]. A variety of widely tar-
geted metabolomics strategies have been published, such 
as the full scan and ddMS2 mode combination method 
[39], SWATH-MS method [40], and multiple ion moni-
toring enhanced product ion method (MIM-EPI) [41]. 
We obtained all the information on non-targeted metab-
olomics of chicken serum, and we will continue to select 
and validate MRM ion pairs to establish a widely targeted 
metabolomics method for chicken serum in the future.

The reproducibility of high-throughput metabolomics 
metabolite detection was the basis for the subsequent 
experiments [42]. In the present study, only peaks that 
were present in more than three samples and responded 
to signals exceeding 15,000 (prefilter = c (3, 15,000)) were 
retained in the peak extraction stage. Also, during sub-
sequent data processing, the mass spectrometry features 
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Table 1  Summary of genes associated with metabolite synthesis, metabolism and regulation in the mGWAS

Gene name Chr Position Metabolite name Ref/Alt P-value Gene description Metabolite ID1

Amino acids

  AASS 1 23,028,514 trans-3-Aminocyclopentane-
1-carboxylic acid

G/A 5.38E−11 Aminoadipate-semialdehyde 
synthase

a2192

1 23,005,471 Homoarginine A/T 1.04E−11 a6139

  PYCR3 2 148,895,024 D-2-Aminoadipic acid C/T 2.68E−13 Pyrroline-5-Carboxylate Reduc-
tase 3

a2916

  FDFT1 3 107,355,672 L-2-Amino-6-oxoheptanedioate A/G 6.92E−15 Farnesyl-Diphosphate Farnesyl-
transferase 1

a6166

  MSRA 3 106,645,100 L-2-Amino-6-oxoheptanedioate A/G 2.76E−10 Methionine Sulfoxide Reductase A a6166

3 107,535,427 N-oleoyl threonine C/T 7.75E−12 a18373

  TDH 3 107,175,865 Glycine T/C 1.64E−14 L-Threonine Dehydrogenase 
(Pseudogene)

b23

  MTMR4 4 14,104,422 L-Serine C/T 3.78E−08 Myotubularin Related Protein 4 c356

  GOT1 6 23,099,727 N6-Methyl-L-lysine T/C 2.52E−19 Glutamic-Oxaloacetic Transami-
nase 1

a4060

  HOGA1 6 23,275,981 N6-Methyl-L-lysine A/G 3.83E−20 4-Hydroxy-2-Oxoglutarate 
Aldolase 1

a4060

Lipids

  CD36 1 11,301,220 Cer 36:3 T/C 9.05E−13 Cluster of differentiation 36 a26248

1 11,358,208 Cer-NS d36:3 G/A 1.33E−18 b21105

1 11,370,522 Cer-NP t19:1/14:1 A/C 4.19E−14 b21776

1 11,301,220 Cer 36:3 T/C 1.31E−12 c11086

  RORA 1 121,625,308 17α,21-Dihydroxypregnenolone A/G 1.93E−08 RAR Related Orphan Receptor A a16236

  ABCB1 2 20,748,311 PA 37:10 G/A 1.87E−20 ATP Binding Cassette Subfamily B 
Member 1

d14475

2 20,748,311 1-Hexadecanoyl-2-(9Z-
octadecenoyl)-sn-glycero-3-phos-
phoserine (PC(16:0/18:1(9Z)))

G/A 7.58E−09 d14771

  CUBN 2 19,974,415 (3S,3’R,5R,6R)-7’,8’-Didehydro-
3,6-epoxy-5,6-dihydro-beta, beta-
carotene-3’,5-diol

