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Abstract 

Background  Lipid metabolism differs significantly between grazing and stall-feeding lambs, affecting the quality of 
livestock products. As two critical organs of lipid metabolism, the differences between feeding patterns on rumen and 
liver metabolism remain unclear. In this study, 16S rRNA, metagenomics, transcriptomics, and untargeted metabo-
lomics were utilized to investigate the key rumen microorganisms and metabolites, as well as liver genes and metabo-
lites associated with fatty acid metabolism under indoor feeding (F) and grazing (G).

Results  Compared with grazing, indoor feeding increased ruminal propionate content. Using metagenome 
sequencing in combination with 16S rRNA amplicon sequencing, the results showed that the abundance of propi-
onate-producing Succiniclasticum and hydrogenating bacteria Tenericutes was enriched in the F group. For rumen 
metabolism, grazing caused up-regulation of EPA, DHA and oleic acid and down-regulation of decanoic acid, as well 
as, screening for 2-ketobutyric acid as a vital differential metabolite, which was enriched in the propionate metabo-
lism pathway. In the liver, indoor feeding increased 3-hydroxypropanoate and citric acid content, causing changes in 
propionate metabolism and citrate cycle, while decreasing the ETA content. Then, the liver transcriptome revealed 
that 11 lipid-related genes were differentially expressed in the two feeding patterns. Correlation analysis showed 
that the expression of CYP4A6, FADS1, FADS2, ALDH6A1 and CYP2C23 was significantly associated with the propionate 
metabolism process, suggesting that propionate metabolism may be an important factor mediating the hepatic lipid 
metabolism. Besides, the unsaturated fatty acids in muscle, rumen and liver also had a close correlation.

Conclusions  Overall, our data demonstrated that rumen microbial-driven metabolite from grazing lambs potentially 
regulates multiple hepatic lipid-related genes, ultimately affecting body fatty acid metabolism.
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Background
Ruminants rely on natural pastures for nutrients to 
grow and reproduce, with the attendant negative effects 
of lower growth and reduced industrial efficiency [1]. 
Moreover, the demand for increased husbandry output 
has led to a series of overgrazing problems such as the 
continued deterioration of grasslands. To improve the 
growth performance of these ruminants and alleviate the 
pressure of overgrazing, indoor feeding is an alternative 
to natural grazing [2]. However, the results of numerous 
studies confirmed that indoor feeding, while improving 
production efficiency, leads to poor flavor and fatty acids 
(FAs), which do not meet consumer demand for healthy 
green foods [3, 4]. The unique natural climatic condi-
tions and high-quality grazing resources in Ningxia Hui 
Autonomous Region of China, have resulted in an excel-
lent breed of Tan lamb with very good eating quality hav-
ing a unique flavor, and relatively low saturated fatty acid 
(SFAs) and cholesterol content, and has appeared on the 
G20 Table in 2016. With the emergence of environmental 
issues and the quest for productivity, the feeding model 
of Tan lambs is gradually shifting to indoor feeding, 
with the consequent decline in lamb quality, especially 
in terms of FAs [5, 6]. The current study is thus aimed 
at investigating the mechanisms of differences in lipid 
metabolism between grazing and indoor feeding sheep.

In ruminants, the role of the rumen is crucial for the 
metabolism of FAs. Ruminal microorganisms synthesize 
odd-carbon fatty acids from propionate and valerate, 
as well as branched-chain fatty acids from isobutyrate, 
isovalerate and branched-chain amino acids, which 
are deposited directly or indirectly in muscle, adipose 
and milk [7]. Along with the synthesis of FAs, rumen 
microbes also break down lipids and hydrogenate unsat-
urated fatty acids (UFAs). Thus, both synthesis and diges-
tion processes together have an impact on the content 
and composition of the final FAs flowing from the rumen 
[8]. A previous study assessed adipose tissue fatty acid 
profiles by rumen fluid, which further suggests an impor-
tant association between rumen and fatty acid deposition 
[9]. Microbial fermentation ensures normal physiological 
activity, while changes in microbial community structure 
may lead to differences in productivity and product qual-
ity. Notably, rumen community composition is extremely 
sensitive to diets or feeding patterns, thereby causing 
changes in lipid metabolism [10, 11]. However, stud-
ies on the regulation of fatty acid metabolism by rumen 
microbes in sheep are scarce and need to be further 
developed. The short-chain fatty acids produced in the 
rumen are absorbed through the rumen wall, while the 
rest of the lipid digestion products are absorbed in the 
posterior part of the small intestine and then enter the 
peripheral circulation to reach the liver and other tissues. 

As the ultimate distributor of nutrients for the growth of 
peripheral tissues and organs, the liver is also the central 
organ of lipid metabolism in the body [12]. The hepatic 
lipid machinery is complex and highly coordinated, and 
is extremely susceptible to the effects of diet, environ-
ment and other factors [13, 14].

Based on the sensitivity of microbial community com-
position and liver biology to diets or feeding methods, it 
is valuable to investigate the influence of rumen micro-
organisms and liver metabolism by changing feeding pat-
terns to regulate the FAs metabolism of the organism. To 
the best of our knowledge, there are few researches on 
variations in rumen and liver metabolism between graz-
ing and indoor feeding lambs. The relationship between 
rumen microorganisms and FAs metabolism in sheep is 
also lacking. Thus, this study investigated the changes 
in specific microorganisms in the rumen ecosystem and 
liver lipid metabolism under grazing and indoor feeding 
practices and their potential effects on fatty acid deposi-
tion in lamb from a multi-omics perspective.

Materials and methods
Grassland preparation
The experiment was conducted in the desert and semi-
desert steppes of Dashuikeng, Yanchi County, Ningxia, 
China (106°58′E, 37°26′N; elevation 1400  m). The area’s 
average annual temperature was 8.3  °C, and the average 
yearly precipitation was 282.3 mm, with most of it falling 
between June and September. The experimental pasture 
was about 1900 m long from east to west and 250 m wide 
from north to south, and divided into eight grazing plots 
with the same area. Grazing was carried out in one plot 
each day and rotated in the eight plots. The vegetation 
composition of the eight plots was basically the same.

Experimental design and sampling
Twenty-six male Tan lambs (Ovis aries) from the same 
flock, approximately 120  days of age with similar body 
weight (25.06 ± 0.32  kg) were selected and randomly 
divided into one of the two feeding systems (n = 13 per 
group): the indoor feeding group (F; feed twice a day at 
8:00 and 17:00) and the natural pasture grazing group (G; 
graze from 7:00 to 19:00). Lambs in the F group were fed 
pellets supplemented with hay separately (Table S1) in 
individual pens (size: 1.5 m × 3 m). The experiment lasted 
for 83 d, including a 10-d adaptation period. During the 
adaptation period, the daily feeding amount was adjusted 
based on the actual intake of the previous day to ensure 
a 15% surplus. Clean water was available for the animals 
all the time. Serum samples were collected from the 
jugular vein through a 10-mL vacuum tube in the morn-
ing before feeding on the last day of the experiment. The 
serum samples were separated by centrifugation of blood 
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and stored at −20 °C for the determination of serum vari-
ables. At the end of the feeding experiment, Tan lambs 
were fasted for 24 h and prevented from drinking for 12 h 
before slaughter. The liver and rumen samples were col-
lected after slaughter and stored in liquid nitrogen for 
subsequent analysis.

