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Abstract 

Background  Sharply increased beef consumption is propelling the genetic improvement projects of beef cattle 
in China. Three-dimensional genome structure is confirmed to be an important layer of transcription regulation. 
Although genome-wide interaction data of several livestock species have already been produced, the genome struc-
ture states and its regulatory rules in cattle muscle are still limited.

Results  Here we present the first 3D genome data in Longissimus dorsi muscle of fetal and adult cattle (Bos taurus). 
We showed that compartments, topologically associating domains (TADs), and loop undergo re-organization and 
the structure dynamics were consistent with transcriptomic divergence during muscle development. Furthermore, 
we annotated cis-regulatory elements in cattle genome during myogenesis and demonstrated the enrichments of 
promoter and enhancer in selection sweeps. We further validated the regulatory function of one HMGA2 intronic 
enhancer near a strong sweep region on primary bovine myoblast proliferation.

Conclusions  Our data provide key insights of the regulatory function of high order chromatin structure and cattle 
myogenic biology, which will benefit the progress of genetic improvement of beef cattle.
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Background
As an expanding beef market, China has registered a 
19-fold growth in per capita beef consumption from 
0.31 kg in 1978 to 6.28 kg in 2019 (original data from 
FAO and further analyzed by Our World in Data, https://​
ourwo​rldin​data.​org/​graph​er/​per-​capita-​meat-​type). This 
sharp increase with the resulting beef deficit has become 
principle motives behind the breeding up projects of beef 
cattle in China. To this day, several representative cattle 
breeds have been genetically improved for the land [1]. 
However, better genetic quality may be further achieved 
through exploring the molecular basis of skeletal myo-
genesis [2–4].

Three-dimensional genome organization is now 
confirmed as an additional layer in gene regulation 
[5, 6]. Chromosomes are not randomly distributed 
in the nuclear space but instead occupy discrete vol-
umes called chromosome territories as revealed by 
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fluorescence in  situ hybridization [7, 8]. Recently, 
by measuring the frequency of physical interactions 
between genomic loci, various ‘chromosome confor-
mation capture technologies’ confirmed the existence 
of chromosome territories at a resolution of several 
megabase and identified extra hierarchical structure 
units of chromosomes at higher resolutions [9, 10]. 
Compartments have transcriptional active A and inac-
tive B forms and the two forms alternate along the 
length of genome, which broadly correspond to euchro-
matin and heterochromatin, respectively [11, 12]. Top-
ologically associating domains (TADs) are formed by 
loop extrusion and defined as highly self-interaction 
regions [13]. The TAD boundaries restrict the interac-
tions within the same TAD, while insulating interac-
tions within different domains [14, 15]. TAD disruption 
can lead to enhancer adoption and misregulation of 
essential genes [16–18]. These genome structures com-
monly exist in higher eukaryotes and the dynamics of 
conformational genome has been functionally asso-
ciated with development and cell differentiation of 
human and model organisms [19–22], however, very 
limited data are available for livestock genomes [4].

It is confirmed that the cis-regulatory elements may be 
indispensable drivers of phenotypic variation of domes-
ticated animals, given the facts that most genome-wide 
association study (GWAS) hits lie outside protein-coding 
regions [2, 23]. Chromatin loops, the most fine-scaled 
conformation of 3D genome, serve as bridges between 
transcriptional regulation and phenotypic variation by 
bringing regulatory elements and their target genes into 
close spatial proximity [2, 24]. To date, several studies 
have deciphered novel enhancers of muscle genes for 
human [25], mouse [26–29], and pig [21], by calling loops 
from high-resolution chromatin interaction maps. More-
over, the Functional Annotation of Animal Genomes con-
sortium is working to create reference functional maps of 
farmed animals by profiling the landscape of transcrip-
tion, chromatin accessibility and genome conformation 
[3]. However, the spatial organization of cattle muscle 
genome involving regulatory elements and its impact on 
gene expression are still lacking [30], representing a criti-
cal knowledge gap from the genetics to phenotype of cat-
tle muscle development.

In this study, we employed RNA sequencing (RNA-
seq), assay for transposase accessible chromatin with 
high-throughput sequencing (ATAC-seq), and high-
throughput chromosome conformation capture (Hi-C) 
methodologies to characterize the dynamics and func-
tions of the 3D genome structure during muscle develop-
ment. We further evaluated the enrichment of selection 
sweeps for regulatory sequences and revealed the regula-
tory function of one HMGA2 intronic enhancer near the 

strongest selection signal on primary bovine myoblast 
proliferation. Our data provide some novel insights into 
the molecular basis of cattle myogenesis.

Methods
Skeletal muscle samples
Longissimus dorsi muscle from twelve fetuses and five 
adult cows of Qinchuan cattle (QC) were collected for 
high-throughput sequencing or primary myoblast isola-
tion. The fetal samples and adult samples were obtained 
from slaughterhouses in Shannxi province and Gansu 
province  (China), respectively. All the slaughtered cows 
are commercial individuals and genetically unrelated. 
The experimental protocols were approved by the Insti-
tutional Animal Care and Use Committee of Northwest 
A&F University (NWAFAC1020).

Hi‑C library construction and sequencing
We generated Hi-C data from two adult samples (about 
2 years old) and two female fetal samples (about 2 months 
old) with similar body size between the replicates. Hi-C 
libraries were prepared following the previously pub-
lished protocol with minor modifications compatible 
with frozen tissue [11]. Briefly, one gram of tissue was 
grinded into a fine powder and digested with collagenase 
I (Gibco BRL, Grand Island, NY, USA) at 37 °C for 1 h 
to guarantee the production of more than 2 × 106 valid 
cells. Cross-linking was performed with formaldehyde (a 
final concentration of 2%) for 15 min at room tempera-
ture (RT) and quenched with glycine (a final concentra-
tion of 0.2 mol/L) for 5 min at RT, followed by 15 min on  
ice. The cell suspension was then centrifuged at 1500 r/min  
for 10 min at RT to get cell pellet. After incubated  
with 550 μL lysis buffer (500 μL 10 mmol/L Tris-HCl,  
10 mmol/L NaCl, 0.2% Igepal CA-630 and 50 μL protease 
inhibitors) on ice for 15 min, the suspension was spun 
down for 5 min at 5000 r/min at RT. Nuclei were permea-
bilized with 38 μL 1% SDS for 10 min at 65 °C and then 
quenched with 44 μL 10% Triton X-100. Chromatin was 
subsequently digested overnight (o/n) at 37 °C by adding 
400 Units MboI (NEB, Knowl Piece, Hitchin, UK) fol-
lowed by labeling of the DNA fragment ends with biotin 
(1.5 μL 10 mmol/L dATP, 1.5 μL 10 mmol/L dGTP, 1.5 μL 
10 mmol/L dTTP, 37.5 μL 0.4 mmol/L biotin-14-dCTP 
and 10 μL 5 U/μL Klenow) through incubation at 37 °C 
for 45 min. Enzymes were inactivated by adding 86 μL 
10% SDS and incubating tube at 65 °C for 30 min. After 
adding 7.61 mL ligation mix (745 μL 10% Triton X-100, 
745 μL 10× ligation buffer, 80 μL 10 mg/mL BSA, 80 μL  
100 mmol/L ATP and 5.96 mL water) and 50 μL 1 U/μL  
T4 DNA ligase, the reaction was incubated at 16 °C  
o/n. To reverse crosslinks and to degrade protein, 50 μL 
10 mg/mL proteinase K was added and then incubated 
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overnight at 65 °C. This was followed by DNA purifica-
tion with phenol-chloroform extraction and fragmenta-
tion to 300–500 bp with the Covaris S220 ultrasonicator. 
The DNA was then pulled down with 75 μL Dynabeads 
M-280 Streptavidin (Thermo Fisher Scientific, Waltham, 
MA, USA). Libraries were constructed following Illu-
mina protocols and sequenced on an Illumina HiSeq 
2500 PE150 platform.