C/T 4.11E−10 Cubilin d13798

2 19,974,415 PA 37:10 C/T 3.19E−15 d14475

  HACD2 2 19,684,787 PA 37:10 T/A 4.30E−12 3-Hydroxyacyl-CoA Dehydratase 2 d14475

  OLAH 2 20,632,976 PA 37:10 A/G 8.80E−24 Oleoyl-ACP Hydrolase d14475

2 20,812,193 PS 36:2 C/A 8.98E−09 d14886

  MTMR9 3 107,155,447 PC 35:3 C/T 2.24E−09 Myotubularin Related Protein 9 b24244

  SNX17 3 104,426,364 SM 34:0 G/T 7.63E−09 Sorting Nexin 17 c14637

  HPGDS 4 37,173,242 Corticosterone A/C 4.43E−12 Hematopoietic Prostaglandin D 
Synthase

d9959

  GALC 5 43,096,098 Phosphatidylethanolamine 
18:2–18:2

T/C 3.66E−10 Galactosylceramidase b23510

  NPC2 5 38,143,267 Plasmenyl-PC 34:2 G/A 3.75E−08 NPC Intracellular Cholesterol 
Transporter 2

a32135

  CYP2C23a-ALOX5 6 18,456,793 8(R)-Hydroxy-(5Z,9E,11Z,14Z)-
eicosatetraenoic acid (8R-HETE)

G/A 9.44E−12 Cyclooxygenases, and 
cytochrome P450s-lipoxygenases

d9222

  AGAP1 7 5,491,791 18-acetoxy-1α;,25-
dihydroxyvitamin D3

G/A 4.36E−08 ArfGAP With GTPase Domain, 
Ankyrin Repeat And PH Domain 1

a22758

7 5,223,906 4α-Methylzymosterol-4-
carboxylate

G/A 6.50E−13 d12116

  AHR2 7 6,569,111 4α-Methylzymosterol-4-
carboxylate

A/G 2.96E−11 Aryl Hydrocarbon Receptor d12116

  PLPP3 8 26,062,752 PE (2:0/19:0) G/A 5.11E−09 Phospholipid Phosphatase 3 d13432

  PRKAA2 8 26,124,947 13E,15E,18Z,20Z-pentacosa-
tetraen-11-ynyl acetate

A/G 1.21E−08 Protein Kinase AMP-Activated 
Catalytic Subunit Alpha 2

a19217

8 26,131,440 PE (2:0/19:0) G/A 1.17E−08 d13432
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present in more than 50% of the QC samples were 
retained, and the missing mass spectrometry features 
in more than 80% of the samples were removed. Finally, 
only the mass spectral features with CV values < 50% 
in the QC samples were analyzed to avoid interference 
caused by false-positive peaks to the maximum extent 
possible. With the subsequent metabolomic detection 
experiments on the remaining serum samples of the AIL 
population, metabolites that were not reproducible in 
both batches will be further screened to obtain more reli-
able analytical conclusions.

Heritability of animal metabolites
Metabolites with moderate levels of heritability have 
the potential to serve as biomarkers for genetic selec-
tion. Plant secondary metabolites have higher heritability 
than primary metabolites, and flavonoid metabolites can 
have heritability greater than 0.7 [6]. The literature sug-
gests that in humans, approximately 50% of phenotypic 
variation in metabolite levels is genetically induced, but 
heritability estimates vary across metabolite classes [43]. 
Compared to plants, which are protected against exter-
nal stimuli by secondary metabolites [44], animals are 
exposed to more diverse environmental stimuli, such as 
living environment, diet, and drugs [45, 46]. In our study, 
the heritability of peptides and nucleosides was higher 
than that of other metabolite classes in all four detec-
tion modes, this suggests their potential as biomarkers 
for genetic selection. A total of 34.2% of the metabolite 
heritability was zero, mainly influenced by environmental 
factors; in contrast, a study of plasma metabolites in beef 
cattle found that 22 of 33 metabolites had zero or negligi-
ble heritability, the non-heritable status of these metabo-
lites may be used as a guide to animal management [17]. 
In our study, 7.8% of metabolite heritability was greater 
than 0.2. Cer 36:3 reached high heritability levels (> 0.59 
in all three assay modes), and the heritability of hypoxan-
thine (0.38) was moderate. Studies have shown that the 
heritability values of long-chain polyunsaturated fatty 

acids in pork are usually above 0.50 [47] and that hypox-
anthine is one of the highest heritability metabolites 
among plasma metabolites in young healthy pigs [46].