Analysis of muscle and herbage fatty acid composition
After intramuscular fat was extracted from longissimus 
dorsi (LD) muscle and herbage by using a chloroform/
methanol mixture, FAs in intramuscular fat were quan-
tified using an Agilent 6890 gas chromatograph coupled 
with a mass spectrometer (GC/MS, Agilent Technolo-
gies Inc., Santa Clara, CA, USA). More details can be 
found in Guo’s research [6]. We selected the 16 lambs 
that underwent rumen and liver metabolism measure-
ments, and then obtained the FAs content in their LD 
muscle, which are as follows: C18:2n6 (2.517 ± 0.147), 
C18:3n3 (0.217 ± 0.022), C20:3n6 (0.081 ± 0.005), 
C20:4n6 (1.054 ± 0.069), C20:5n3 (0.078 ± 0.009), C22:6n3 
(0.039 ± 0.005), total FA (29.818 ± 1.654), n-3 polyun-
saturated fatty acids (PUFAs) (0.334 ± 0.035), n-6 PUFAs 
(3.652 ± 0.208), n-6/n-3 PUFAs (12.889 ± 1.326). FA con-
tent was expressed as an mg/100 g of fresh meat. Based 
on the fatty acid content in the herbage and the estimated 
forage intake, we calculated the daily fatty acid intake 
of grazing sheep as follows: C12:0 (50.14  mg), C14:0 
(99.48 mg), C16:0 (1589.48 mg), C16:1 (51.64 mg), C17:0 
(33.36  mg), C18:0 (277.71  mg), C18:1n9c (1160.59  mg), 
C18:2n6 (4331.75  mg), C18:3n3 (1248.74  mg), C20:0 
(196.46  mg), C20:1 (28.61  mg), C21:0 (98.35  mg), C20:2 
(28.57 mg), C22:0 (292.76 mg), C22:1n9 (26.62 mg), C23:0 
(119.74 mg), C24:0 (212.77 mg), total FAs (9846.78 mg).

Rumen fermentation characteristics
After opening the sheep’s abdominal cavity, the inter-
nal organs were immediately dissected and the rumen 
was separated. Rumen fluid samples were collected by 
straining the ruminal content through a four-layer gauze. 
The pH value of rumen fluid was immediately measured 
using an electric pH meter (PHS-3C, Shanghai Leijun 
Experimental Instrument Co., Ltd., Shanghai, China). 
Then rumen fluid samples were stored in liquid nitro-
gen for subsequent analysis. The content of volatile fatty 
acid (VFA) in rumen fluid was determined by using the 
Trace 1300 gas chromatograph model (Thermo Fisher 
Scientific, Waltham, MA, USA). The content of ammonia 
nitrogen was determined by phenol-sodium hypochlorite 
colorimetry [15].

Serum and liver biochemical parameters
Serum and liver tissue samples were stored at −20 ℃. 
We added 1 g of liver into 9 mL normal saline, and then 

ground into 10% liver tissue homogenate. The total 
antioxidant capacity (T-AOC), low-density lipoprotein 
(LDL), high-density lipoprotein (HDL), blood urea nitro-
gen (BUN), triglyceride, cholesterol, nonestesterified 
fatty acid (NEFA), fatty acid synthase (FAS) and acetyl-
CoA carboxylase (ACC) in the serum and liver were 
measured using the corresponding colorimetric assay kit 
(Nanjing Jiancheng Bioengineering Institute, Nanjing, 
China).

Ruminal 16S rRNA sequencing
Genomic DNA was extracted from rumen content 
using HiPure Stool DNA Kits (Magen, Guangzhou, 
China). The V3 + V4 region of 16S rRNA was ampli-
fied with specific primers with barcode: 341F: 5’-CCT​
ACG​GGNGGC​WGC​AG-3’ and 806R: 5’-GGA​CTA​
CHVGGG​TAT​CTAAT-3’. The PCR products after ampli-
fication were purified using AMPure XP Beads. Then, 
ABI StepOnePlusTM Real-Time PCR System (Applied 
Biosystems, Foster City, CA, USA) was used for quantifi-
cation. Machine pooling and sequencing were performed 
according to the PE250 mode of Novaseq 6000. Accord-
ing to the standard protocol, purified amplicons were 
collected on the Illumina platform at equal mole-concen-
tration and sequenced in pairs. The raw reads obtained 
by sequencing were filtered and corrected by DADA2, 
and the non-redundant reads and their corresponding 
abundance information were output. Then the reads were 
spliced into tags, and the chimeric tags were removed 
to obtain the Tag sequence and abundance informa-
tion for subsequent analysis, namely ASV sequence and 
ASV abundance information. The representative ASV 
sequences were classified into organisms by a naive 
Bayesian model using RDP classifier (version 2.2) based 
on the SILVA database (version 132), with a confidence 
threshold value of 0.8 [16]. Based on the ASV sequence 
and abundance data, species annotation, species compo-
sition analysis and community function prediction were 
carried out, and we compared the differences between 
the two groups. Good’s coverage, Chao1, Simpson, and 
other alpha indexes were calculated in QIIME (version 
1.9.1) and statistical analysis of Anosim (analysis of simi-
larities) test and Welch’s t-test were calculated in R pro-
ject Vegan package (version 2.5.3).

The raw reads of 16S rRNA sequence were deposited 
into the NCBI Sequence Read Archive (SRA) database 
(project number, PRJNA859697, accession number, 
SRP386848).