ATAC‑seq library construction and sequencing
An improved ATAC-seq protocol reducing background 
and allowing interrogation of frozen tissues was used [31]. 
Briefly, 20 mg frozen muscle were thawed for 5 min on 
ice in cold Homogenization Buffer followed by Dounce 
homogenization. Pre-clear larger chunks by pelleting at 
100 × g for 1 min in a pre-chilled centrifuge. Then den-
sity gradient centrifugation with 25%, 29%, 35% Iodixanol 
solution were carried out for 20 min at 3000 × g to isolate 
nuclei. The nuclei were transferred to a tube containing 
1 mL of ATAC-seq RSB (10 μL 1 mol/L Tris-HCl pH 7.4, 
2 μL 5 mol/L NaCl, 3 μL 1 mol/L MgCl2, 985 μL H2O) with 
0.1% Tween-20 and then spun for 10 min at 500 ×  g at 
4 °C. After removing the supernatant, transposition reac-
tion was performed in ATAC-seq reaction mix (25 μL 2× 
TD buffer, 2.5 μL transposase, 16.5 μL PBS, 0.5 μL 1% dig-
itonin, 0.5 μL 10% Tween-20, 5 μL H2O) at 37 °C for 1 h. 
DNA was purified with a MinElute PCR Purification Kit 
(Qiagen). The transposed DNA fragments were ampli-
fied for 5 cycles (NEB, Knowl Piece, Hitchin, UK) and the 
additional cycles were determined by qPCR. The con-
centrations of purified libraries were > 2 nmol/L, which 
was quantified using the KAPA Library Quantification 
Kit (Roche Sequencing Solutions, Pleasanton, CA, USA). 
The libraries were sequenced on an Illumina HiSeq 2500 
PE150 platform.

RNA‑seq library construction and sequencing
Total RNA was extracted using TRIzol reagent (Thermo 
Fisher Scientific, Waltham, MA, USA). RNA degradation 
and contamination was monitored on 1% agarose gels. 
RNA purity was checked using spectrophotometer. RNA 
integrity was assessed using the RNA Nano 6000 Assay 
Kit of the Bioanalyzer 2100 system (Agilent Technolo-
gies, Santa Clara, CA, USA). A total amount of 1 μg high-
quality RNA was used as input material for the library 
preparation. Sequencing libraries were generated using 
NEBNext UltraTM RNA Library Prep Kit for Illumina 
(NEB, Knowl Piece, Hitchin, UK) following manufac-
turer’s recommendations and index codes were added to 
attribute sequences. The libraries were sequenced on an 
Illumina HiSeq 2500 PE150 platform.

Hi‑C data analysis
Mapping and matrix generation
Configuration file was first prepared for HiC-Pro [32] 
pipeline v2.9.0. BOWTIE2_IDX_PATH was the bowtie2 
v2.4.3 [33] indexes of reference genome (ARS-UCD1.2). 
GENOME_FRAGMENT was the bed file with restric-
tion fragments generated from digest_genome.py with 
the parameter “-r ^GATC”. LIGATION_SITE was set as 
GAT​CGA​TC. The paired-end Hi-C reads from differ-
ent libraries of the same sample were put in the same 
folder and mapped using HiC-Pro [32] pipeline v2.9.0 
with the parameter “-s mapping”. The obtained bam file 
was then used to filter invalid pairs with the parameter 
“-s proc_hic”, including singletons and multi-hits, dan-
gling end, dumped and self- circles pairs, PCR dupli-
cation. The generated allValidPairs file was applied to 
build raw inter-/intra-chromosomal contact map with 
the parameter “-s build_contact_maps”, followed by 
iterative correction and eigenvector decomposition 
(ICE) normalization on matrix file with the parameter 
“-s ice_norm”. After confirming a very high correlation 
between the ICE normalized matrices at 200 kb reso-
lution, we merged the valid pairs of the correspond-
ing replicates into a single file with the parameter “-s 
merge_persample”. The merged file was used as input 
data to rebuild normalized matrices at resolutions 
of 10 kb, 40 kb and 1 Mb using HiC-Pro [32] pipeline 
v2.9.0 and generate hic file at resolutions of 5 kb, 10 kb, 
25 kb, 50 kb, 100 kb, 250 kb, 500 kb, 1 Mb and 2.5 Mb 
using hicpro2juicebox.sh for juicer tools v1.9.8 [34].

A/B compartment forms
The eigenvector is the first principal component of the 
Pearson’s matrix and can be used to delineate com-
partments in Hi-C data. The juicer tools v1.9.8 [34] 
was used to call compartment with the parameter “BP 
1000000” for the hic files.

TAD
Most upstream portion of a TAD is highly biased 
towards interacting downstream, and the downstream 
portion of a TAD is highly biased towards interacting 
upstream. Here, we exploited the directionality index 
(DI) by identifying such biases in interaction frequency 
in the genome as previously described [35, 36]. We set 
40 kb bin to the upstream/downstream 2 Mb. After cal-
culating the DI of ICE matrix, a hidden Markov model 
was used to identify biased states (“Upstream Bias”, 
“Downstream Bias” or “No Bias”) with the parameters 
(thresholds of median probabilities and minimal size 
for probability correction) as their default values (0.99 
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and 2, respectively). Regions between TADs within 
400 kb were identified as TAD boundaries.

Loop
Chromatin loops show up as dots/points on a Hi-C 
contact map. We used HICCUPS [34] to identify 
genome-wide loops using hic files with the parameter 
“-r 5000,  10,000”. Stage-specific loops were analyzed by 
HiCCUPSDiff [34] using the identified loops and hic files 
with default parameter. Aggregate peak analysis [34] was 
performed to measure the aggregate enrichment of dif-
ferent loops in a contact matrix [37] using the different 
loops and hic files with the parameter “-r 5000”. We used 
Fit-Hi-C v1.1.3 [38, 39] to find significant interactions of 
cis-regulatory elements with HMGA2 (false discovery 
rate, FDR q-value < 0.05). Chromosome 5 (Chr5) inter-
actions were extracted from the genome matrix (10 kb) 
as input file for HiCPro2FitHiC.py with the parameter 
“-r 10,000” followed by running HiCKRy.py with default 
parameter. Finally, significant interactions were called 
with the parameter “-r 10000 -p 2”.

ATAC‑seq data analysis
Mapping
Adapters and low quality (phred quality < 10) bases were 
removed from raw sequencing reads with Trimmomatic 
v0.38 [40] and the trimmed reads were aligned to ref-
erence genome (ARS-UCD1.2) using bowtie2 v2.4.3 
[33] with the parameter “-X 2000”. High quality paired 
alignments (mapping quality ≥  30) were extracted with 
samtools v1.9 [41] after filtering unmapped reads, mate 
unmapped reads, not primary alignments, reads failing 
platform. To generate valid pairs for peak calling, PCR 
duplications and organelle contamination were further 
removed by Picard v1.126 (https://​broad​insti​tute.​github.​
io/​picard) and bedtools v2.26.0 [42] with default param-
eters. The bam files were converted to bigwig files to be 
visualized in IGV [43].