mGWAS and candidate genes
This study reported mGWAS signals for 253 metabolites 
representing the largest chicken serum metabolite associ-
ation study to date. Metabolites and their associated loci 
broadly cover representatives of all major metabolic path-
ways, providing a comprehensive picture of how genetic 
variation affects blood metabolic homeostasis in chick-
ens. We identified two candidate genes, TDH and AASS 
associated with amino acid metabolites, and another two 
candidate genes, ABCB1, CD36 associated with lipids 
(Table  2) [48–54]. Amino acids are essential for animal 
growth and development. In the chicken feeding process, 
different types and proportions of amino acids are usually 
added to the diet to suit the growth needs of chickens at 
different stages [55]. Lipids are important biomolecules 
in animals and have a variety of biological functions, 
including energy storage, signal recognition, and immu-
nity [56]. Lipid metabolism is closely related to the main-
tenance of the dynamic energy balance and physiological 
functions in broilers [18].

Traditional GWAS have identified a large number of 
SNPs and candidate genes related to economic traits in 
chickens; for example, the end of chromosome 1 con-
tains a QTL with a sizable effect on growth traits such 
as chicken body weight [13, 24], and a large number of 
SNPs related to chicken meat quality traits [57], egg-
laying traits [58] and fat deposition have been identified 
[59]. However, identifying which of these many SNPs 
represent the main causative mutations has proven diffi-
cult. Higher-resolution association analysis using simple 
metabolic phenotypes instead of complex comprehen-
sive phenotypes can provide more refined localization. 
For instance, the amount of fat deposited in livestock 
and poultry is an important economic factor because it 
is associated with meat quality and feed conversion rate 

1 The letters a, b, c and d preceding under metabolite ID numbers represent the 4 detection modes: T3-pos, T3-neg, Amide-pos and Amide-neg, respectively

Table 1  (continued)

Gene name Chr Position Metabolite name Ref/Alt P-value Gene description Metabolite ID1

  GPAT2 22 5,343,878 LysoPC 20:4 C/T 2.91E−08 Glycerol-3-Phosphate Acyltrans-
ferase 2, Mitochondrial

a26448

  PIAS4 28 1,553,948 Monoanhydroescholtzxanthin C/T 5.06E−11 Protein Inhibitor of Activated 
STAT 4

c10859

Organic heterocyclic

  XDH 3 4,488,553 Oxypurinol T/C 8.79E−09 Xanthine Dehydrogenase a3598

  UGT1A1 7 5,826,779 Biliverdin C/T 3.70E−19 UDP glucuronosyltransferase 1 
family, polypeptide A1

a27158

7 5,826,779 Biliverdin C/T 6.92E−34 b21472
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Fig. 4  Mapping of SNP-annotated genes associated with metabolites. A Annotated gene display of amino acid analogues corresponding to SNPs. 
B Annotated gene display of lipid analogues corresponding to SNPs. C Annotated gene display of organic heterocyclic analogues corresponding to 
SNPs. Key SNPs are marked with a red diamond, and the letters a, b, c and d following metabolite names are the detection modes, T3-pos, T3-neg, 
Amide-pos, Amide-neg, respectively
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(FCR). Here, we identified 123 lipids with mGWAS sig-
nals, of which the annotated genes PLK3 and SLC16A1 
(located in this QTL region) were associated with 
abdominal adipogenesis in chickens [11, 60], and ITGA8 
is a core gene associated with epigenetic energy in 

chickens [61] (Table S5). A previous study reported that 
multiple causative mutations cumulatively contribute to 
this major QTL, which may be explained by the genes 
playing their respective roles in different metabolic path-
ways affecting chicken growth traits.