Ruminal metagenomics analysis and data processing
Genomic DNA was extracted using HiPure Bacterial 
DNA Kits (Magen, Guangzhou, China) according to 
the manufacturer’s instructions and subsequently DNA 
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quality was tested. Qualified genomic DNA was firstly 
fragmented by sonication to a size of 350  bp, and then 
end-repaired, A-tailed, and adaptor ligated using NEB-
Next® ULtra™ DNA Library Prep Kit for Illumina (New 
England BioLabs, Ipswich,  MA, USA) according to the 
preparation protocol. DNA fragments with a length of 
300–400  bp were enriched by PCR. At last, PCR prod-
ucts were purified using the AMPure XP system (Beck-
man Coulter, Brea, CA, USA) and libraries were analyzed 
for size distribution by 2100 Bioanalyzer (Agilent, Santa 
Clara, CA, USA) and quantified using real-time PCR. 
Genome sequencing was performed on the Illumina 
Novaseq 6000 sequencer using pair-end technology 
(PE 150). The raw data from the Illumina platform was 
filtered using FASTP (version 0.18.0) according to the 
following criteria: 1) removal of reads with ≥ 10% uni-
dentified nucleotides (N); 2) removal of reads with ≥ 50% 
bases having phred quality scores ≤ 20; and 3) removal 
of reads aligned to barcode adapters [17]. After filtering, 
the resulting clean reads were used for genome assembly. 
Clean reads of each sample were assembled individu-
ally using MEGAHIT (version 1.1.2) to generate sample-
derived assembly. We used MetaGeneMark (version 3.38) 
to predict genes based on the final assembly contigs. All 
predicted genes of length > 300 bp were merged accord-
ing to 95% identity and 90% coverage of reads using CD-
HIT (version 4.6) to reduce the number of redundant 
genes in downstream assembly steps. Using Bowtie (ver-
sion 2.2.5) to count reads numbers, the reads were rea-
ligned to the predicted genes [18]. The final gene catalog 
was obtained from non-redundant genes with gene reads 
count greater than 2.

Several complementary methods were used to anno-
tate the assembled sequences. The unigenes were anno-
tated using DIAMOND (version 0.9.24) by aligning with 
the deposited ones in the database of Kyoto Encyclope-
dia of Genes and Genomes (KEGG). Additional annota-
tion was carried out based on the Carbohydrate-Active 
enZYmes (CAZy). Statistical analysis of Welch’s t-test 
was calculated using R project Vegan package. Bio-
marker features in each group were screened by LEfSe 
software (version 1.0).

The raw reads of rumen metagenome sequences were 
deposited into the NCBI SRA database (project number, 
PRJNA860332, and accession number, SRP387213).

Metabolome analysis in rumen fluid and liver tissue
The rumen fluid and liver samples were lyophilized, dis-
solved in methanol solution (−20  °C), and vortexed for 
1 min. Centrifuged at 12,000 r/min for 10 min at 4 °C, and 
450 μL of supernatant was taken for vacuum concentra-
tion. The samples were dissolved in 150 μL 2-chlorobenza-
lanine (4 μL/L), and the supernatant was filtered through a 

0.22 µm membrane to obtain the prepared samples for Liq-
uid Chromatography-Mass Spectrometry (LC–MS). Chro-
matographic separation was accomplished in a Thermo 
Ultimate 3000 system equipped with an Acquity UPLC® 
HSS T3 (150 mm × 2.1 mm, 1.8 µm, Waters, Milford, MA, 
USA) column maintained at 40 ℃. The temperature of the 
autosampler was 8 ℃. Gradient elution of analytes was car-
ried out with 0.1% formic acid in water and 0.1% formic 
acid in acetonitrile (positive model) or 5 mmol/L ammo-
nium formate in water and acetonitrile (negative model) at 
a flow rate of 0.25 mL/min. Injection of 2 μL of each sam-
ple was done for gradient elution after equilibration. Elec-
trospray ionization positive-ion and negative-ion modes 
were used for detection. The experiments were executed 
on the Thermo Q Exactive mass spectrometer with a spray 
voltage of 3.5  kV (positive model) and 2.5  kV (negative 
model) with the 325 ℃ of capillary temperature. Sheath 
gas and auxiliary gas were set at 30 and 10 arbitrary units, 
respectively. The analyzer scanned over a mass range of 
m/z 81–1000 for full scan at a mass resolution of 70,000. 
Proteowizard (version 3.0.8789) was used to transform 
the raw data files into mzXML format. Peak identification, 
peak filtering, and peak alignment for each metabolite 
were performed using the R (version 3.3.2) package XCMS 
[19]. The following were the major parameters: bw = 5, 
quality deviation = 15, peakwidth = c (5, 30), mzwid = 0.01, 
mzdiff = 0.01, method = "centWave". For further examina-
tion, the mass-to-charge ratio (m/z), retention duration 
and intensity, and positive and negative precursor mol-
ecules were employed. Batch normalization was used to 
convert peak intensities to overall spectral intensity. The 
precise molecular formula (molecular formula error < 20) 
was used to identify metabolites. To validate metabolite 
annotations, peaks were matched using Metlin (http://​
metlin.​scrip​ps.​edu) and MoNA (https://​mona.​fiehn​lab.​
ucdav​is.​edu).

To extract the most useful information, the collected 
multidimensional data were reduced and classified, 
including unsupervised principal component analysis 
(PCA) and discriminant analysis of squares (PLS-DA) 
with minimal supervision. The first principal component 
of the variable importance in the projection (VIP) was 
obtained from PLS-DA to refine this analysis. Metabo-
lites with a VIP value exceeding 1 were further applied to 
t-test at the univariate level to measure the significance of 
metabolite in two groups, and the P value less than 0.05 
was deemed as statistically significant. Receiver operating 
characteristic (ROC) curve analysis by R pROC package 
to evaluate the predictive power of each of the discrimi-
nant metabolites. The area under the curve (AUC) was 
computed via numerical integration of the ROC curves. 
The metabolite signature that has the largest AUC was 
identified as having the strongest predictive power for 

http://metlin.scripps.edu
http://metlin.scripps.edu
https://mona.fiehnlab.ucdavis.edu
https://mona.fiehnlab.ucdavis.edu
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discriminating the two groups. The fold-change value of 
each metabolite was calculated by comparing the mean 
value between G and F. The differential metabolites 
(DFMs) were further identified and validated by KEGG. 
The KEGG database was applied to the enrichment anal-
ysis of the KEGG metabolic pathway based on the DFMs. 
The calculated P-value was gone through false discovery 
rate (FDR) correction, taking FDR ≤ 0.05 as a threshold. 
Pathways that satisfied this condition were defined as sig-
nificantly enriched in DFMs.

Transcriptome sequencing and quantitative real‑time PCR 
validation of liver
Total RNA was extracted according to the manufac-
turer’s protocol using a Trizol reagent kit (Invitrogen, 
Carlsbad, CA, USA). RNase-free agarose gel electro-
phoresis was used to verify RNA quality using an Agi-
lent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, 
CA, USA). Following total RNA extraction, eukaryotic 
mRNA was isolated using Oligo (dT) beads, whereas 
prokaryotic mRNA was enriched using the Ribo-
ZeroTM Magnetic Kit (Epicentre, Madison, WI, USA) 
to remove rRNA. The enriched mRNA was then frag-
mented into small fragments with fragmentation buffer 
before being reverse transcribed into cDNA with ran-
dom primers. DNA polymerase I, RNase H, dNTP, and 
buffer were used to make second-strand cDNA. The 
cDNA fragments were then purified using a QiaQuick 
PCR extraction kit (Qiagen, Venlo, The Netherlands), 
end repaired, poly (A) added, and ligated to the Illu-
mina sequencing platform. The ligation products were 
sized by using agarose gel electrophoresis, then PCR 
amplified and sequenced on an Illumina HiSeq2500.