Insert size and transcription start site (TSS) enrichment
The insert size distribution has clear periodicity of 
approximately 200 bp, suggesting many fragments are 
protected by integer multiples of nucleosomes, while 
reads from nucleosome-free regions were enriched at 
40–60 bp [44]. To evaluate the chromatin integrity for 
subsequent analysis, we first detected insert size distri-
bution. Transcribed promoter-flanking regions are usu-
ally open and enriched with ATAC-seq reads. Therefore, 
we next calculated the TSS enrichment scores using the 
ENCODE script (https://​github.​com/​ENCODE-​DCC/​
atac-​seq-​pipel​ine/​blob/​master/​src/​encode_​task_​tss_​
enrich.​py). Briefly, read counts around TSS (± 3 kb) were 
summed per bin (400 bp) after shifting 75 bp toward 5 

primes of each read and then extending to 150 bp uni-
formly and then the average read counts of all transcripts 
in each bin were calculated. The number of the bin which 
overlapped with TSS was taken as TSS enrichment score.

Peak calling and data reproducibility
MACS2 v2.1.0 [45] was used for peak calling with follow-
ing parameter “--nomodel --shift -75 --extsize 150” after 
converting alignments from bam to bed format accord-
ing to the guidelines of the ATAC-seq pipeline from 
the ENCODE project (https://​github.​com/​kunda​jelab/​
atac_​dnase_​pipel​ines). The irreproducible discovery rate 
method was used to assess the consistency of replicate peak 
sets [46]. The peaks of two replicates were merged using idr 
v2.0.2 (https://​github.​com/​nboley/​idr). Next, the two com-
mon peak sets were combined to form a union peak set 
according to the criteria that individual peaks were merged 
if overlap ≤ 10 bp using bedtools v2.26.0 [42] with param-
eter of “bedtools multiinter” followed by “bedtools merge 
-d 10”. The number of reads of each sample at the union 
intervals were re-called with the parameter of “bedtools 
multicov -bams” to generate count matrix. For each union 
peak, its enrichment value is defined as the ATAC-seq sig-
nal intensity (normalized read count per base) subtracted 
from the background noise (normalized read count per 
base). The count matrix was used as input file of DESeq2 
v1.32.0 [47] to call differentially accessible regions (DARs, 
P-value < 0.05). Motif enrichment analysis was performed 
with the MEME Suite (https://​meme-​suite.​org/​meme/).
Sample correlation
 Enrichment value listed in the union peak set were used 
to analyze the principal components analysis (PCA) and 
Pearson correlation coefficient of the four samples. PC1 
and PC2 accounted for 65.2% variance and 25.6% vari-
ance, respectively, indicated by FactoMineR v2.4 [48].

RNA‑seq data analysis

Mapping
Clean reads were obtained by removing low quality reads 
from raw data, including reads with adapter, undeter-
mined bases, and reads with more than 50% low quality 
bases (phred quality < 20) using Trimmomatic v0.38 [40]. 
We gained 97.8%–98.7% clean reads from raw data for the 
twelve samples. Next, the obtained clean reads were sub-
sequently mapped to reference genome (ARS-UCD1.2) 
using Hisat2 v2.0.5 [49] with default parameters. Gene 
model annotation file was retrieved from NCBI (https://​
www.​ncbi.​nlm.​nih.​gov/​genom​e/?​term=​Bovine) as well. 
Hisat2 can generate a data set of splice junctions based 
on the gene model annotation file and thus has a better 
mapping result than other non-splice mapping tools [49]. 
After filtering unmapped reads and multi-mapped reads, 
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the clean data produced about 93% unique reads for each 
sample which were used for downstream analyses. The 
sam files were converted to bam files with samtools v1.9 
[41] to be visualized in IGV [43].

Prediction of novel transcripts
The unique reads of each sample were assembled by String-
Tie v1.3.3b [50]. StringTie uses a de novo assembly step to 
assemble and quantitate full length transcripts representing 
multiple splice variants for each gene locus [50]. A total of 
715 novel transcripts were identified with the maximum frag-
ments per kilobase of transcript per million reads mapped 
(FPKM) of 560. Functional annotation of these novel tran-
scripts was performed as previously described [51].

Quantification of gene expression
Before quantifying gene expression, low quality align-
ment (< 10) reads and unpaired reads were removed. 
Next, featureCounts v1.5.0-p3 [52] was used to count the 
read number mapped to each gene and FPKM was cal-
culated. The identification of differential expression gene 
(DEG) was performed using DESeq2 v1.32.0 [47] with 
FDR q-value < 0.05.

Characterization of loops
Loop anchors identified by HICCUPS [34] at 5 kb and 
10 kb resolutions (merged files) were intersected with 
ATAC-seq peaks using bedtools v2.26.0 [42]. We carried 
out a sequential classification scheme to sort the ATAC-
seq peaks into promoter (P), enhancer (E), and other (O) 
based ATAC-seq union peak set. The ±3 kb windows 
of the TSSs of all expressing genes (mean FPKM of the 
twelve samples > 0 as determined from RNA-seq data) 
were used to intersect with ATAC-seq union peaks and 
the overlapped peak set was defined as promoter. Next, 
PSYCHIC [53] was applied to identify enhancer can-
didates. Notably, PSYCHIC is designed to predict pro-
moter-enhancer interaction within TAD and thus spatial 
contacts at the TAD boundaries will escape annotation 
[17, 53]. We extracted matrix for each chromosome at 
25 kb resolution from hic file using juicer tools v1.9.8 
[34] with the parameter “dump observed KR BP 25000”, 
followed by transforming the obtained sparse upper tri-
angular matrix to a full contact matrix as input file for 
PSYCHIC using HiCcompare v 1.14.0 [54]. Promoter-
enhancer interactions were then predicted using htad-
chain.py with the parameter “res: 25000 win: 2000000” in 
configuration file. The predicted enhancers (FDR q-value 
< 0.05) were used to intersect with ATAC-seq union 
peaks (promoter peaks excluded) and the overlapped 
peak set was defined as enhancer. After filtering pro-
moters and enhancers, the remaining ATAC-seq union 
peak set was defined as other regulatory elements. Loop 

anchors without any peaks were defined as none regula-
tory elements (N).

Genome scanning for selection sweeps
A total of 86 cattle of 7 breeds with low beef produc-
tion and 3 internationally renowned beef breeds were 
collected. The low production group contained Bashan 
(n  = 5), Dabieshan (n  = 2), Jiaxian (n  = 1), Lingnan 
(n = 8), Nanyang (n = 2), Weining (n = 5), and Zaobei 
(n = 3). Their brief introductions can be retrieved from 
Catalogue of National Livestock and Poultry Genetic 
Resources (https://​zypc.​nahs.​org.​cn/​pzml/). The high 
production group included Angus (n  =  25), Charolais 
(n = 14), and Hereford (n = 21).