Table 2  Summary of key gene and metabolite functions in the mGWAS

1 The letters a, b and c following the metabolite names represent the 3 detection modes: T3-pos, T3-neg and Amide-pos, respectively

Gene name SNP (Ref/Alt) Metabolite name1 Metabolite content in 
different genotypes (log10, 
mean ± SD)

Gene and metabolite function 
description

  TDH 3:107,175,865 (T/C) Glycine TT: 15.081 ± 0.477 Mitochondrial threonine dehydro-
genase (TDH) enzyme to catabolize 
threonine into glycine and acetyl-CoA 
in mouse ES cells [48];

TC/CT: 14.733 ± 0.419 TDH catalyzes the conversion of 
2-amino-3-oxobutyrate to acetyl CoA 
and glycine [49];

CC: 14.600 ± 0.416

  AASS 1:23,005,471 (A/T) Homoarginine AA: 18.664 ± 0.483 Synthesis of L-homoarginine (hArg) 
from Arg and L-lysine in animals and 
humans [50];

AT/TA: 18.216 ± 0.406 AASS catalyzes the first two steps in 
the mammalian lysine degradation 
pathway;

TT: 18.042 ± 0.807

  ABCB1 2:20,748,311 (G/A) PA 37:10 GG: 12.528 ± 0.731 ABC transporter protein is a lipid trans-
porter protein [51];

GA/AG: 13.045 ± 0.723 ABCB1 transports phospholipids [52];

AA: 13.834 ± 0.878

1-Hexadecanoyl-2-(9Z-octadecenoyl)-
sn-glycero-3-phosphoserine 
(PC(16:0/18:1(9Z)))

GG: 16.868 ± 0.510

GA/AG: 17.074 ± 0.496

AA: 17.444 ± 0.469

CD36 1:11,301,220 (T/C) Cer 36:3 (a) TT: 14.447 ± 0.709 Cer 36:3 is a ceramide, members of 
the class of compounds known as 
sphingolipids;

TC/CT: 15.143 ± 0.522 CD36 is a number of key proteins 
involved in fatty acid uptake [53];

CC: 15.225 ± 0.585

Cer 36:3 (c) TT: 15.723 ± 0.452

TC/CT: 16.160 ± 0.380

CC: 16.199 ± 0.475

1:11,358,208 (G/A) Cer-NS d36:3 GG: 13.856 ± 0.647

GA/AG: 14.579 ± 0.473

AA: 14.734 ± 0.492

1:11,370,522 (A/C) Cer-NP t19:1/14:1 AA: 11.926 ± 1.069

AC/CA: 12.801 ± 0.815

CC: 12.979 ± 0.774

  UGT1A1 7:5,826,779 (C/T) Biliverdin (a) CC: 16.607 ± 0.695 UGT1A1 encodes an enzyme with 
bilirubin glucuronidating activity;

CT/TC: 15.991 ± 0.601 Bilirubin is derived from biliverdin [54]

TT: 15.898 ± 0.543

Biliverdin (b) CC: 14.646 ± 0.410

CT/TC: 13.961 ± 0.453

TT: 13.746 ± 0.519
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This AIL population is a very valuable experimental 
resource, and our GWAS analysis in F9 not only repro-
duced the results of F2, but also further increased the 
localization accuracy [13]. This is the first mGWAS in an 
AIL line, and the related metabolic phenotypes were also 
obtained for the first time. The significant SNPs will be 
of great breeding value, and we believe that the repeated 
experiments in subsequent generations can be used to 
further reproduce and confirm the current results and 
further improve the precision.

Conclusions
We performed a large-scale serum non-targeted metab-
olomic assay on a chicken AIL population to provide 
the first comprehensive characterization of the chicken 
serum metabolic profile. Containing 7,191 metabolites, 
the first non-targeted in-house metabolite database of 
chickens was established. The mGWAS analysis was per-
formed with the SNP dataset obtained from low-cover-
age sequencing and metabotypes, and a total of 10,061 
SNPs for 253 metabolites were reported as genome-wide 
significant [−log10 (P) > 7.29]. GWAS loci were mainly 
concentrated in chr1, chr2, chr3, chr7 and chr17. A 
large number of candidate genes related to the synthesis, 
metabolism, and regulation of this class of metabolites 
were identified in amino acids, lipids, and organic het-
erocycles. This study provides a comprehensive picture of 
how genetic variation affects blood metabolic homeosta-
sis in chickens and provides a foundation for future stud-
ies on the use of metabolic phenotypes to understand 
complex economic traits in animals.
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