To obtain high-quality clean reads, raw reads 
obtained from the sequencing machines were further 
filtered by fastp (version 0.18.0). Reads were mapped to 
the ribosome RNA (rRNA) database by using the short 
reads alignment tool Bowtie2 (version 2.2.8) to elimi-
nate the rRNA mapped reads [18]. The remaining clean 
reads were further used in assembly and gene abun-
dance calculation. An index of the reference genome 
was built, and paired-end clean reads were mapped to 
the reference genome using HISAT2. 2.4. For each tran-
scriptional region, FPKM values (fragment per kilobase 
of transcript per million mapped reads) were calculated 
using StringTie (version 1.3.1) software to quantify 
expression abundance and variation [20].

RNA differential expression analysis was performed 
by DESeq2 software between two groups [21]. The 
transcripts with the parameter of  FDR below 0.05 
and absolute fold change ≥ 2 were considered as dif-
ferentially expressed transcripts. Differential expres-
sion genes (DEGs) in two groups were functionally 

annotated by gene ontology (GO) enrichment analysis. 
Physiological metabolism events and signal pathways of 
the DEGs were assessed using KOBAS software to test 
the statistical enrichments of the DEGs in KEGG path-
ways. The calculated P-value was gone through FDR 
correction, taking FDR ≤ 0.05 as a threshold. Pathways 
of GO and KEGG analysis meeting this condition were 
defined as significantly enriched pathways in DEGs. 
After selecting the eleven genes that were enriched in 
the lipid-related pathway, we conducted quantitative 
real-time PCR (qPCR) to validate the expression.

The raw reads of transcriptome sequences were depos-
ited into the NCBI SRA database (project number, 
PRJNA859628 and accession number, SRP386837).

Statistical analyses
The rumen fermentation characteristics, serum and liver 
biochemical parameters were compared using t-test by 
IBM SPSS Statistics for Windows (version 22.0, IBM 
Corp,  Armonk, NY, USA). Statistical significance was 
defined at P < 0.05. Correlation analyses were conducted 
by Pearson correlation analysis. Statistical significance 
was defined at P < 0.05.

Results
Ruminal fermentation parameters
Compared with the F group, grazing enhanced the pH 
of rumen fluid (P < 0.05, Fig.  1a). The ammonia-N con-
centration was greater in the stall-feeding lambs than in 
the G groups (P < 0.01, Fig. 1b). As for the fermentation 
indicators (Fig.  1c–e), the total VFA, propionate, valer-
ate, isovalerate, and valerate proportion were increased 
in stall feeding sheep, while acetate proportion was 
decreased (P < 0.05).

Serum and liver biochemical parameters
In the biochemical parameters of serum (Fig. 2a–c), the 
contents of LDL and BUN were higher in the F group 
(P < 0.05), whereas T-AOC was lower in the F group 
(P < 0.05). In the liver (Fig.  2d–e), the grazing pattern 
significantly reduced the contents of triglyceride, choles-
terol, FAS, and ACC (P < 0.05).

Ruminal microbial community characteristics
There was an average of 103,855 ± 1195 clean reads 
(mean ± standard error of the mean [SEM]) per sample via 
16S rRNA sequencing. The Good’s coverage of all samples 
was greater than 0.99, indicating that the sequencing data 
of 16S rRNA was sufficient (Table S2). As shown in Fig. 3, 
the Shannon, Simpson, Ace, Chao1 and Sob indexes of 
bacterial richness and diversity were significantly higher 
in G group than F group (P < 0.01). The Anosim based 
on Bray–Curtis distances showed significant differences 
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between the two groups (Fig. 3, P < 0.01). At the phylum 
level (Fig. 4a), most sequences were assigned to Bacteroi-
detes (53.90% ± 3.25%) and Firmicutes (36.09% ± 2.76%). 
At the genus level (Fig. 4b), the most predominant genus 
was Prevotella_1 (17.68% ± 2.24%) in the rumen. Based 
on the bacterial diversity and Bray–Curtis metric, eight 
samples (4 lambs per group) were selected and used for 
shotgun metagenome sequencing. Metagenome sequenc-
ing generated 69.17 ± 0.72 million raw reads. After qual-
ity control and removing host genes, 68.93 ± 0.72 million 
clean reads were retained. After assembly, a total of 
1,361,185 and 1,576,316 contigs were generated in F and 
G groups, respectively. We then performed gene predic-
tion and clustering for contigs larger than 500  bp and 
obtained 432,423.75 ± 29,037.86 non-redundant genes. 
Through the sequencing, there were four specific phyla in 
the G group, which were Euryarchaeota, Nanoarchaeota, 
Thaumarchaeota and Abditibacteriota (Fig. S1a). Based 

on the Welch’s t-test, with P-value less than 0.05 as the 
threshold, a total of 35 differential phyla were screened, 
all of which showed higher abundance in the F group, 
including Tenericutes and Candidatus_Saccharibacte-
ria (P < 0.05, Fig.  4c). Linear discriminant analysis effect 
size (LEfSe) was used to screen the main specific micro-
organisms between the two groups, and we found that 
the abundance of Butyrivibrio_sp_AC2005 and Clostrid-
ium_sp_CAG_1024 in the G group was higher than that 
in the F group. However, the abundance of Succiniclasti-
cum_ruminis, Acidaminococcales, Acidaminacoccaceae, 
Succiniclasticum, Coprobacillus and Candidatus_Saccha-
rimonas showed opposite changes (LDA > 2.8, Fig. 4d).

Functions of the rumen microbiome
The Tax4Fun- and PICRUSt2-based functional pre-
dictions revealed two important functions of the 
rumen microbiota (Fig.  5a–b). These functions were 

Fig. 1  Effects of feeding patterns on the rumen fermentation parameters: including rumen pH (a), ammonia-N (b) and the concentration of total 
VFA (c). Comparisons of the concentrations (d) and proportion (e) of VFA in the rumen between the F and G groups (n = 6 per group). *P < 0.05; 
**P < 0.01. “F” means indoor feeding group; “G” means grazing group; the bar in each column means standard error. VFA, volatile fatty acid
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“carbohydrate metabolism” and “amino acid metabo-
lism”. Based on Tax4Fun predictions of microbial func-
tional differences, three lipid metabolism pathways were 
screened, including primary bile acid synthesis, second-
ary bile acid synthesis, and etheric lipid metabolism, all 
of which were significantly higher in the grazing group 
than stall-feeding group (Fig.  5c). Through metagen-
omic sequencing, among the unique genes derived from 
the rumen microflora, 71.92% genes were classified into 
KEGG pathways, and 11.96% genes were classified into 
CAZymes. Based on the KEGG database for functional 
annotation of metagenome data, both groups shared 