To call single nucleotide polymorphisms (SNPs), we 
mapped clean reads to reference genome (Btau_5.0.1) 
using BWA-MEM v0.7.13-r1126 [55] with default param-
eters, followed by the removal of duplicate reads with 
Picard v1.126 (https://​broad​insti​tute.​github.​io/​picard). 
GATK v3.6–0-g89b7209 [56] was applied to detect SNPs 
according to the previously described criteria [57]. SNPs 
with maximum missing rate < 0.3 and minor allele fre-
quency > 0.01 were extracted by VCFtools v0.1.16 [58] 
and used for subsequent analyses. PCA was carried out 
using eigensoft with default parameters (https://​github.​
com/​chrch​ang/​eigen​soft). Population differentiation 
was measured as the fixation index (FST) values using 
VCFtools v0.1.16 [58] with the parameter “--fst-window-
size 10000 --fst-window-step 5000”. Window-size FST 
values were then transformed to ZFST = (FST − μFST)/
σFST. The regions were remapped to reference genome 
ARS-UCD1.2 by NCBI Genome Remapping Service 
(https://​www.​ncbi.​nlm.​nih.​gov/​genome/​tools/​remap). 
Metascape [59] and GREAT v4.0.4 [60] were used for 
functional annotation of coding genes and regulatory 
elements within selection sweeps, respectively. We also 
analyzed the enrichment of 2045 sweep regions (ZFST > 3, 
top ~ 0.4%) for regulatory elements using LOLA v1.22.0 
[61]. The input files were prepared as followings: the four 
kinds of regulatory elements were used as “query set”; the 
2045 sweep regions were used as “reference set”; 10 kb 
genome-wide bins (remapped to ARS-UCD1.2) were 
used as “Universe Set”.

Cell culture and treatment
Primary bovine myoblasts (PBMs) were isolated from 
Longissimus dorsi of fetal cattle by collagenase II as pre-
viously described [62]. PBMs were cultured with growth 
medium made up of DMEM (Gibco BRL, Grand Island, 
NY, USA) supplemented with 20% FBS (Thermo Fisher 
Scientific, Waltham, MA, USA) and 1% double antibiot-
ics at 37 °C in 5% CO2. Recombinant plasmids were trans-
fected into PBMs using TurboFect Transfection Reagent 
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(Thermo Fisher Scientific, Waltham, MA, USA) when 
the cells grew to 50% ~ 60% confluence, followed by 24 h 
incubation.

DNA and RNA preparation
With the standard phenol-chloroform method, we 
extracted genomic DNA from 1 mL 2% heparin-treated 
QC whole blood samples. Total RNA was extracted 
from PBMs using TRIzol reagent. Next, 1 μg RNA was 
reversely transcribed for cDNA synthesis using Pri-
meScript RT reagent Kit with gDNA Eraser (TaKaRa, 
Dalian, Liaoning, China) following the instruction.

Dual‑luciferase reporter assay
The QC genomic DNA was used for PCR amplification 
of enhancer candidate (RE). Negative control region 
without any ATAC-seq peaks was selected to confirm 
the enhancer activity of RE. The amplified products 
were purified with SanPrep Column PCR Product Puri-
fication Kit (Sangon Biotech, Shanghai, China). Next, the 
purified products and pGL3-Promoter plasmid (firefly 
luciferase) were digested by BamH I and Sal I (TaKaRa, 
Dalian, Liaoning, China) and separated on a 1% agarose 
gel, followed by purification with SanPrep Column DNA 
Gel Extraction Kit (Sangon Biotech, Shanghai, China). 
The products were ligated with T4 DNA ligase (TaKaRa, 
Dalian, Liaoning, China) at 16 °C o/n. The recombinant 
plasmids were confirmed by Sanger sequencing (Sangon 
Biotech, Shanghai, China) and co-transfected with pRL-
TK plasmid (Renilla luciferase). After 24 h incubation, 
luciferase activities were measured with Dual-Luciferase 
Reporter Assay Systems (Promega, Madison, WI, USA). 
Briefly, the cells were harvested using 50 μL of 1× passive 
lysis buffer and lysed in 96-well plates for 40 min. Next, 
20 μL of Luciferase Assay Reagent II was added to quan-
tify firefly luciferase activity, followed by the addition of 
20 μL of Stop & Glo Reagent. Blank pGL3-Basic plasmid, 
blank pGL3-Promoter plasmid, and pGL3-Control plas-
mid were used as blank control, negative control, and 
positive control, respectively. A Microplate Reader was 
used to qualify the luciferase activities of five replicates of 
each group and the firefly luciferase activity was normal-
ized against Renilla luciferase activity.

CRISPRi assay
CRISPR interference (CRISPRi) mediated enhancer 
repression was performed with pX330a Cas9-KRAB vec-
tor (Addgene #92361, www.​addge​ne.​org) [63]. CRISPOR 
(http://​crisp​or.​tefor.​net/) was used to design short guide 
RNAs (sgRNAs). Twenty microliters of primer pair 
(100 μmol/L) and 80 μL H2O were heated at 95 °C for 
5 min and cooled down to RT to form dimer. The pX330a 

Cas9-KRAB vector was digested with Bbs I (TaKaRa, 
Dalian, Liaoning, China) and recovered with gel extrac-
tion. Next, the products were ligated with the dimer 
using T4 DNA ligase (TaKaRa, Dalian, Liaoning, China) 
at 16 °C o/n. The confirmed recombinant vectors were 
transfected into PBMs at 50% ~ 60% confluence which 
grew in 6-well plates and cells were collected after 24 h 
incubation.

RT‑qPCR
The diluted cDNA (10 ng/μL) was used to perform 
qPCR amplification using the SYBR Premix Ex Taq II 
Kit (TaKaRa, Dalian, Liaoning, China) with nine repli-
cates. Relative expression level was calculated by 2-△△CT 
method and data were normalized to GAPDH mRNAs.

EdU assay
This assay relies on incorporation of 5-ethynyl-2′-
deoxyuridine (EdU) into de novo DNA synthesized dur-
ing the S-phase of the cell cycle. EdU assay was carried 
out with Cell-Light EdU Apollo 567 In Vitro Imaging Kit 
(RiboBio, Guangzhou, Guangdong, China) according to 
the manufacturer’s instructions. Briefly, PBMs were seed 
onto 96-well plates and cultured to 80% confluence in 
100 μL growth medium. One hundred milliliters of EdU 
(20 μmol/L final concentration) was added to each well 
followed by incubation at 37 °C for 2 h. Cells were fixed 
using 50 μL 4% formaldehyde for 20 min at RT. Next, we 
removed the supernatant and added 50 μL 2 mg/mL gly-
cine, followed by incubation for 5 min at RT. Cells were 
permeabilized with 100 μL 0.5% Triton X-100 and incu-
bated for 20 min at RT. Add 100 μL 1× Apollo staining 
solution and incubated for 30 min at RT without light. 
After washed with PBS, the cells were incubated with 
100 μL 1× Hoechst33342 for 30 min at RT. Finally, cell 
nuclei were detected by fluorescence microscopy.