118 pathways. According to Welch’s t-test (P < 0.05), two 
pathways, ascorbate and aldarate metabolism and peni-
cillin and cephalosporin biosynthesis, were significantly 
different between the two groups (Fig. S1b). CAZy func-
tion can be used to explore the contribution of micro-
organisms to carbohydrate metabolism, and we found 
the highest percentage of two major classes of glycoside 
hydrolases (GH) and glycosyltransferases (GTs) at level 
A. At level B, based on Welch’s t-test, the following dif-
ferential enzyme families: GH45, GT14, GT20, GT25 
and GT26 were found to be higher in the stall-feeding 
group than in the G group (Fig. 5d). Also, the reporter 

Fig. 2  Comparisons of the biochemical parameters in the serum (a–c) and liver (d–e) between the F and G groups. *P < 0.05; **P < 0.01. “F” means 
indoor feeding group; “G” means grazing group; the bar in each column means standard error. T-AOC, total antioxidant capacity. LDL, low-density 
lipoprotein. HDL, high-density lipoprotein. BUN, blood urea nitrogen. NEFA, nonestesterified fatty acid. FAS, fatty acid synthase. ACC, acetyl-CoA 
carboxylase
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score analysis showed that three pathways, namely beta-
alanine metabolism, alpha-linolenic acid metabolism, 
and biosynthesis of unsaturated fatty acid, were signifi-
cantly different between the two groups (Fig. S1c). To 
explore the potential microbial functions, Pearson cor-
relations were constructed between the microorganisms 
and the VFA in the rumen. As shown in Table S3, the 
abundance of Succiniclasticum and Acidaminococcales 
was significantly and positively correlated with propion-
ate and total VFA concentrations. Also, the abundance 
of Candidatus-Saccharimonas showed a positive corre-
lation with the concentration of valerate and total VFA.

Rumen and liver metabolome
In the rumen metabolome, 20,058 positive ion peaks 
and 13,031 negative ion peaks were detected by posi-
tive ion mode and negative ion mode detection, respec-
tively. Good separation of the rumen metabolites among 
the two groups was achieved in the PLS-DA score plots 

of the negative ion mode (Fig. S2). By t-test and VIP fil-
tering of relative concentrations of rumen metabolites, 
31 DFMs were identified between the two groups in the 
positive ionization mode; 15 of them were up-regulated 
and 16 were down-regulated; 52 differential peaks were 
identified between the two groups in the negative ioni-
zation mode, 27 of them were up-regulated and 25 were 
down-regulated. After finding the metabolites, the path-
way enrichment analysis by KEGG was performed for 
the DFMs. As shown in Fig. S3a, the top 20 enriched 
pathways related to lipid metabolism included biosyn-
thesis of unsaturated fatty acids, propanoate metabolism 
and fatty acid biosynthesis, among which biosynthesis 
of unsaturated fatty acids was the significantly enriched 
pathway. Among the DFMs enriched in this pathway, 
UFAs including icosapentaenoic acid (EPA), docosahex-
aenoic acid (DHA) and oleic acid were shown to be 
upregulated in the G group. And the SFAs decanoic acid 
showed down-regulation in the fatty acid biosynthesis 

Fig. 3  Analysis of rumen microbial diversity of sheep in the F and G groups by 16S rRNA sequencing. Alpha diversity analysis (a–e). Anosim (analysis 
of similarities) (f) based on Bray–Curtis distances between the F (n = 7) and G (n = 8) group. *P < 0.05, **P < 0.01. “F” means indoor feeding group; “G” 
means grazing group
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pathway. By random forest analysis, the top 15 items 
screened out by Mean Decrease Accuracy could be used 
as high contributing DFMs with annotated names includ-
ing 3,4-dihydroxymandelic acid, 2-ketobutyric acid and 
12-hydroxydodecanoic acid (Fig.  6a). And we noted 
that 2-ketobutyric acid was enriched in the propionate 
metabolism pathway.

For liver metabolism, 7125 positive ion peaks and 
4629 negative ion peaks were detected by positive and 
negative ion mode detection, respectively. Good sepa-
ration of the rumen metabolites among the two groups 
was achieved in the PLS-DA score plots of the positive 
and negative ion modes (Fig. S2). By t-test and VIP fil-
tering of relative concentrations of rumen metabolites, 

Fig. 4  Relative abundance of bacterial community proportions at the phylum (a) and genus (b) levels are compared between the two groups 
based on the 16S rRNA data (as a percentage of total sequences). The most ten abundant differential phyla screened by metagenomic sequencing 
based on the Welch’s t-test (n = 4 per group) (c). The significantly differential microorganisms based on the linear discriminant analysis effect size 
(LEfSe) cladogram in metagenomic sequencing (d), and the differences are represented by the color of the group. “F” means indoor feeding group; 
“G” means grazing group
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430 DFMs were identified between the two groups in 
the positive ionization mode; 225 of them were up-
regulated and 205 were down-regulated; 199 differen-
tial peaks were identified between the two groups in 
the negative ionization mode, 99 of them were up-reg-
ulated and 100 were down-regulated. The KEGG path-
way enrichment analysis shown in Fig. S3b revealed 
the top 20 pathways that were affected by each of the 
two different feed regimes. Among them, the path-
ways related to lipid metabolism include primary bile 
acid biosynthesis, glycerophospholipid metabolism, 
and sphingolipid metabolism. Moreover, we observed 
that icosatrienoic acid (ETA), which was rich in unsatu-
rated fatty acids metabolism pathway, was upregulated 
in the G group. Subsequently, we plotted ROC curves 

and calculated AUC areas. The top 10 AUC areas were 
screened for annotated DFMs, including fomepizole 
and 3-hydroxypropanoate, with 3-hydroxypropanoate 
being down-regulated in the G group and also enriched 
in the propionate metabolism pathway (Fig. 6b). Finally, 
citric acid enriched in the citric acid metabolic path-
way was also found to be downregulated in the grazing 
lambs.