Flow cytometry
Cell cycle staining Kit (Multisciences, Hangzhou, Zheji-
ang, China) was used for this experiment following the 
manufacturer’s instructions. Briefly, PBMs were seed 
onto 6-well plates with 2 mL growth medium and col-
lected at 80% confluence. The pellet was resuspended by 
1 mL cold 70% ethanol diluted with PBS, followed by the 
incubation at −20 °C o/n. Next, cells were centrifuged at 
1000 r/min for 5 min, followed by the addition of 1 mL 
DNA Staining solution and 10 μL Permeabilization solu-
tion. Samples were incubated at 4 °C for 30 min away 
from light. Cell cycles were detected by a flow cytometry 
with three replicates of each group.

http://www.addgene.org
http://crispor.tefor.net/
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Results
Comprehensive maps of chromatin contacts in fetal 
and adult cattle muscle
To construct and compare chromatin structures 
between fetal and adult stages, we determined genome-
wide chromatin interaction frequency by carrying out 
the Hi-C experiments in Longissimus dorsi muscle. 
Four individuals with two biological replicates of each 
stage generated 4.42 billion clean paired-end reads in 
total (Table S1). The Pearson’s correlation r of biological 
and technical replicates both ranged from 0.95  to 0.97 
at 200 kb resolution (Fig. S1A), and we therefore 
merged the data for a higher-resolution analysis. A 
total of 1.22 billion unique mapped contacts passed all 
filters (Table S1), which were then used to construct 
raw and ICE [64] normalized matrices. The fetal cattle 

muscle (CFM) and adult cattle muscle (CAM) appeared 
to be similar to each other in genome-wide heatmap 
(Fig. 1A), which was supported by Pearson’s correlation 
of ICE matrices with r = 0.98 and r = 0.93 at 1 Mb and 
40 kb, respectively (Fig. 1B and S1B).

We computed contact probability curves from 40-kb 
binned raw matrices. A rapid exponential decrease 
of contact frequencies was observed at short dis-
tances, especially for CAM (Slope, SCAM = − 0.67, 
SCFM = − 0.79) (Fig. S1C). Interestingly, an unexpected 
increase of contact probability at or after 10 Mb was 
detected, but CAM chromatin presented higher inter-
action frequency than CFM chromatin (Fig. S1C). The 
result suggested that CFM may have more short-range 
interactions, while CAM has more long-range interac-
tions, which is similar to previous studies on 3D genome 

Fig. 1  3D genome comparisons of fetal and adult cattle Longissimus dorsi muscle. A Hi-C contact heatmaps (left: CFM, right: CAM) visualized by 
JuiceBox. Each dot on heatmaps represented the observed number of read pairs. B Pearson’s correlation of ICE matrices at 40 kb. C Analysis of 
resolution capability by determining the smallest bin size where 80% of bins have at least 1000 valid contact pairs. CFM, fetal cattle muscle; CAM, 
adult cattle muscle
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organization during mESC differentiation [65]. Addi-
tionally, we found a substantial number of different pair-
wise interactions by subtracting CAM ICE matrix from 
CFM ICE matrix at 1 Mb (Fig. S1D). Inter-chromosomal 
contact was also analyzed, given that the trans-interac-
tion accounted for ~ 40% of total valid pairs (Table S1). 
We observed unequal distributions of inter-chromo-
somal contacts in both CFM and CAM genomes, such 
as strong interactions of chromosome 25 (Chr25) with 
Chr18 and Chr19, and significant differences in inter-
chromosomal contacts between the two groups, such 
as CFM-specific strong interactions between Chr1 and 
Chr29 (Fig. S1E). To determine the resolution capability 
of our Hi-C data, we searched for the smallest bin size 
where 80% of bins have at least 1000 valid contact pairs 
[37]. We found that both CFM and CAM data could 
reach at least 10 kb resolution (Fig. 1C). The high qual-
ity and resolution of our Hi-C data enables us to explore 
the 3D genome dynamics during cattle muscle develop-
ment at a fine scale.

Chromatin dynamics with transcriptome changes
Previous studies have showed that genome structural 
reprogramming is involved in embryonic development 
and myogenic differentiation in mouse [27, 66]. We first 
performed RNA-seq to associate gene expressions with 
chromatin dynamics. After data quality control (Fig. 
S2A, Table S2), we identified 13,933 DEGs (FDR q-value 
< 0.05), including 397 novel genes (Fig. 2A, Table S3). The 
expression profiles of key myogenic regulators were as 
expected (Fig. 2A). Pax7 is responsible for lineage speci-
fication; MyoD commits cells to the myogenic program; 
MyoG initiates the terminal differentiation to myocytes 
with MyoD downregulation; MRF4 functions in the for-
mation of myotubes [67, 68].

To define the compartments and their transitions 
during development, we called the PC1 values of ICE 
matrices at 1 Mb resolution (Fig. S2B, Table S4). Over-
all, compartments showed high correlation between 
CFM and CAM (Pearson’s correlation r = 0.90) (Fig. 2B). 
A and B compartment forms accounted for 40.02% and 
59.98% of fetal genome, respectively, while that were 
45.50% and 54.50% in adult genome (Fig.  2C). Com-
pared with B forms, A forms had a significantly higher 
gene expression level in both fetal and adult genomes 
(Wilcoxon’s test, P-value < 2.2e-16) (Fig.  2C). A total of 
127 Mb regions in fetal genome were subject to transition 
from A to B form, accompanied with downregulation of 
537 genes covered (Wilcoxon’s test, P-value = 1.28e-11), 
but B to A form transition of 271 Mb regions did not 
increase the expressions of 2717 genes (Wilcoxon’s test, 
P-value = 0.57) (Fig.  2D). Notably, the up-regulation of 
MRF4 gene coordinated the elevated PC1 value in CAM, 

while the down-regulations of Pax7, MyoD, and MyoG 
were accompanied with the lowered PC1 value in CFM 
(Tables S3 and S4).

To define TAD structures, we calculated the DIs 
at 40 kb and identified 1130 and 1061 TADs in CFM 
and CAM, respectively (Fig. S2C, Table S5). The aver-
age length of CFM TADs was smaller than that of 
CAM TADs (2102.97 vs. 2224.51 kb, Wilcox’s test, 
P-value = 7.7e-03, Fig. 2E), which supported the findings 
in contact probability curves that CAM has more long-
range interactions. We then directly compared the DIs of 
the two groups and found they were strongly correlated 
(Pearson’s correlation r = 0.87) (Fig. 2F). By defining the 
regions less than 400 kb in between TADs as topological 
boundaries, we identified only 38 different boundaries 
between the two groups (Table S6). These stage-specific 
TAD boundaries contained a total of 61 genes which 
were significantly enriched for embryonic morphogen-
esis, fatty acid metabolism, and regulation of protein 
dephosphorylation (P-value < 0.01), such as SALL1, 
BOD1L1, and GJA1.

Interestingly, we found some TADs were divided into 
two or more TADs between CFM and CAM, which 
was supported by previous findings during mamma-
lian embryogenesis [66]. Here, we called the larger ones 
as unchanged TADs (ucTADs) and the smaller ones 
as split TADs (spTADs). There were 33 CFM spTADs 
and 19 CAM spTADs, corresponding to 16 and 9 
ucTADs in CAM and CFM, respectively. Further analy-
sis showed that the formation of fetal spTAD inhibited 
the expression of the inhabited genes (Wilcox’s test, 
P-value = 3.45e-02), and this trend was also observed in 
adult spTAD (Wilcox’s test, P-value = 0.39) (Fig. 2G). One 
possible reason is that active chromatin and transcrip-
tion could affect the formation of 3D structures [69]. For 
example, PGM1 gene in adult ucTAD had elevated levels 
of chromatin accessibility and transcription (Fig. 2H and 
I), compared to that in fetal spTAD, but communications 
across spTAD boundary between PGM1 and regulatory 
elements were not observed in either ucTAD or spTAD 
(i.e. no hijacking mechanism [70].