Liver transcriptome analysis
To investigate the differences in the hepatic gene’s tran-
scriptional level between the two groups, we performed 
transcriptome sequencing on total RNA samples from 
16 lambs (8 lambs per group). In total, 60.33 ± 2.35 mil-
lion clean sequence reads were obtained from the liver 

Fig. 5  Functional prediction of the rumen microbiota based on PICRUSt2 (a) and Tax4Fun (b) is performed on 16S rDNA data. Prediction of 
microbial functional differences based on Tax4Fun by the Welch’s t-test in 16S rDNA sequencing (c). Comparisons of the abundance of CAZymes 
genes of rumen microbiomes in the F and G groups by the Welch’s t-test in metagenomic sequencing (d). “F” means indoor feeding group; “G” 
means grazing group
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transcriptome. Among the encoded genes, 245 DEGs 
were identified from the comparison of the two groups. 
Among these DEGs, there were 102 upregulated genes 
and 143 downregulated genes. DEGs in each pair of the 
two groups of different feeding strategies were function-
ally annotated by GO analysis. Of the 192 significantly 
changed GO terms (FDR < 0.05), lipid metabolism that we 
mainly pay attention to belongs to biological processes, 
with 54 items, including lipid metabolic process, steroid 
metabolic process, lipid biosynthetic process, steroid bio-
synthetic process, cellular lipid metabolic process, lipid 
catabolic process. As shown in Fig. 7, multiple pathways 
related to lipid metabolism were identified in the top 20 
pathways enriched by KEGG, including steroid hormone 
biosynthesis, PPAR signaling pathway, steroid biosynthe-
sis, arachidonic acid metabolism, fatty acid metabolism, 
cholesterol metabolism, fatty acid degradation, biosyn-
thesis of unsaturated fatty acids, glycolysis/gluconeogen-
esis and propanoate metabolism. We found that AKR1C1, 
SCD, FADS1, FADS2, CYP7A1, CYP4A6, ACADM, 

ALDH6A1, and ACSS2 were significantly upregulated 
in the G group; inversely, grazing significantly down-
regulated CYP2C23 and PLB1. The expression of these 
11 genes was validated using qPCR, and the expression 
trends remained consistent (Fig. 7c).

Correlation of genes and metabolites in the liver
On the basis of our biological processes of interest, 
important metabolites enriched to the unsaturated 
fatty acid metabolic pathway and the propionate meta-
bolic pathway were subjected to Pearson correlation 
analysis with differential genes related to lipid metabo-
lism (Fig. 8a). In detail, ETA was negatively correlated 
with PLB1. DHA was found to have a negative corre-
lation with PLB1 and CYP2C23, and a positive corre-
lation with CYP4A6, FADS1, ACADM, and ALDH6A1. 
The 3-hydroxypropanoate was negatively correlated 
with DHA, CYP4A6, FADS1, FADS2, ALDH6A1, and 
positively correlated with CYP2C23.

Fig. 6  The top 15 high-contribution differential metabolites in the rumen are screened out by random forest analysis in the positive (a) and 
negative (b) ion mode. The top 10 high-contribution differential metabolites in the liver are screened out by AUC area calculation in the positive (c) 
and negative (d) ion mode. The annotated metabolites are named in the figure (n = 8 per group)
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Fig. 7  The top 20 enriched pathways of differential expression genes (DEGs) between the F and G groups lambs’ liver by KEGG analysis (a). The 
ordinate is the number of DEGs enriched into the pathway; *Q-value < 0.05; **Q-value < 0.01. Expression of differential genes involved in lipid 
metabolism in the F and G groups (b). Heatmap colors indicate FPKM values. The arrow represents the gene enrichment pathway, in which the pink 
arrow represents the down-regulated genes and the blue arrow represents the up-regulated genes. The verification of candidate genes expression 
in RNA-seq (n = 8 per group) by quantitative real-time PCR test (n = 4 per group) (c). “F” means indoor feeding group; “G” means grazing group

Fig. 8  Pearson correlation analysis of lipid-related metabolites and genes in liver (a). Pearson correlation analysis of lipid-related metabolites 
in muscle, rumen and liver (b) (n = 8 per group). *P < 0.05, **P < 0.01, ***P < 0.001. ETA, icosatrienoic acid. DHA, docosahexaenoic acid. EPA, 
icosapentaenoic acid
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Correlations of lipid metabolism in the rumen, liver 
and muscle
A Pearson correlation analysis was performed to analyze 
the effect of rumen and liver lipid metabolism on muscle 
fatty acid deposition (Fig. 8b). We found that EPA and n-3 
PUFAs in muscle were significantly positively correlated 
with EPA, DHA, oleic acid in the rumen and DHA in the 
liver, and conversely significantly negatively correlated 
with rumen decanoic acid and hepatic 3-hydroxypro-
panoate. And there was a significant positive correla-
tion between DHA in muscle and EPA and oleic acid in 
rumen. In the communication between rumen and liver, 
EPA in the rumen was positively correlated with ETA in 
the liver.

Discussion
For sheep, the rumen and liver are two important organs 
involved in metabolism and production. Rumen, as a 
unique and vital digestive organ of ruminants, con-
verts indigestible forage into nutrients, the main energy 
source of host animals, through its symbiotic micro-
biota. As the core site of lipid metabolism, the function 
of liver determines the decomposition, synthesis and 
deposition of lipids in ruminants. Currently, there is 
limited knowledge of the difference of rumen microbes 
and liver metabolism under different feeding patterns. 
By integrating the rumen metagenome, rumen and liver 
metabolome and liver transcriptome, we investigated the 
contribution of rumen microbiome-dependent and host 
hepatic metabolome-dependent mechanisms to lipid 
metabolism of the body.

The feeding pattern is a complex system containing 
various factors, including the level of fiber [22], type of 
fiber [23], rumen pH [24], etc. Previous researches have 
determined that various fiber quantities, sources, and pH 
could change the molar ratio of VFA in the rumen, which 
then affect the whole FAs metabolism after entering the 
circulation via the portal vein. Although understanding 
the variability of these factors is important for a deeper 
investigation of FAs metabolism, resolving these indi-
vidual factors separately is difficult to achieve in practi-
cal generation. Taken together, it is relevant to analyze 
the effects on FAs brought about by feeding patterns. 
The ruminal VFA concentration is the crucial factor that 
can reflect the impact of different feeding treatments on 
ruminal fermentation [25]. Similar to a previous study, 
rumen fermentation characteristics were significantly 
affected due to the differences in feeding pattern, which 
represented the increased carbohydrate fermentation in 
the rumen of indoor feeding lambs [26]. Rumen fermen-
tation is affected by the combination of pH and dietary 
substrate, and then regulates lipid metabolism. A previ-
ous study found that rumen propionate concentration 

increased with decreasing pH [27], which was consistent 
with this experiment. In current work, the significantly 
increased propionate, isovalerate, and valerate in the 
rumen represented the increased utilization of energy, 
which indicated more nutrients could be available for 
growth due to the enhanced rumen energy intake when 
propionate could be absorbed and converted to glu-
cose, amino acids and lipids [28]. Concisely, these evi-
dences indicated that the change in feeding regime would 
accordingly alter the rumen fermentation, thereby affect-
ing nutrient absorption and metabolism.

Rumen microbial community structure could be 
affected by environmental, host, physiological state, 
and even behavioral characteristics that have evolved 
together with the varied feeding strategies in ruminants 
[29]. Recently, a study focused on the gut microbiome of 
herbivores, suggesting that the richness of the microbiota 
was increased in animals from the wild environment than 
in captive animals [30]. In this present study, the rich-
ness and evenness of microorganisms were significantly 
higher in G group than in F group, which was consistent 
with the results of Xue et al.  [26]. A previous paper has 
shown that the high-grain diet hurts the microbial diver-
sity index of rumen microorganisms [31], which may 
partly explain this result. In addition, we obtained four 
unique phyla in G group through metagenomic analysis, 
which further confirmed that grazing model was more 
conducive to the diversity of rumen microecology.