These data demonstrated that the compartment and 
TAD structures undergo re-organization during cattle 
muscle development, which is significantly associated 
with transcriptome changes.

Genome wide cis‑regulatory elements and target genes 
annotation
Defining the target genes of cis-regulatory elements has 
been challenging as they frequently control distant rather 
than adjacent genes [71]. Chromatin loop could bring 
cis-regulatory elements to their cognate gene promot-
ers within the same TAD, which acts as another layer of 
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Fig. 2  Re-organization of compartment and topologically associated domain (TAD) during cattle muscle development. A Volcano plot of 
differentially expressed genes (DEGs) with RNA-seq signal intensity for key myogenic regulators. B Pearson’s correlation of first principal component 
(PC1) values at 1 Mb resolution. C Statistics and transcriptional effects of A and B forms. D Statistics and transcriptional effects of compartment 
transition. E Boxplot of TAD size with average length of 2102.97 kb and 2224.51 kb in CFM and CAM, respectively. F Pearson’s correlation of 
directionality indices (DIs) at 40 kb. G The effects of split TADs (spTADs) on gene expressions. H and I An illustrated example of spTAD. CFM, fetal 
cattle muscle; CAM, adult cattle muscle. *P < 0.05
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transcriptional regulation at a fine-scaled level (dozens 
to hundreds of kb) [17]. To characterize cis-regulatory 
elements and their target genes, we first called intra-
chromosomal loops using the HICCUPS program [34]. 
A total of 6322 and 9719 loops in CFM were identified 
at 5 and 10 kb, respectively, while 7154 and 8536 CAM 
loops were detected at the two resolutions, respectively. 
When merged, we got 10,575 fetal and 10,078 adult loops 
with significant difference in average length (322.75 vs. 
278.56 kb, Wilcox’s test, P-value = 1.60e-10) (Table S7). 
To probe the transcriptional effects of loop structures, 
we categorized genes into three groups according to their 
promoter (defined as ±3 kb of transcription start sites) 
locations relative to loops: ‘A’ genes outside of loops, ‘B’ 
genes inside of loops, ‘C’ genes overlapped with loop 
anchors (Fig. 3A). Integrative analysis revealed that chro-
matin looping clearly increased ‘C’ gene expressions but 
decreased ‘B’ gene expression in both CFM and CAM 
when compared with that of ‘A’ genes (Wilcox’s test, 
P-value < 2.2e-16) (Fig. 3A).

Next, ATAC-seq was performed to annotate regulatory 
loops (i.e., interactions between regulatory elements). 
ATAC-seq could map chromatin accessibility landscape 
which reflects the primary positions of functional ele-
ments and is critical determinant of chromatin organiza-
tion and function [72, 73]. After quality control (Fig. S3A 
and B, Table S8), we obtained 81,369 and 82,042 acces-
sible regions in two CFM samples and 39,232 and 44,358 
accessible regions in two CAM samples (Table S9). 
These peaks were enriched around the TSSs as expected 
(Fig. 3B). We then constructed a union peak set and iden-
tified 16,232 DARs (P-value < 0.05) between CFM and 
CAM (Fig.  3C and S3C, Table S10). These DARs were 
mainly mapped to introns (39.08%) and distal intergenic 
regions (35.94%) (Fig.  3D) and drastically enriched for 
motifs of key myogenic regulators (e.g., Pax7, MyoD, 
MyoG, and MRF4) (Fig. S3D, Table S11). The high-qual-
ity ATAC-seq data were subsequently used to compile 
the landscape of cis-regulatory elements of cattle mus-
cle genome. We integrated the 19,261 PSYCHIC 25-kb 
enhancers (Table S12) and 24,004 RNA-seq 6-kb pro-
moters with the ATAC-seq union peaks and identified 
14,980 enhancer peaks (E) and 16,391 promoter peaks 
(P), leaving 25,578 union peaks as other regulatory peaks 
(O) (Table S13). The 56,949 cis-regulatory elements 
were wired to their targets by mapping them to 28,798 
unique anchors of loop structures, resulting in extra 
annotation of 12,500 regulatory elements (i.e., anchors 
overlapped none of the ATAC-seq union peaks, N). We 
found at last 16,663 and 16,497 interaction pairs between 
cis-regulatory elements in CFM and CAM, respectively. 
P-P (7.37% ~ 21.99%) and E-P (16.79% ~ 17.49%) were 

the top two most frequent interaction categories dur-
ing muscle development, while the third types were N-P 
(10.77%) and N-N (11.69%) in CFM and CAM, respec-
tively (Fig. 3E). Further analyses revealed positive correla-
tion between enhancer activities and mRNA abundances 
(Pearson’s correlation r = 0.19, P-value < 2.2e-16), as well 
as co-expression of anchored genes (Pearson’s correlation 
r = 0.17, P-value < 2.2e-16), when cis-regulatory elements 
were looped (Fig. 3F). In details, genes with E-P interac-
tions had higher expression levels than loose genes (i.e., 
unlooped with regulatory elements) in both CFM and 
CAM (Wilcoxon’s test, P-value < 2.2e-16); genes involved 
in other loops (P-P, P-O, P-N) also had higher expression 
levels in both CFM and CAM (Wilcoxon’s test, P-value 
< 2.2e-16); but the transcriptional effects of E-P loops 
seemed higher than that of other loops (P-P, P-O, P-N) in 
both CFM (Wilcoxon’s test, P-value = 5.61e-2) and CAM 
(Wilcoxon’s test, P-value = 7.12e-2) (Fig. 3G). Besides, we 
found a broad tendency for gene expression to be raised 
as the number of looped enhancers increasing (Fig. 3G).

There were 517 and 888 stage-specific loops in CFM 
and CAM (Table S14), respectively. Aggregate peak 
analysis revealed peak enrichments (P2LL > 1 and 
ZscoreLL > 0, Fig.  3H), indicating good accuracy of our 
loop calling [37]. The stage-specific loops elevated the 
expression levels of their anchored genes in both CFM 
(Wilcox’s test, P-value = 6.47e-9) and CAM (Wilcox’s 
test, P-value = 1.06e-9) but were not enriched for DEGs 
(Fisher’s exact test, P-value = 0.19) (Fig.  3I and J), sug-
gesting the complexity of gene regulations. There were 
240 E-P interactions (Table S15) mediated by the stage-
specific loops, where the anchored genes were strongly 
enriched for muscle development and the wired enhanc-
ers preferentially harbored motifs of MEF2, KLF, CTCF, 
MyoD, MyoG, and other key muscle transcription factors 
(Tables S16 and S17).

Here, we illustrated a delicate example of E-P interactions 
putatively involved in cattle muscle development (Fig. 3K). 
The RNA binding proteins ZFP36L1 functions in myo-
genesis [74] and embryonic growth (MGI database), etc. 
VISTA conserved element mm1359 within loop anchor 
was stained in branchial arch (8/9), heart (4/9), and abdom-
inal region (5/9) at e11.5 (VISTA database). In summary, 
we established the landscape of cis-regulatory elements and 
revealed the effects of E-P loops on gene transcriptions, 
which provides key insights into cattle muscle biology.