The functional differences of microorganisms in bac-
terial communities were predicted based on Tax4Fun 
using 16S rRNA sequencing data, and the 3 pathways 
screened were related to lipid metabolism. These pre-
liminary results indicated that there were differences in 
lipid metabolism between the two groups of microor-
ganisms. The key differential microorganisms Butyrivi-
brio_sp_AC2005 and Acidaminococcales, both screened 
by LEfSe analysis, were found to be closely associated 
with lipid metabolism, providing further confirmation 
of the above speculation [32, 33]. Interestingly, Suc-
ciniclasticum, as a core component of the differential 
rumen microbiome, has the ability to convert succinate 
to propionate [34, 35], hence its enhancement in the F 
group could be a logical explanation for the augment in 
the propionate in the rumen liquid of the stall-feeding 
lambs. Besides, the significant positive correlation of 
Succiniclasticum abundance with ruminal propionate 
concentration further corroborated our point. In addi-
tion, although there is no direct evidence, some studies 
have found that the synergistic reduction of Coprobacil-
lus and rumen succinate improved dyslipidemia caused 
by a high-fat diet, and Candidatus_Saccharimonas was 
positively correlated with the proportion of propionate 
in rumen [35, 36]. Both suggested that Coprobacillus and 
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Candidatus_Saccharimonas were directly or indirectly 
involved in the rumen production of succinate and pro-
pionate, respectively, and further confirmed the vital 
function of propionate in lipid metabolism between the 
two groups. Meanwhile, it was obvious that the dietary 
composition of lambs under the two feeding modes was 
significantly different, especially in terms of carbohy-
drates, due to the concentrate supplement in the F group. 
So, we used the CAZyme database for comparison, and 
found that the abundance of typical endoglucanase GH45 
and four GTs family enzymes genes were higher in the 
F group. GHs cleave bonds by the insertion of a water 
molecule to hydrolyze complex carbohydrates, while 
GTs assemble complex carbohydrates from activated 
sugar donors [37, 38]. A recent study reported that the 
increased abundance of GTs gene in rumen of dairy cows 
promoted the production of volatile acids, which further 
promoted the production activities [39]. Similarly, com-
pared to the G group, the stall-feeding lambs had higher 
abundances of genes encoding CAZymes involved in car-
bohydrate degradation (GH45) and synthesis (GTs), as 
well as higher concentration of major VFAs in the rumen, 
indicating that the rumen microbiomes of F group might 
be more efficient to generate VFAs, and therefore provide 
more energy for growth in host sheep.

After entering the rumen, dietary lipids are hydrolyzed 
to release FAs, which are metabolized by rumen microor-
ganisms, including degradation, synthesis and hydrogen-
ation. Nevertheless, rumen microbial degradation of FAs 
is less than 1% of the total fatty acid [40]. Moreover, the 
synthesis of FAs by rumen microorganisms is also very 
small, because rumen microbes prefer to directly utilize 
dietary FAs rather than synthesize them themselves [41]. 
Therefore, due to the above characteristics of the metab-
olism of FAs by rumen microorganisms, the hydrogena-
tion of rumen microorganisms is the main factor that 
ultimately affects FAs composition in ruminant products. 
The effects of different FAs on human health are diverse, 
and SFAs can increase the risk of cardiovascular disease. 
The FAs that have positive effects on human health are 
mainly UFAs, especially PUFAs, which play a role in reg-
ulating cell cycle, reducing body fat, and preventing car-
diovascular diseases. However, the biohydrogenation of 
PUFAs in rumen will generate a large number of SFAs, 
which will reduce the deposition of PUFAs in ruminant 
products [42]. According to rumen metabolome analy-
sis, EPA, DHA and oleic acid were down-regulated and 
decanoic acid was up-regulated in the F group. Moreo-
ver, Tenericutes, which significantly increased in abun-
dance under stall-feeding condition, was found to have 
a role in biohydrogenation to convert PUFA to SFA [43]. 
Therefore, it could be speculated that indoor feeding to 
some extent enhanced the ruminal biohydrogenation by 

increasing Tenericutes, leading to the accumulation of 
SFA. It has been found that biohydrogenation of PUFAs 
in the rumen was lower in hay-fed animals than that in 
concentrate-fed animals, with a greater percentage of 
PUFAs bypassing the rumen in the former than that in 
concentrate-fed animals [44]. Based on the sensitivity 
of rumen microorganisms to diets, this phenomenon 
may be caused by the difference in diet components. 
For PUFAs, the balance of n-3 PUFAs (including EPA 
and DHA) and n-6 PUFAs is an important index used to 
evaluate the nutritional value of meat quality for humans 
[45]. Previous studies of our team have found that graz-
ing model increased the content of n-3 PUFAs and n-6 
PUFAs and reduced the ratio of n-6/n-3 in LD muscle, 
which is more beneficial to human health [6]. The sub-
stantial positive association between EPA and DHA in 
rumen and EPA and n-3 PUFAs content in muscle indi-
cated that the rumen of grazing lambs produced more 
EPA and DHA and thus potentially up-regulated the n-3 
PUFAs content in muscle, contributing to better lamb 
meat quality. Besides, the accumulation of n-3 PUFAs 
could inhibit lipid synthesis in liver and reduce choles-
terol, triglycerides, and LDL in plasma [46]. These results 
suggested that the decrease of LDL in plasma and triglyc-
eride, cholesterol, FAS and ACC in liver by grazing may 
be related to the up-regulation of n-3 PUFAs, leading to 
the decrease of lipid metabolic activity in the liver.

In ruminants, some UFAs are hydrogenated in the 
rumen and further metabolized in various tissues, includ-
ing the liver, with important roles in lipid and lipoprotein 
metabolism. Therefore, manipulation of muscle fatty acid 
composition should take into account liver metabolism, 
especially in the biosynthesis of n-3 PUFAs [47]. Through 
liver metabolomics, we found that ETA enriched in the 
biosynthesis of unsaturated fatty acids pathway was up-
regulated in the G group, which belongs to n-3 PUFAs. 
During the synthesis of long-chain PUFAs, ETA can be 
desaturated by Δ5-desaturase to produce EPA, which 
provides a precursor for more deposition of EPA in 
muscle [48]. In the liver, the mechanism of formation of 
3-hydroxypropanoate involves the conversion of propion-
ate to propionyl-CoA, which is reduced to acrylyl-CoA, 
followed by hydration of acrylyl-CoA to 3-hydroxypro-
panoate-CoA, and hydrolysis to 3-hydroxypropanoate 
[49]. Combined with the positive correlation between 
ruminal propionate and the biomarker 3-hydroxy-
propanoate in the liver in Table S4, it followed that the 
increased ruminal propionate was absorbed by the liver, 
resulting in changes in hepatic propionate metabolism 
in the F group. At the same time, the citric acid cycle 
would also be regulated by the metabolism of propion-
ate in the liver. It has been reported that the increase of 
citric acid stimulated adipogenesis and gluconeogenesis 
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by activating ACC, which was compatible with the results 
of increased ACC in liver enzyme activity in the F group 
[50]. Meanwhile, due to gluconeogenesis in liver, propi-
onate can indirectly modulate adipose tissue lipogenesis 
through increased glucose availability [47]. Furthermore, 
the role of propionate in reducing the synthesis of long-
chain PUFAs in the liver has also been previously found 
[51]. Therefore, the negative correlation between hepatic 
3-hydroxypropanoate and n-3 PUFAs in the muscle sug-
gested that the downregulation of muscle PUFAs in the 
F group may be related to the changes in propionate 
metabolism.