Cis‑regulatory elements are enriched in selection sweeps
We performed selection sweep analysis using 86 cattle 
individuals from high beef production cattle and low beef 
production cattle breeds (Table S18). All the selected 
LBPC breeds were Chinese native breeds and their 
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Fig. 3  Cis-regulatory elements analysis. A Loop affected the expressions of genes of different types. B Average read coverage around transcription 
start sites (TSSs). C Volcano plot of differentially accessible regions (DARs). D Distribution of DAR. E P-P and E-P were the top two most frequent 
interaction categories during muscle development. F Pearson’s correlation between anchored elements. G E as well as P/O/N raised the expressions 
of target genes. Gene up-regulation was broadly accompanied by enhancer number increase. H Aggregate peak analysis (APA) of stage-specific 
loops. I and J The stage-specific loops elevated the expression levels of their anchored genes in both CFM and CAM. K An identified E-P loop 
putatively functions in cattle muscle development, supported by the evidence from VISTA (mm1359) and MGI (ZFP36L1). CFM, fetal cattle muscle; 
CAM, adult cattle muscle. *P <0.05
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brief introductions can be retrieved from Catalogue of 
national livestock and Poultry Genetic resources (https://​
zypc.​nahs.​org.​cn/​pzml/).

After quality control and filtering, we got 26,908,820 
SNPs. Principal component analysis clearly discriminated 
the two groups with PC1 and PC2 components as 15.8% 
and 2.38%, respectively (Fig. 4A). A total of 2045 sweep 
regions were identified (ZFST > 3, top ~ 0.4%) (Table 
S19). A strong selection signal was observed on chr5: 
47,490,158–47,883,745 (ARS-UCD1.2) which covered 
HELB, IRAK3, TMBIM4, LLPH, and HMGA2 (Fig.  4B). 
Notably, HMGA2 gene has caused extreme events of 
evolution in horse, chicken, rabbit, dog and bird [75–80]. 
The HMGA2 knockout mice and pigs present pygmy 

phenotype and deficiency in muscle growth [81–83]. 
Additionally, GWAS have identified HMGA2 gene as 
promising candidate of cattle stature and beef production 
[84–87]. We also characterized the biological functions 
of all genes identified at selection signals (Table S20). 
These selection sweep genes were strongly enriched in 
gene sets related to chemokine signaling pathway, chro-
matin organization, growth hormone synthesis, secretion 
and action, and embryonic skeletal system development 
(Fig. 4C).

LOLA [61] was used to evaluate the regulatory ele-
ments against the distribution of sweep regions. We 
found strong co-localization of the two genomic 
region sets (Fig.  4D). Two components of regulatory 

Fig. 4  Selection sweep analysis. A Principal component analysis (PCA) of 60 high beef production cattle (HBPC) and 26 low beef production cattle 
(LBPC). B Manhattan plot of ZFST with strong signal on chr5: 47,490,158–47,883,745. C Functional annotations of genes and regulatory elements 
within the sweep regions. D Enrichment analysis of the sweep regions for cis-regulatory elements

https://zypc.nahs.org.cn/pzml/
https://zypc.nahs.org.cn/pzml/
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elements were significant: promoters (Fisher’s exact test, 
P-value = 1.74e-19) and enhancers (Fisher’s exact test, 
P-value = 1.60e-3), supported by previous findings that 
regulatory elements contributed to the domestication 
of sheep and cotton [88, 89]. There were 616 regulatory 
elements within sweep regions, including 178 promoters 
(P), 138 enhancers (E), 189 other ATAC-seq peaks (O), 
and 111 anchors without any ATAC-seq peaks (N) (Table 
S20). These regulatory elements were enriched in mouse 
bone growth and human global development, interpreted 
by GREAT [60] with all the identified regulatory elements 
as input background (Fig. 4D). These data suggested that 
cis-regulatory elements within selection signals probably 
contributed to the meat production divergence between 
Chinese native and international reputed beef cattle 
breeds apart from coding gene candidates.

HMGA2 intronic enhancer affects PBM proliferation
The HMGA2 gene, coding an architectural transcription 
factor, functions conservatively in organism develop-
ment across various species. It plays crucial roles in but 
not limited to the self-renew of diverse stem cells, such 
as muscle satellite cell, haematopoietic stem cells, and 
myeloerythroid progenitor [82, 90–92]. Several lines of 
evidence, taken together, show that this gene is involved 
in LIN28-let-7-HMGA2-IGF2BP2 axis and HMGA2-
PLAG1-IGF2 pathway, which endows HMGA2 with 
pleiotropic effects [93–95]. Although the mechanisms 
of action of HMGA2 have been well established, studies 
on HMGA2 regulatory elements are still limited [96]. In 
this study, 6 regulatory elements were identified around/
in HMGA2 and one of them could interact with HMGA2 
promoter, predicted by both HICCUPS [34] (5 kb and 
10 kb resolution) and Fit-Hi-C [39] (10 kb resolution) 
(Fig. 5A and S4, Tables S7 and S21). This regulatory ele-
ment (chr5: 47,901,023–47,902,297) was annotated as 
putative enhancer in our data and had frequent interac-
tions with other functional regions (Fig. 5A and S4).

Ruminant Genome Database (http://​animal.​nwsuaf.​
edu.​cn/​code/​index.​php/​RGD) deposited this regulatory 
element as poised and active enhancer in adult skeletal 
muscle and fetal rumen epithelial primary cells, respec-
tively (Fig. 5A). We named this putative enhancer as RE 
and performed experimental validation.

First, Dual-Luciferase Reporter System was used to 
test the enhancer activity of RE. Adding RE to pGL3-
Promoter could significantly trigger relative lucif-
erase activity in PBMs (two-sided Student’s t-test, 
P-value = 3.00e-6), while adding a negative control 
region (chr5: 47,936,013–47,936,580) without any ATAC-
seq peaks did not work (two-sided Student’s t-test, 
P-value = 0.09) (Fig.  5B and C, Table S22). This result 
confirmed the enhancer activity of RE in PBMs. Next, we 

applied the CRISPRi system, which fused inactive Cas9 
to the KRAB transcriptional repressor domain to repress 
regulatory elements [97], to explore the effects of RE 
on PBM proliferation. RE repression resulted in down-
regulation of proliferation markers, PCNA (two-sided 
Student’s t-test, P-value = 3.87e-3), CDK2 (two-sided 
Student’s t-test, P-value = 7.73e-3), and CCND1 (two-
sided Student’s t-test, P-value = 2.93e-4), accompanied 
by a modest yet significant reduction (~ 25%) in HMGA2 
expression (two-sided Student’s t-test, P-value = 5.26e-
3) (Fig.  5D, Table S22). EdU proliferation assay indi-
cated that the number of EdU positive (S-phase, red) 
cells clearly decreased after RE CRISPRi (Fig. 5E), which 
was supported by the result of flow cytometry that pro-
liferative PBM amount was reduced by ~ 10% (one-
way ANOVA with Dunnett multiple comparisons test, 
P-value = 3.63e-3) (Fig.  5F and S5, Table S22). These 
results demonstrated that RE could regulate HMGA2 
expression and PBM proliferation.