Based on the concerning biology processes, we focused 
on the expression profile of eleven lipid metabolic-related 
genes involved in the signal pathway of liver. Among 
them, AKR1C1, SCD, FADS1, FADS2, CYP7A1, CYP4A6, 
ACADM, ALDH6A1 and ACSS2 were significantly 
up-regulated in the G group; inversely, grazing signifi-
cantly down-regulated CYP2C23 and PLB1 which were 
essential factors for the variations in liver lipid metabo-
lism under different feeding patterns. Further correla-
tion analysis revealed the major roles of FADS1, FADS2, 
CYP4A6, ACADM, ALDH6A1, PLB1, and CYP2C23 in 
the metabolism of UFAs. FADS1 and FADS2, encode 
enzymes involved in the conversion of α-linolenic acid to 
EPA, DPA, and DHA and linoleic acid to γ-linolenic acid 
and arachidonic acid, respectively [52]. A study in bovine 
mammary epithelial cells found a significant positive cor-
relation between the contents of EPA and the expression 
of FADS1 [53]. Another previous study has reported that 
reduced activity of the desaturase enzymes mediated 
by FADS1 and FADS2 leads to a reduction of PUFAs in 
plasma [54]. Combined with the significant positive cor-
relation between DHA and FADS1, it was speculated 
that PUFAs deposition in the G group was related to the 
up-regulation of FADS1 gene. It is well known that meat 
quality is strongly related to fatty acid composition, espe-
cially the proportion of PUFAs. Our previous results 
found that while indoor feeding increased daily gain, it 
enhanced the proportion of n-6/n-3 PUFAs, which neg-
atively affected meat quality [6]. Similarly, it has been 
reported that the transcription of FADS2 could affect 
the endogenous transformation of long-chain PUFAs, 
reducing the bioavailability of n-3 PUFAs and promoting 
the accumulation of n-6 PUFAs [55]. Though the exact 
mechanism is not clear, it further confirms the impor-
tant role of FADS2 gene in the conversion of long-chain 
PUFAs. CYP4A6 is a member of the cytochrome P450 
IVA gene subfamily, which encodes several enzymes that 
catalyze the metabolic process of SFAs and UFAs, includ-
ing arachidonic acid, and plays an essential role in the 
metabolism of FAs [56]. Medium-chain acyl-CoA dehy-
drogenase, encoded by the ACADM gene, catalyzes the 

first step of β-oxidation. Previous studies showed that 
ACADM gene knockdown remarkably enhanced lipid 
accumulation in vitro, implying that the decrease of tri-
glyceride and cholesterol in liver of grazing group may 
be related to ACADM upregulation [57]. According to a 
study, ALDH6A1 was identified as a new adipose tissue 
marker associated with obese people through its involve-
ment in propionate metabolism, further suggesting a 
major function for propionate in lipid metabolism [58]. 
A series of n-3 PUFAs such as EPA can act as an effi-
cient substrate of CYP2C23 enzyme, so downregulation 
of the CYP2C23 gene may lead to the accumulation of 
n-3 PUFAs in the liver [59]. The significant negative cor-
relation between CYP2C23 and DHA also supports this 
conjecture. PLB1 is a secreted enzyme with lysophos-
pholipase hydrolase and lysophospholipase transacylase 
activities, which is required for the release of arachidonic 
acid from phospholipids [60]. EPA can be synthesized by 
both ETA and arachidonic acid pathways, respectively 
[48]. Owing to the negative relationship between PLB1 
and ETA, it was hypothesized that the deletion of the 
arachidonic acid pathway caused by the down-regulation 
of PLB1 might be compensated by the up-regulation of 
ETA, which finally did not affect the synthesis of EPA in 
the liver.

Notably, correlation analysis also revealed that 
3-hydroxypropanoate, the important DFMs in the propi-
onate metabolism pathway were significantly correlated 
with CYP4A6, FADS1, FADS2, ALDH6A1 and CYP2C23. 
Previous reports on the influence of propionate metabo-
lism on liver lipid metabolism, suggested that the above 
changes of lipid metabolic-related genes may be medi-
ated by propionate metabolism [61, 62]. Combined with 
the result in Table S4 that ruminal propionate content 
had a significant positive correlation with 3-hydroxypro-
panoate in the liver, it further demonstrated that micro-
bial-driven propionate production may mediate changes 
in hepatic propionate metabolism and subsequently par-
ticipate in the regulation of multiple fatty acid metabo-
lism-related signaling pathways. Moreover, based on the 
close correlation between UFAs in muscle and liver, it is 
implied that changes in hepatic lipid metabolism poten-
tially may lead to differences in fatty acid deposition in 
muscle.

Conclutions
In summary, our findings addressed the variations in 
lipid metabolism between grazing and stall-feeding 
lambs, from the rumen to the liver. By reducing the abun-
dance of Succiniclasticum, the grazing pattern decreased 
the propionate content and changed the propionate 
metabolism of rumen. The rumen wall absorbed more 
propionate from stall-feeding sheep, which reached the 
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liver and changed the propionate metabolism and citrate 
cycle in the liver. Meanwhile, 3-hydroxypropanoate, the 
key DFM enriched in the propionate metabolism path-
way, was significantly correlated with lipid-related genes 
CYP4A6, FADS1, FADS2, ALDH6A1, and CYP2C23, sug-
gesting that propionate metabolism may regulate hepatic 
lipid metabolism. In addition, the decreased abundance 
of Tenericutes in grazing sheep weakened the hydro-
genation of UFAs, leading to the accumulation of EPA, 
DHA and oleic acid and the reduction of decanoic acid 
in rumen, which also became a potential reason for the 
up-regulation of UFAs in muscle. Overall, microbial-
mediated metabolic changes in the rumen of grazing 
sheep were important in affecting ruminal and hepatic 
lipid metabolism, and may further contribute to the dep-
osition of FAs in muscle, but the specific mechanisms in 
meat need to be more explored.
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