Discussion
Chromosome territory hypothesis was proposed about 
one hundred years ago and validated with fluorescence 
in  situ hybridization after about eight decades later, 
thereby instigating the study of nuclear architecture 
[98]. The advent of high-throughput sequencing of chro-
mosome conformation capture propelled the study of 
nuclear architecture at high resolution and, therefore, 
into the era of 3D genomics [11, 99]. Today, 3D genome 
study is committed to unravel the regulatory mechanism 
of chromosome organization and gene expression, as well 
as how this is coupled to 3D nuclear organization [100].

Using long-range interaction data, 3D genomic data 
benefits de novo reference assembly, whole-genome hap-
lotype reconstruction, and the identification of target 
genes of GWAS hits in non-coding region, other than 
chromatin structure annotation, which holds high prom-
ise to understand the genetic basis of economic traits 
of farmed animals [101–103]. While the studies of 3D 
genome have been reported for livestock species across 
diverse tissues and cell lines, information about cattle 
muscle has not been reported yet [21, 22, 30, 104–108].

In present study, we performed Hi-C with in-depth 
sequencing (around 5 ~ 10 kb resolution) to identify the 
hierarchic chromatin structures, including compartment, 
TAD, and loop. To the best of our knowledge, it is the 
first study about the comparative genome conformations 
of muscle tissues from fetal and adult cattle, which pro-
vides a foundational dataset for the functional characteri-
zation of cattle genome.

Our results demonstrated the dynamics of chroma-
tin structures during muscle development. At the com-
partment level, we observed moderate compartment 

http://animal.nwsuaf.edu.cn/code/index.php/RGD
http://animal.nwsuaf.edu.cn/code/index.php/RGD
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reorganizations which was comprised only ~ 14.6% of 
genomic regions. During the differentiation of myo-
blasts and iPax7 progenitors, the scales of compartment 
switches account for 8% and ~ 6.5% of mouse genome, 

respectively [27, 29]. At the TAD level, we obtained 
~ 1000 TADs in both CFM and CAM, but only a few TAD 
boundaries were changed, which agreed with the find-
ings during iPax7 progenitor differentiation and chicken 

Fig. 5  The regulatory effect of RE on primary bovine myoblast (PBM) proliferation. A Visualization of integrative information about RE (highlighted 
in gray bar). B Validation of RE enhancer activity using a Dual-Luciferase Reporter System in PBMs. Data shown as means ± SD (n = 5). C PBMs 
isolated from Longissimus dorsi of fetal cattle. D–F Validation of the effects of RE on PBM proliferation using a CRISPR-mediated interference (CRISPRi) 
system. The expressions of HMGA2 and proliferation markers were significantly decreased (n = 9) (D). The number of EdU positive cells was clearly 
reduced (E). The percentage of PBMs in S phase was considerably decreased (n = 3) (F). CFM, fetal cattle muscle; CAM, adult cattle muscle; NCR, 
negative control region. *P < 0.05
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folliculogenesis [22, 27]. This confirmed that TAD is a 
genuine unit of chromatin packing [109]. At loop level, 
we identified ~ 10,000 loops in both CFM and CAM with 
1405 of them as stage-specific loops. There were 240 E-P 
interactions involved in these stage-specific loops. These 
anchored genes were strongly enriched for muscle devel-
opment, such as ACTN2, SMAD7, TMOD1, and ZBTB18 
[110–113], while the looped enhancers were drastically 
enriched for motifs of CTCF and key myogenic regula-
tors, such as MEF2, KLF, MyoD, and MyoG.

We then integrated Hi-C interaction data maps with 
transcriptome and found two interesting results. The 
formation of spTAD seemed to inhibit gene expressions. 
It was reported that HPV-CCDC106 integration splits a 
local TAD into two smaller TADs, accompanied by an 
enhancer hijacking event to form a novel loop struc-
ture to increase CCDC106 expression in cervical cancer 
[70]. The enhancer hijacking event was not observed at 
PGM1 locus, but instead the chromatin accessibility 
was significant changed. Chromatin state and transcrip-
tion may contribute to the spTAD formation [69, 114–
116]. Another interesting finding is that looping could 
up-regulate the expressions of anchor genes, especially 
genes looped with enhancers, but unexpectedly down-
regulate the expressions of genes within loops. The sup-
pression effects may be required for precise regulation 
of gene expression by avoiding promoter competition 
[117, 118]. This observation together with the forma-
tion of spTAD raises an interesting question that which 
is the initial cause for genome function and architecture. 
More recently, it has been proposed that genome func-
tion is a major driver of genome architecture and that 
structure facilitates, but does not determine, function 
[119]. Indeed, loss of cohesion, a key protein lying at loop 
anchors and TAD boundaries and regulating genome 
folding, eliminates loop domains but does not lead to 
widespread changes in gene expressions [120]. Emerging 
evidences indicate that sequence features, histone modi-
fication, transcription factor binding, and phase separa-
tion, other than transcription, also affect chromosome 
organization [121–127]. These facts suggest the com-
plex mechanoregulation of gene expression coupled to 
the dynamics of 3D genome. Hence, it is not surprising 
that the stage-specific loops were not enriched for DEGs 
compared with stable loops.

In this study, we annotated regulatory elements for 
cattle muscle at two developmental stages, using ATAC-
seq, RNA-seq, and Hi-C. Although several studies have 
established the regulatory element profiles for cattle 
across diverse tissues, including liver, rumen, oocyte 
and early embryo, data about cattle muscle tissue is still 
limited [128–130]. Stage- and tissue-specific informa-
tion is required to better understand the genetic basis 

of phenotypes. More recently, 6 epigenetic data types 
have been profiled in 8 tissues for adult male cattle, but 
the fetal cattle datasets were absent [131]. In this study, 
we identified 56,949 cis-regulatory elements in CFM and 
CAM, which is comparable to that previous study (on 
average ~ 150,000 regulatory elements in eight tissues). 
Interestingly, enhancer and promoter were significantly 
enriched in selection sweeps which were identified by 
comparing high with low beef production cattle breeds. 
It has been reported that enhancer evolution is a univer-
sal feature of mammalian genomes and can be associated 
with genes under positive selection [3, 128].

Finally, we performed experimental validation of a 
putative enhancer within HMGA2 gene which over-
lapped with a strong selection signal. Dual-Luciferase 
reporter assay confirmed the enhancer activity of RE in 
PBMs. The assays of qPCR, EdU, and flow cytometry 
with CRISPRi system revealed the positive effects of RE 
on HMGA2 expression and PBM proliferation. Nota-
bly, in addition to HMGA2 promoter, other functional 
regions located at the strong sweep region could interact 
with RE, suggesting the complicated mechanism underly-
ing HMGA2 transcription. Indeed, many super-enhanc-
ers have been mapped to HMGA2 locus of human and 
mouse across diverse tissues and cell lines (SEA Version 
3.0: Super-Enhancer Archive [132]). The functional rel-
evance of other regulatory elements at HMGA2 locus in 
regulating HMGA2 and RE needs further investigation.

Conclusion
In this study, we constructed the first dynamic map of 
genome conformations of muscle tissues from fetal and 
adult cattle. We found a general pattern of chromatin 
organization accompanied by transcriptomic change dur-
ing cattle muscle development. The enhancers and pro-
moters, annotated by interaction data, were enriched in 
selection sweeps, suggesting that cis-regulatory elements 
probably contributed to the meat production divergence 
between Chinese native and international reputed beef 
cattle breeds. Our results provide a foundational dataset 
for the functional characterization of cattle genome.
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